Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                

2013-07-15: Symmetry in Function Calls and Returns

The source for this post is online at 2013-07-15-values.rkt.

Categories: Racket Macros

I find symmetry and uniformity beautiful. Something particularly beautiful to me is the way that Racket provides some symmetry in function calls, which can take any number of arguments, and function returns, which can return any number of answers. However, things in Racket are not as symmetric as they could be, as I discuss and correct in this post.

-

1 The Basics of values

It is trivial to observe that functions in Racket can take 0, 1, or many arguments:

(define (zero-args)
  0)
(check-equal? (zero-args) 0)
 
(define (one-arg first)
  first)
(check-equal? (one-arg 1) 1)
 
(define (many-args first second third)
  (list first second third))
(check-equal? (many-args 1 2 3)
              (list 1 2 3))

Indeed, many languages do this as well. However, Racket is fairly unique in allowing functions to return 0, 1, or many results:

(define (zero-vals)
  (values))
(define (one-val)
  (values 1))
(define (many-vals)
  (values 1 2 3))

This is sometimes challenging to beginners in Racket. They wonder if values creates some sort of primitive list or vector or if multiple values are "spliced" into place. In other words, they wonder if (= (+ 1 2) (+ (values 1 2))) is true or an error that + cannot be applied to a "multiple value thing".

The second idea is closer to the truth, but also wrong. The expression (+ (values 1 2)) results in an error, but it has nothing to do with +. (+ (values 1 2)) is an abbreviation of (#%plain-app + (values 1 2)) and #%plain-app puts (values 1 2) into a context like (let ([x ....]) ....) which is expecting it to evaluate to exactly one value, but it evaluates to two. Thus, the error says "result arity mismatch".

(check-exn
 (λ (x) (regexp-match #rx"result arity mismatch" (exn-message x)))
 (λ () (+ (values 1 2))))

This situation is symmetric to when you try to apply a function to too many arguments, such as with (one-arg 1 2).

(check-exn
 (λ (x) (regexp-match #rx"arity mismatch" (exn-message x)))
 (λ () (one-arg 1 2)))

This arity error gives a clue to what values means: when a function normally returns, you can think of it as "calling its continuation" with the return value. All values does it call that continuation with more arguments:

(define (zero-vals/k)
  (let/cc k
    (k)))
(define (one-val/k)
  (let/cc k
    (k 1)))
(define (many-vals/k)
  (let/cc k
    (k 1 2 3)))

The larger question, then, is "How do I create a continuation that expects more than one value?" Racket supports two ways of doing this: let-values and call-with-values. let-values creates a continuation that accepts a fixed number of values:

(check-equal?
 (let-values ([() (zero-vals/k)]
              [(a) (one-val/k)]
              [(b c d) (many-vals/k)])
   (list a b c d))
 (list 1 1 2 3))

call-with-values is more exciting and creates a continuation that accepts any number of values and then delivers them all as arguments to another function.

(check-equal? (call-with-values zero-vals/k list) (list))
(check-equal? (call-with-values one-val/k list) (list 1))
(check-equal? (call-with-values many-vals/k list) (list 1 2 3))

You can think of let-values as being pretty syntax for constructing a call to call-with-values with the right function in the second position, as if call-with-values is the "application" primitive in a multiple-values world. (This is not actually true though, even though call-with-values is (and has to be) built in to the Racket VM.)

2 The Asymmetry of values

Given the previous section, it appears that Racket is beautifully symmetric in your ability to create functions and co-functions that accept any number of arguments. However, this is not true even in basic Racket.

For example, in Racket you can create a function that accepts any number of arguments and gives only a finite prefix names while referring to the remaining elements as a single list:

(define (rest-args a b . cs)
  (list a b cs))
(check-equal? (rest-args 1 2 3 4 5)
              (list 1 2 (list 3 4 5)))

Unfortunately let-values does not allow this idea when specifying a co-function. Let’s fix that (and other problems) with a new form called let-values+.

(check-equal?
 (let-values+ ([(a b . cs) (values 1 2 3 4 5)])
   (list a b cs))
 (list 1 2 (list 3 4 5)))

In addition to this built-in behavior of Racket functions, most Racket functions aren’t really what the Racket VM calls #%plain-lambdas but are instead lambdas that implement optional arguments and keyword arguments. (Similarly, most applications are #%app (and not #%plain-app) which implements the application side of keyword arguments.)

A optional argument function looks like:

(define (opt-args a b [c 3])
  (list a b c))
(check-equal? (opt-args 1 2)
              (list 1 2 3))
(check-equal? (opt-args 1 2 4)
              (list 1 2 4))

And we would like to support optional co-arguments as well:

(check-equal? (let-values+ ([(a b [c 3]) (values 1 2)])
                (list a b c))
              (list 1 2 3))
(check-equal? (let-values+ ([(a b [c 3]) (values 1 2 4)])
                (list a b c))
              (list 1 2 4))

A keyword argument function looks like:

(define (key-args #:a a #:b b)
  (list a b))
(check-equal? (key-args #:a 1 #:b 2)
              (list 1 2))

And we would like to support keyword co-arguments:

(check-equal? (let-values+ ([(#:a a #:b b) (values+ #:a 1 #:b 2)])
                (list a b))
              (list 1 2))

And, of course, everything should be usable at the same time in co-functions:

(check-equal? (let-values+ ([(a [b 2] #:c c #:d [d 3] . more)
                             (values+ 1 2 #:c 3 #:d 4 5 6)])
                (list a b c d more))
              (list 1 2 3 4 (list 5 6)))
(check-equal? (let-values+ ([(a [b 2] #:c c #:d [d 3] . more)
                             (values+ 1 #:c 3)])
                (list a b c d more))
              (list 1 2 3 3 (list)))

Just like in normal functions:

(define (all-args a [b 2] #:c c #:d [d 3] . more)
  (list a b c d more))
(check-equal? (all-args 1 2 #:c 3 #:d 4 5 6)
              (list 1 2 3 4 (list 5 6)))
(check-equal? (all-args 1 #:c 3)
              (list 1 2 3 3 (list)))

3 Implementing values+

Given this understand of what values+ and let-values+ should do, let’s implement them.

The first thing is to realize that it all comes down to call-with-values+ and a technique for values+ to communicate with it. The only thing that is complicated is getting the keyword arguments that values+ may be called with. If you want to write a function that accepts a strange configuration of keyword arguments, you need to use make-keyword-procedure.

make-keyword-procedure takes two arguments: one to be called when there are keywords (the slow path) and one when there are no keywords (the fast path). The slow path is given a list of keywords, a list of keyword arguments, and then the normal arguments. Our trick will be to capture these three lists into an arity three multiple return values that call-with-values+ just delivers (via keyword-apply) to the consumer.

Unfortunately, call-with-values+ needs to distinguish the slow path and the fast path. We’ll do that with a hidden value that only the two of them share.

(define value+-code (gensym))
 
(define values+
  (make-keyword-procedure
   (lambda (kws kw-args . rest)
     (values value+-code kws kw-args rest))
   values))
 
(define (call-with-values+ producer consumer)
  (call-with-values producer
    (case-lambda
      [(maybe-key kws kw-args rest)
       (if (eq? value+-code maybe-key)
         (keyword-apply consumer kws kw-args rest)
         (consumer maybe-key kws kw-args rest))]
      [args
       (apply consumer args)])))

The way the hiding will work is with a racket/package that just exports the functions:

<core> ::=
(define-package values+-pkg (call-with-values+ values+)
  <core-hidden>)
(open-package values+-pkg)

Once this is in place, the first macro is trivial:

(define-syntax-rule (let-values+/one ([formals expr]) body)
  (call-with-values+
   (lambda () expr)
   (lambda formals body)))

But it is complicated to extend it to many binding clauses, because each binding would be nested inside the body of the call-with-values+ consumer. That behavior is more like let*-values. So, we’ll implement it first:

(define-syntax let*-values+
  (syntax-rules ()
    [(_ () body)
     body]
    [(_ ([formals0 expr0] [formals1 expr1] ...) body)
     (let-values+/one ([formals0 expr0])
      (let*-values+ ([formals1 expr1] ...) body))]))

In order to term let*-values+ into let-values+, we need to ensure that the bindings introduced in one clause aren’t available in the next. In other words,

(check-equal?
 (let ([x 1] [y 2])
   (let-values+ ([(x) (+ x y)]
                 [(y) (+ x y)])
    (list x y)))
 (list 3 3))
 
(check-equal?
 (let ([x 1] [y 2])
   (let*-values+ ([(x) (+ x y)]
                  [(y) (+ x y)])
    (list x y)))
 (list 3 5))

One way to do that is to introduce temporary identifiers that will be rewritten in the body:

(define-syntax (let-values+ stx)
  (syntax-case stx ()
    [(_ () body)
     (syntax/loc stx
       body)]
    [(_ ([formals0 expr0] [formals1 expr1] ...) body)
     (with-syntax
         ([(new-formals0 (formals0i ...) (new-formals0i ...))
           (generate-temporaries/formals #'formals0)])
       (syntax/loc stx
         (let-values+/one ([new-formals0 expr0])
          (let-values+ ([formals1 expr1] ...)
           (let-syntax ([formals0i (make-rename-transformer #'new-formals0i)]
                        ...)
             body)))))]))

But, generating such identifiers is complicated and requires deeply understanding the syntax of lambda:

<ugly> ::=
(begin-for-syntax
  (define (generate-temporaries/formals formals)
    (let loop ([formals formals])
      (syntax-case formals ()
        [()
         (list empty empty empty)]
        [(id . m)
         (identifier? #'id)
         (let ()
           (match-define (list nm mis nmis) (loop #'m))
           (match-define (list new-id) (generate-temporaries #'(id)))
           (list (cons new-id nm)
                 (cons #'id mis)
                 (cons new-id nmis)))]
        [((id def) . m)
         (identifier? #'id)
         (let ()
           (match-define (list nm mis nmis) (loop #'m))
           (match-define (list new-id) (generate-temporaries #'(id)))
           (list (cons (list new-id #'def) nm)
                 (cons #'id mis)
                 (cons new-id nmis)))]
        [(key id . m)
         (and (keyword? (syntax-e #'key)) (identifier? #'id))
         (let ()
           (match-define (list nm mis nmis) (loop #'m))
           (match-define (list new-id) (generate-temporaries #'(id)))
           (list (list* #'key new-id nm)
                 (cons #'id mis)
                 (cons new-id nmis)))]
        [(key (id def) . m)
         (and (keyword? (syntax-e #'key)) (identifier? #'id))
         (let ()
           (match-define (list nm mis nmis) (loop #'m))
           (match-define (list new-id) (generate-temporaries #'(id)))
           (list (list* #'key (list new-id #'def) nm)
                 (cons #'id mis)
                 (cons new-id nmis)))]
        [id
         (identifier? #'id)
         (let ()
           (match-define (list new-id) (generate-temporaries #'(id)))
           (list new-id
                 (list #'id)
                 (list new-id)))]))))

I find this code very ugly and think it has way too much boiler-plate, but it seems necessary to me. Aside from this piece, I think this is a really beautiful set of macros that does a nice thing.

4 Yo! It’s almost time to go!

But first let’s remember what we learned today!

Symmetry is beautiful.

Racket provides a lot of symmetry between function calls and returns.

Multiple return values are a natural consequence of first-class continuations.

Racket macros give us an elegant way to add even more symmetry between function calls and returns.

If you’d like to run this exact code at home, you should put it in this order:

<*> ::=
(require (for-syntax racket/base
                     racket/list
                     racket/match)
         racket/package
         rackunit)
 
<basic-funs>
<basic-vals>
<error-ex1>
<error-ex2>
<basic-vals/k>
<basic-conts>
<basic-conts/call>
 
<core>
<let-values+/one>
<let*-values+>
 
<ugly>
 
<let-values+>
 
<let-values+-isnt-let*-values+>
 
<rest-args>
<rest-vals>
<opt-args>
<opt-vals>
<key-args>
<key-vals>
<all-args>
<all-vals>

This post was inspired by a question on the Racket mailing list.