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1 Introduction
Sampling from continuous distributions over high-dimensional state-spaces is a problem which has recently
attracted a lot of research efforts in statistics, machine learning, and computational physics.
This boils down to sampling a target distribution π having a density with respect to the Lebesgue measure on
Rd, known up to a normalization factor; π(θ) = e−f(θ)/

∫
Rd e

−f(y)dy where f is continuously differentiable.
In Bayesian inference, samples are used to construct statistical estimators from posterior summaries of interest
such as expectations of desired quantities, credible intervals, and probabilities of rare events. In the frequentist
framework, samples drawn from a suitable distribution can form confidence intervals for a point estimate.

1.1 Monte Carlo Markov Chain Methods
A popular class of methods are Monte Carlo Markov Chain methods where one constructs an irreducible and
aperiodic discrete-time Markov chain whose stationary distribution is equal or close to π in total variation or
some other distance. To obtain an ε-accurate sample, one needs to simulate the Markov chain for a certain
number of steps n which is determined by a mixing time analysis.
Two broad categories of sampling methods are zeroth-order and first-order methods. On the one hand, zeroth-
order methods are based on querying the density of the distribution (up to a normalizing constant). This
includes Metropolized random walk, Ball Walk, and the Hit-and-run algorithms. However, vanilla random
walk or Hit-and-run methods have been shown to scale poorly in higher dimensions. On the other hand,
choosing an appropriate proposal distribution for Metropolis-Hastings (M-H) algorithms is a tricky subject.
Furthermore, M-H methods typically require computations over the whole dataset. Therefore, these methods
have gone out of fashion with the rise of large-scale datasets.
For this reason, it has been proposed to consider the discretization of continuous diffusion processes which
leave the target distribution invariant. This includes the (overdamped) Langevin Monte Carlo methods which
incorporate the gradient of the density to drive a random walk towards regions of high probability. LMC
algorithms have also demonstrated faster convergence, in practice, for high-dimensional and large-scale
applications.

1.2 Langevin Monte Carlo
Langevin-type algorithms are based on the Langevin diffusion, a stochastic process whose evolution is
characterized by the stochastic differential equation (SDE):

dYt = −∇f(Yt)dt+
√

2dBt (1)
where Bt is the standard Brownian motion on Rd.
Under smoothness assumptions on f (A1), this SDE admits a unique solution (Yt)t>0 which defines a strong
Markov semigroup that converges to π in total variation (TV, 4) or Wasserstein distance (5).
However, simulating path solutions of such diffusion processes is not possible in most cases and discretizations
of the SDE are used instead. We generally consider the Euler-Maruyama (forward Euler) discretization of the
SDE (1) which defines a (possibly time-inhomogeneous) Markov chain Xk:

Xt+1 = Xt − h∇f(Xt) +
√

2hξt+1, (2)
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where h > 0 is a tuning parameter, the step size, and ξ1...ξt is a sequence of mutually independent (and
independent of X0) standard Gaussian vectors.
The use of this discretization to approximately sample from π is known as the Unadjusted Langevin Algorithm
(ULA) or the Langevin Monte Carlo (LMC) algorithm:

Algorithm 1: Overdamped Langevin MCMC
Input :Step size h < 1, number of iterations n, initial point x0, and gradient oracle ∇f(·)
for i = 0, 1, . . . , n− 1 do

Sample (x(i+1)) ∼ N (x(i) − h∇f(x(i)), 2hId×d)

end

1.3 Motivating the Analysis of Langevin Monte Carlo

Prior literature on MCMC algorithms has focused on establishing behavior and convergence of sampling
algorithms in an asymptotic or a non-explicit sense, e.g., geometric and uniform ergodicity, asymptotic
variance, and central limit theorems.
However, from such results, it is not easy to determine the computational complexity of various MCMC
algorithms as a function of the problem dimension d, desired accuracy ε, and regularity of the potential f(·).
On the other hand, important question that practicioners face is how to choose a sampler for a particular
problem, when to know to stop the algorithm, and how to select the step-size and other tuning parameters.
Therefore, we review three papers that analyze the non-asymptotic behavior and convergence of LMC in an
explicit way that can be leveraged to guide the practical use of such sampling algorithms.

2 Notation
2.1 Markov Process Background

A (homogenous) Markov process (Yt)t∈R+ is a random process that satisfies the Markov property: for every
bounded measurable function f and s, t ∈ R+ there is a bounded measurable function Psf such that

E[f(Yt+s) | {Yr}r≤t] = Psf(Yt)

(Pt)t≥0 is the Markov semigroup associated with (Yt)t≥0: νPt is the law of Yt starting from Y0 ∼ ν.
A probability measure π is said to be invariant or stationary if π(Ptf) = π(f)∀t ∈ R+.
To interpret this notion, suppose that Y0 ∼ ν then E [g(Yt)] = E [E [g(Yt) | Y0]] = E [Ptg(Y0)] = ν(Ptg)

We say that (Pt)t≥0 is geometrically ergodic if there exists κ ∈ [0, 1) such that for any initial distribution µ0

and t ≥ 0 we have for some constant C(µ0) ≥ 0

‖µ0Pt − π‖TV ≤ C(µ0)κt (3)

Therefore, in the following analysis we will be interested in the mixing time which is the minimum number
of steps, as function of both the problem dimension d and the error tolerance ε, to obtain a sample from a
distribution that is ε-close to the target distribution in total variation (TV, 4) or other distances.

2.2 Relevant Distances

For any d ∈ N we write B(Rd) for the σ-algebra of Borel sets of Rd.
For two distributions ν and µ defined on the space (Rd,B(Rd)) where B(Rd) denotes the Borel-sigma algebra
on Rd, we use ‖ν − µ‖TV to denote their total variation (TV) distance given by

‖ν − µ‖TV = sup
A∈B(Rd)

|ν(A)− µ(A)|. (4)

The Wasserstein-Monge-Kantorovich distance or order p ≥ 1 Wp is defined by

Wp(µ, ν) =
(

inf
γ∈Γ(µ,ν)

∫
Rd×Rd

‖θ − θ′‖p dγ(θ, θ′)
)1/p

, (5)

where the inf is with respect to all joint distributions γ having µ and ν as marginal distributions.

2



Non-asymptotic Analysis of Langevin Monte Carlo Algorithms: A Review of Three Influential Papers

2.3 Assumptions on f
A1 The function f is twice continuously-differentiable on Rd and has Lipschitz continuous gradients; that

is, there exists a positive constant L > 0 such that for all x, y ∈ Rd we have
‖∇f(x)−∇f(y)‖2 ≤ L‖x− y‖2. (6)

A2 f is m-strongly convex, that is, there exists a positive constant m > 0 such that for all x, y ∈ Rd,

f(y) ≥ f(x) + 〈∇f(x), y − x〉+
m

2
‖x− y‖22. (7)

It is fairly easy to show that under these two assumptions the Hessian of f is positive definite throughout its
domain, with mId×d � ∇2f(x) � LId×d. We define κ = L/m as the condition number.
Finally, we say that the density π(θ) ∝ e−f(θ) is log-concave (resp. strongly log-concave) if the function f
satisfies the inequality of A2 with m = 0 (resp. m > 0)

3 Theoretical Guarantees for Approximate Sampling from Smooth and Log-
concave Densities (Dalalyan, 2017b)

Dalalyan (2017b) attempts to bridge the theoretical gap between sampling and optimization by developing
explicit non-asymptotic convergence bounds for LMC under smoothness and log-concavity assumptions.
While it is known that gradient-based algorithms, under similar assumptions, are guaranteed logarithmic
dependence on the error tolerance ε and independence of the dimension d, no prior convergence bounds for
sampling algorithms explicitly analyzed the dependence on the dimension d and the precision ε.
The authors exploit the similarities between LMC and gradient descent algorithms to establish upper bounds
on the TV distance between the target distribution π and its approximation by the distribution of the LMC
iterates involving only explicit and easy-to-compute quantities.

3.1 Strength : A Novel Setting
Imposing smoothness and strong-convexity assumptions on the log of the density might not be too common in
the the Bayesian inference literature. In fact, prior computable bounds involved in the geometric convergence
of Markov chains are difficult to implement for getting tight bounds in high dimensions due to the great
generality of considered processes.
On the other hand, smoothness and convexity assumptions are quite instrumental in the stochastic differential
equations literature. In fact, under assumption (A1), the Langevin SDE (1) admits a unique strong solution
which is a Markov process {Yt}t≥0. Furthermore, when f satisfies strong convexity, the process Yt is
geometrically ergodic in the sense of (3).
However, even when the diffusion is well behaved, the iterates defined by the discretization (2) have mixed
behavior making them more difficult to study. For example, for sufficiently small fixed step sizes h, the
distribution of iterates defined by (2) converges to a stationary distribution that is no longer equal to π.
Therefore, the authors depart from the classic approaches that directly study the spectral gap or conductance
of the discrete Markov Chain convergence, under hard-to-quantify drift and recurrence conditions.
Instead, the authors analyze the discretization of the continuous process by decomposing the total variation
distance into: (1) the error of approximating the Langevin diffusion YT by the discrete LMC process XK,h,
where T = Kh, and (2) the error of approximating the target distribution π by the distribution of the Langevin
diffusion YT as follows:

‖PK,h
X − π‖TV ≤ ‖PK,h

X −PT
Y ‖TV + ‖PT

Y − π‖TV (8)

where PK,hX is the law of XK,h, P TY is the law of YT .

3.2 Strength : Novel Analysis Techniques
To control the discretization error, the authors introduce a continuous-time diffusion processDt as a continuous
interpolation of the discrete process (Xt)t≥0 such that the the distributions of the Xk,h and Dkh random
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vectors coincide at intervals of length h. An upper bound on the KL divergence between the interpolated
process Dt and the original continuous process Yt is obtained by a Girsanov-type change of measure. This
KL bound controls the corresponding TV bound by Pinsker’s inequality.
To bound the convergence error of the Langevin diffusion, the authors reference well-known results of
geometric ergodicity (3) of the Langevin diffusion which implies an exponential convergence to the target
distribution. The idea for LMC is then to approximate Yt by Xk,h where t = kh.

3.3 Strength : New Results

3.3.1 First Result on Polynomial dependency on d and ε−1

This paper develops the very first theoretical result (Theorem 2) guaranteeing polynomial complexity in the
dimension d as well as in inverse precision ε−1 for sampling from smooth and log-concave densities.
Let f: Rd → R be a function satisfying assumptions A1 and A2, and θ∗ its global minimum point. Assume
that for some α ≥ 1, we have h ≤ 1/(αM) and K ≥ α. Then for any T = Kh, the total variation distance
furnished by the LMC algorithm with the initial Gaussian distribution ν = Nd(θ∗, L−1Id) satisfies∥∥νPK,h

X −Pπ

∥∥
TV
≤ 1

2
exp

{
d

4
log

(
M

m

)
− Tm

2

}
+

{
dL2Thα

4(2α− 1)

}1/2

. (9)

Therefore, in order to get an error smaller than ε, it is sufficient to perform K = O(d/ε2) evaluations.

3.3.2 Rejecting Prior Beliefs that Metropolis-Hastings is Necessary

Based on the iterative formulation of the LMC algorithm (1), the authors establish a non-explosiveness
guarantee on the iterates when h ≤ 1/L with an analysis that draws heavily on convex analysis techniques.
This implies that a Metropolis-Hastings correction step is not necessary to avoid transience in the Markov
Chain. This allows for much easier parallelization of the unadjusted Langevin algorithm.
However, that the M-H step could still be beneficial for correcting the bias, especially in the case of constant
step sizes h which would otherwise lead to a stationary distribution πULA that is different from π.

3.3.3 Simple and Extensible Analysis Techniques

The decomposition of the error into discretization error and continuous contraction error with the convex
help of optimization techniques allows for straightforward extensions. This can be seen in the analysis of the
warm-start initialization, the higher order discretization scheme, and the preconditioned LMC algorithm.
This type of analysis was also shown to easily extend to non-strongly log-concave densities although at the
cost of deteriorated dependency on the dimension and precision ε.

3.3.4 Practical Guidance for Parameter Tuning and Early Stopping Rule

It is clear that the second error term is a decreasing function of T = Kh. On the other hand, the first error term
vanishes when h tends to zero. However, for a fixed time-horizon T , a smaller h implies a larger number of
iteration K. Therefore, a crucial trade-off between runtime and approximation error for a fixed time-horizon
relies on the choice of K and h.
The explicit bounds established in this work (e.g. 9) provide concrete guidelines for choosing h and the
stopping rule of the LMC algorithm to achieve a prescribed error rate for a variety of settings.

3.4 Weaknesses

3.4.1 Suitability of the Total Variation Distance

Total variation distance is difficult to compute for continuous measures thus requiring a proxy measure for
convergence assessment. TV distance is also known to decay substantially only after a certain amount of time
as manifested in the cut-off phenomena. Furthermore, TV does not directly provide the level of approximating
the first order moment. This makes it unsuitable for convergence diagnostics.
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Finally, the use of Pinsker’s inequality in the analysis to upper bound the discretization error with a KL
divergence term implies that a tighter bound could be achieved by controlling KL divergence directly. In fact,
it was noted in Remark 1 that the bound can be vacuous for large T since the TV error cannot exceed 1 but
one of the error terms in the upper bound might shoot to infinity.
Therefore, to quantify the approximation of a distribution by sampling, TV is not the most suitable distance.

3.4.2 Theoretical Gap between Sampling and Optimization

This paper endeavors to bridge the gap between sampling and optimization guarantees. However, the best
result, achieved for a warm-start initialization, still leaves a big gap in mixing time: O(d/ε2log(d/ε)) versus
O(log(1/ε)). While the authors indicate that sampling is intuitively a more difficult task than optimization,
they fall short on justifying this huge gap.

3.4.3 Practicality of Warm-Start

The main result in (9) assumes a Gaussian start centered at the minimizer of f with a variance dependent on
the smoothness condition. However, this result only guarantees an O(d3) dimensionality dependency.
The sharpest result, O(d), can only be achieves with a warm-start which requires an initial distribution such
that the χ2 divergence to the target is bounded by a quantity independent of d.
However, the authors do not detail how difficult it is to find such an initialization. In fact, even for sampling
from Gaussians, we cannot achieve a warm-start without some information about the variance of the target.
Finally, the authors do not make the dependence on L and m explicit for the warm-start result which further
undermines its practical use.

3.4.4 Limitation of Constant Step-sizes

While the analysis of varying step-sizes is bound to be more complicated, the focus on constant step sizes of
this work is another major weakness.
In fact, the authors do not emphasize, in enough detail, the asymptotic bias of using a constant step-size.
Furthermore, decaying step-sizes are more common in practice. Not incorporating these in the current
manuscript limits the impact of the practical guidance that the authors strive for.

4 High-dimensional Bayesian inference via the Unadjusted Langevin Algo-
rithm (Durmus and Moulines, 2016)

Durmus and Moulines (2016) establish tighter non-asymptotic bounds for LMC under assumptions A1 and A2
in Wasserstein distances of order 2 (W2) as well as in total variation distance based on a Euler discretization
of the SDE (1) with both constant and varying step sizes h.

4.1 Strength : Reconsidering the Problem Setting

4.1.1 A Case for Wasserstein distances

The Wasserstein distance is often viewed as the intrinsic measure of closeness between two distributions.
In fact, convergence with respect to Wp is equivalent to weak convergence of measures in addition to
convergence of the first p moments. Therefore, bounds on Wp directly provide the level of approximating the
first p moments. Consequently, W2 is correctly deemed by the authors as more suitable for quantifying the
quality of approximate sampling schemes than other distances such as the total variation.

4.1.2 Explicit Bounds for Non-increasing Step-sizes

The authors depart from the classical analysis of the discretization with fixed step-sizes and tackle the case of
varying step-sizes such that limk→∞ hk = 0 and

∑
k hk =∞.

The authors then develop explicit bounds for hk = h1k
−α with α ∈ (0, 1] to investigate the different regimes

for different choices of α. Finally, the authors establish the optimal choice of α for convergence in W2 and
TV for different smoothness assumptions.
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4.1.3 Accurate Analysis of The Effect of the Initial Distribution

Dalalyan (2017b) showed that if the initial distribution is an appropriately chosen Gaussian or if warm-start is
used, the number of steps required for an ε-close sample to π is of order O(d3ε−2) and O(dε−2) respectively.
In this work, the authors more accurately study the impact of the initial distribution on the final precision.
In fact, the authors establish various results, some of which match or outperform those reported for warm-start
in (Dalalyan, 2017b) without any assumptions on the initial distribution. See Table 1 for a summary.

4.2 Strength : Simple Techniques for Analyzing Convergence in W2

The authors first establish the geometric convergence of the continuous process, independently of the initial
state, by straightforward synchronous coupling of the Langevin SDE solutions in Proposition 1.
The authors then investigate the convergence of the time-inhomogeneous discrete Markov chain (Xk)k≥0

through the perspective of the step-size-dependent transition kernels Rh and the composition of kernels along
the trajectory of the LMC iterates Qnh = Rh1 . . . Rhn .
By the strong convexity and smoothness of f, the authors establish a Foster-Lyapunov condition on the kernel
Q (in Proposition 2) which implies a strict contraction in W2 which, in turn, implies geometric convergence
of the sequence of discrete LMC iterates δxRnh to πh in W2.
Unlike Girsanov change-of-measure techniques for the analysis of the discretization error, this work proceeds
by constructing a synchronous coupling between the Langevin diffusion and the linear interpolation of the
Euler discretization (Yt, Ȳt)t≥0 defined for all n ≥ 0 and t ∈ [kh, (k + 1)h) :{

Yt = Ykh −
∫ t
kh∇f(Ys)ds+

√
2(Bt −Bkh) → dYt = −∇f(Yt)dt+

√
2dBt

Ȳt = Ȳkh −∇f(Ȳkh)(t− kh) +
√

2(Bt −Bkh) → dȲt = −∇f(Ȳkh)dt+
√

2dBt
(10)

Since π is invariant for Pt for all t ≥ 0, it suffices to get some bounds on W2(δxQ
n
h, ν0Pkh) and take ν0 = π.

With Y0 ∼ π and Ȳ0 = x we have that
W2(δxQ

k
h, ν0Pkh) ≤ E[‖ Ykh − Ȳkh‖2] (11)

Taking ν0 = π we derive an explicit bound on theW2 distance between (δxQ
k
h)k≥0 and the stationary measure

π of the Langevin diffusion.
To improve their bounds, the authors introduce a Lipschitz-continuity assumption on the Hessian of f .
Specifically, they assume that the f is three times continuously differentiable and there exists L̃ such that for
all x, y ∈ Rd,

‖ ∇2f(x)−∇2f(y)‖2 ≤ L̃‖ x− y‖2 (A3)

4.3 Strength : Improved TV Analysis
The manuscript first bounds the total variation distance of ‖µPt−νPt‖TV by reflection coupling (and Lindvall’s
lemma) to establish the strict contraction of the semigroup Pt and geometric ergodicity of the associated
Markov process. The propositions of Theorem 10 then lead to an upper bound on the TV distance of the
continuous convergence in terms of W1 : ‖µPt − νPt‖TV ≤ (4πt)−1/2W1(µ, ν)

However, for the discrete process with non-increasing step-sizes, reflection coupling is no longer applicable.
Instead, the authors propose a new coupling construction originally developed for Gaussian random walks.
We will not delve into this technique and corresponding partial result, due to space constraints, but we
would to emphasize that it seems to offer much tighter control on the discretization error than Girsanov-type
change-of-measure inequalities.

4.4 Strength : New Results
The authors establish various explicit results, under different smoothness assumptions (with and without A3),
both for a fixed step-size and for a non-increasing sequence of step-sizes hk = hk−α.
The results cover both fixed-precision, where we care about the minimum number of iterations and optimal
step-size to achieve a fixed target precision, and fixed-horizon where we care about the minimum distance in
W2 or TV for a fixed number of iterations.
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4.4.1 Improved bounds in TV and W2

Parameter d ε L m

Dalalyan (2017b) Gaussian Start d3 ε−2|log(ε)| L3 m−2|log(m)|
Dalalyan (2017b) Warm Start d ε−2|log(ε)| - -
Durmus and Moulines (2016) dlog(d) ε−2|log(ε)| L2 m−3|log(m)|

Durmus and Moulines (2016) under A3 dlog(d) ε−1|log(ε)| L2 m−2|log(m)|

Table 1: Mixing Time Dependencies

The bounds derived in Theorem 5 hold for any initial distribution in P2(Rd) and match (up to logarithmic
terms), with fixed step sizes, the dimension and precision dependency of the best bound derived in (Dalalyan,
2017b) which assumes warm-start for the initial distribution.
Furthermore, the dependency on L and m is made explicit in this result unlike in (Dalalyan, 2017b).
As we can see in Table 1, the result under A3 actually improves on existing bounds in terms of ε dependency.
If we further assume that L̃ = 0 (in (A3)), for the case of sampling from a d-dimensional Gaussian, the
authors prove that the new bound O(d1/2log(d)) is sharp.

4.4.2 Explicit Fixed-Horizon Bounds for Varying Step-size: hk = h1k
−α

For varying step-sizes, the authors identify two regimes for the value of α.
If α ∈ (0, 1) then the novel explicit results state that the distance between the nth iterate and the stationary
distribution is O((dlog(n)

nα )1/2) under A1 and A2 or O(dlog(n)
nα ) A1, A2, and A3.

If α = 1, the authors extend this result to require h1 ≥ 2κ−1 or h1 ≥ 4κ−1 depending on the smoothness
assumptions. The final bounds are similar to the above with the exception of α being set to 1.
While the analysis of varying step-sizes is quite rare, in this setting, explicit rates for a specific schedule are
even rarer which makes this a major contribution of this paper.

4.5 Weaknesses

The upper bound W2(ν0, π) on the initial distance can be hard to compute since ‖ θ0 − θ̂‖2 is not necessarily
easy to evaluate. This undermines the practical usefulness of the main result.
Across most experiments, the Metropolis-adjusted Langevin Algorithm (MALA) seems to empirically
outperform ULA. Some intuition as to why this is the case would be quite enriching to this work. In fact,
the authors even claim that ULA is a substitute for MALA and Polya-Gamma even though the results are
negative, in comparison to MALA.
While general results on the mixing time for varying step-sizes is provided in Theorem 5, explicit fixed-
precision bounds for hk = h1k

−α are surprisingly missing from the main paper. Without these results, it is
difficult to assess the improvement such a decay schedule has on the mixing time.
The optimality with respect to sampling from a Gaussian for the special case of L̃ = 0 can mislead the reader
into assuming that the bounds are sharp in general (close to a certain lower-bound). However, this specific
sampling application is overly simplified and the result is thus far from surprising. Accordingly, we cannot
see how this result translates to sharpness in most other scenarios.

5 Further and Stronger Analogy between Sampling and Optimization: Langevin
Monte Carlo and Gradient Descent (Dalalyan, 2017a)

This paper revisits recent theoretical guarantees of LMC algorithms for sampling from a smooth and (strongly)
log-concave density, which includes the reviewed papers (Dalalyan, 2017b, Durmus and Moulines, 2016).
While similarities to optimization have been exploited for improved theoretical guarantees of LMC, prior
work has rarely justified the gap in the convergence rates between LMC and gradient descent (GD).
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In this work, the authors establish sharper and simpler bounds on LMC convergence in terms of W2 distances
which look closer to that of GD than the existing LMC bounds.
The authors then provide further insights on the similarities between LMC and GD in an attempt to justify the
disappointing gap in convergence rates.
Finally, this paper establishes convergence guarantees for the use of noisy gradients in LMC.

5.1 Strength : Simpler Analysis Techniques
This paper focuses on the Wasserstein distance as an the intrinsic metric for evaluating the closeness of two
distributions while citing a few issues of total variation distances.
The convergence analysis in this manuscript does not leverage Girsanov-type change of measure or sophis-
ticated coupling techniques. Instead, the authors introduce a continuous Langevin process Yt, initialized at
equilibrium (Y0 ∼ π) and driven by the same d-dimensional Brownian motion as the LMC iterates such that
W(k+1)h −Wkh =

√
(h)ξk+1.

The analysis then draws heavily on standard optimization techniques to inductively evaluate the approximation
error at any given step k in the LMC procedure.
The authors finally establish a bound on E

[
‖ Y(k+1)h −Xk+1,h‖22

]
and note that Y(k+1)h ∼ π thus concluding

that W2(νk+1, π) ≤ (E
[
‖ Y(k+1)h −Xk+1,h‖22

]
))1/2.

5.2 Strength : Tighter and Simpler W2 bounds
The authors demonstrate that, for LMC, if h ≤ 2/L then for ρ = (1−mh) ∨ (Lh− 1)

W2(νK , π) ≤ ρKW2(ν0, π) +
Lh

1− ρ
(5hd/3)1/2 (12)

This bound holds under weaker conditions of h ≤ 2/M instead of h ≤ 1/(m + M) (the standard in prior
work). It has a simpler remainder term than those appearing in the W2 bounds of (Durmus and Moulines,
2016) and seems sharper, in terms of constants, than existing bounds as demonstrated in Figure 1.
In fact, this paper does a great job showcasing the improved sharpness in terms of the constants by plotting
the minimum number of iterations for an ε-accurate sample over a wide range of dimensions d.
Finally, let’s recall the standard result for the convergence analysis of gradient descent; if h ≤ 2/L then for
ρ = (1−mh) ∨ (Lh− 1) we have ‖ XK −X∗‖22 ≤ ρK‖ X0 −X∗‖22
Accordingly, one major contribution of this work is bridging the gap between the optimization algorithm (GD)
and the sampling algorithm (LMC) as the tighter W2 (12) closely mirrors that of GD and holds under the
same conditions (on h) and for the same ρ constant.
Another contribution to the W2 bounds is an easier-to-compute upper bound on the initial distance W2(ν0, π)2

which prior work such as (Durmus and Moulines, 2016) suggested to control with ‖ θ0 − θ̂‖22 + d/m. On
the other hand, this paper argues that it’s often difficult to evaluate ‖ θ0 − θ̂‖2 in practice and suggests an
alternative based on the convexity of f as W2(ν0, π)2 ≤ 2

m(f(θ0)−
∫
f(θ)dπ(θ) + d).

5.3 Strength : Explaining the Gap between Sampling and Optimization
The authors attempt to explain the remaining gap between the optimization guarantees and the sampling
guarantees, especially in terms of dimensionality dependence: O(log(1/ε)) versus O(d/ε2log(d/ε)).
First note that fτ (θ) = f(θ)/τ has the same optimum θ∗ for any τ > 0 whereas the density function
πτ ∝ exp(−fτ (θ)) defines a different distribution for each choice of τ . This is standard intuition as to why
optimization is a simpler task than sampling.
However, further note that the average value θτ =

∫
θπτ (θ)dθ tends to θ∗ as τ tends to 0. Simultaneously,

πτ (dθ) tends to a Dirac measure at θ∗. Accordingly, the authors propose to analyze the limiting behavior of
LMC as τ tends to 0 to analyze its convergence to θ∗. This should shed some light on the convergence of
LMC in comparison to that GD when the target is the same.
The authors show that the resulting LMC updates (originally in 2) indeed mirrors those of GD. More
interestingly, the limiting case of the W2 error bound (12) is equivalent to the L2 error bound for GD.
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5.4 Strength : Noisy Gradient Analysis
LMC can be extended to the mini-batch setting by substituting the gradient with sub-sampled gradients.
To analyze this common setting, the authors assume independent zero-mean random vectors with a variance
bounded by d. The noisy gradient can then be expressed as Yk,h = ∇f(Xk,h) + σζk.
The authors find that using the sub-sampled gradient in the LMC algorithm does not cause a significant
deterioration of the precision (an extra term σ2 (L+m)2

(L−m)2
) but considerably reduces the computational burden.

5.5 Weaknesses
One minor issue might be the potentially misleading conclusion that the convergence analysis of LMC is a
natural counterpart to that of gradient descent. The finding that the LMC iterates converge to those of GD
when the temperature τ → 0 is not surprising. As for the convergence analysis, taking τ to 0 would have
eliminated the remainder term, no matter the magnitude of the constants in the term. Accordingly, we cannot
claim that the bound is optimal just due to the fact that its limit when τ → 0 matches the GD bound.

6 Future Directions
The update rule of the LMC follows from replacing the gradient in the Langevin diffusion by its piecewise
constant approximation. Therefore, the behavior of LMC is governed by two characteristics of the continuous-
time process: the mixing rate and the smoothness of the sample paths.
For LMC, we know that the Langevin diffusion mixes exponentially fast with the precise rate e−κht. In
addition, all sample paths of Y are α-Holder-continuous. Combining these two properties, it has been shown
that it suffices O(dε−2) iterations for the LMC algorithm to achieve an error smaller than ε.
However, several fundamental questions arise from this understanding.

6.1 Lower Bounds and Acceleration in MCMC
Can we can improve the dependence on the condition number, precision, and dimension, given the observed
gap to optimization convergence guarantees?
However, without complexity lower bounds for MCMC, it is difficult to discern which inefficiency in the
bound is due to an proof artifacts and which cannot be improved on, for a given class of sampling algorithms.
Unfortunately, lower bounds in MCMC are largely unknown. Accordingly, it is difficult to estimate the gap
between existing algorithms and optimal achievable rates. It is also difficult to discern when inefficiencies in
the bounds are due to an artifact in the proof.
Lower bounds are well-known for convex optimization and have helped guide the design of accelerated
algorithms such as Nesterov’s Accelerated Gradient Descent.
This brings us to the next open question; is there an equivalent to Nesterov acceleration in sampling? We
already know of accelerated or higher order variants of the Langevin dynamics such as the underdamped
Langevin dynamics (equivalent to Hamiltonian dynamics under certain assumptions). The discretization of
such algorithms has demonstrated faster mixing than LMC. However, the the achieved by underdamped
Langevin dynamics O(d1/2) are still worse than that proven for Hamiltonian Monte Carlo (HMC) O(d1/4)

which mostly only differs in its discretization scheme. In fact, while Euler discretization is a first-order method,
the leapfrog integration of HMC is a second order integration method that can be applied multiple times per
gradient evaluation. Accordingly, it is clear that the study of accelerated samplers and, if possible, optimal
samplers, will require a combination of optimal diffusions and optimal discretization schemes.
Alternatively, one could investigate a variational (Lagrangian) formulation which would apply the acceleration
principle directly in the space of measures.

6.2 Beyond Log-Concavity
Another interesting direction would be to explore if similar guarantees could be derived for sampling efficiently
from non-log-concave distributions. Recent work has attempted to relax both the smoothness and the strong
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log-concavity assumptions. This has resulted in a significant deterioration in the convergence rates such as
exponential dependency on the dimension. On the other hand, it is well know that the Langevin diffusion is
geometrically ergodic under weaker assumptions than strong log-concavity, such as the existence of a Log-
Sobolev inequality. Therefore, it should be possible to investigate polynomial dependence on the dimension,
with a tighter control on the discretization error, simply under smoothness and log-Sobolev assumptions.
One of the most challenging non-log-concave settings, however, is the multimodal setting. In fact, it is known
that Langevin dynamics might take exponentially long to move from one mode to another as the gradient only
captures local information about the nearest mode. Empirical progress has been made by exploring various
schedules for the step-size to enable the crossing of wide valleys between modes. However, most of these
approaches are ad-hoc such that they fail for certain general multimodal settings.
Furthermore, Langevin dynamics have been empirically shown to mix extremely slowly for sub-exponential
distributions which are common for shrinkage priors such as the Cauchy and the Pareto distributions. However,
little theoretical work has explicitly analyzed the mixing time for such target distributions.

6.3 Borrowing Ideas from Optimization
Another interesting direction is to borrow ideas from optimization that might accelerate or robustify existing
samplers. For example, there has been a growing body of work on outlier-robustness for black-box stochastic
optimization. This sort of approach can be considered orthogonally to the use of heavy-tail priors in order to
detect outliers without suffering the slower mixing.
Another interesting perspective from optimization is black-box or universal algorithms that do not require
knowledge of the smoothness parameter L. In fact, the optimal step-size is often a function of the strong
convexity and smoothness constants m and L. However, it has been shown that it is easy to estimate m by
backtracking whereas L remains hard to approximate which can lead to deterioration in the convergence
speed. Accordingly, there has been much work on devising universal optimization algorithms that can estimate
the smoothness and strong convexity parameters, on the fly, and adapt them across the state space. However,
there has been no work on such universal and adaptive algorithms for sampling.
Several low-hanging fruit ideas from optimization that might be worth exploring include higher-order methods
such as Newton’s, conjugate gradients, adaptive preconditioning, and dual methods such as mirror descent.

6.4 Particle Methods
Interacting particle methods have found practical success thanks to the variance-reducing effect of the
interaction term. One such recent method is Stein Variational Gradient Descent which has been observed to
simulate gradient flow, just like Langevin diffusions, but on a different kernelized space of measures. Extending
our analysis of diffusions to those involving (finitely-many) interacting particles could be a groundbreaking
direction given the popularity of these methods in computational physics, statistics, machine learning, and
molecular dynamics. However, there are still no known theoretical guarantees that explicitly quantify the
convergence rate of such algorithms.

References
A. Dalalyan. Further and stronger analogy between sampling and optimization: Langevin monte carlo and

gradient descent. In Conference on Learning Theory, pages 678–689, 2017a.

A. S. Dalalyan. Theoretical guarantees for approximate sampling from smooth and log-concave densities.
Journal of the Royal Statistical Society: Series B (Statistical Methodology), 79(3):651–676, 2017b.

A. Durmus and E. Moulines. High-dimensional bayesian inference via the unadjusted langevin algorithm.
arXiv preprint arXiv:1605.01559, 2016.

10


	Introduction
	Monte Carlo Markov Chain Methods
	Langevin Monte Carlo
	Motivating the Analysis of Langevin Monte Carlo

	Notation
	Markov Process Background
	Relevant Distances
	Assumptions on f

	Theoretical Guarantees for Approximate Sampling from Smooth and Log-concave Densities dalalyan2017theoretical
	Strength : A Novel Setting
	Strength : Novel Analysis Techniques
	Strength : New Results
	First Result on Polynomial dependency on d and -1
	Rejecting Prior Beliefs that Metropolis-Hastings is Necessary
	Simple and Extensible Analysis Techniques
	Practical Guidance for Parameter Tuning and Early Stopping Rule

	Weaknesses
	Suitability of the Total Variation Distance
	Theoretical Gap between Sampling and Optimization
	Practicality of Warm-Start
	Limitation of Constant Step-sizes


	High-dimensional Bayesian inference via the Unadjusted Langevin Algorithm durmus2016high
	Strength : Reconsidering the Problem Setting
	A Case for Wasserstein distances
	Explicit Bounds for Non-increasing Step-sizes
	Accurate Analysis of The Effect of the Initial Distribution

	Strength : Simple Techniques for Analyzing Convergence in W2
	Strength : Improved TV Analysis
	Strength : New Results
	Improved bounds in TV and W2
	Explicit Fixed-Horizon Bounds for Varying Step-size: hk = h1 k-

	Weaknesses

	Further and Stronger Analogy between Sampling and Optimization: Langevin Monte Carlo and Gradient Descent dalalyan2017further
	Strength : Simpler Analysis Techniques
	Strength : Tighter and Simpler W2 bounds 
	Strength : Explaining the Gap between Sampling and Optimization
	Strength : Noisy Gradient Analysis
	Weaknesses

	Future Directions
	Lower Bounds and Acceleration in MCMC
	Beyond Log-Concavity
	Borrowing Ideas from Optimization
	Particle Methods


