The presented scheme is oversimplified, for actually both the conductivity of the semiconductor [9] and the electric characteristics of the inversion layer are altered when the intensity of the ESW is increased.

The authors are grateful to V.V. Proklov and V.I. Fedosov for a useful discussion of the results and to V.P. Sinus for help with preparing the contacts for the silicon.

- A.I. Morozov, Fiz. Tverd. Tela 7, 3070 (1965) [Sov. Phys.-Solid State 7, 2482 (1966)].
- A.I. Morozov and M.A. Zemlyanitsyn, ZhETF Pis. Red. 12, 396 (1970) [JETP [2] Lett. 12, 273 (1970)].

A.M. Kmita and A.V. Medved', ibid. 14, 455 (1971) [14, 310 (1971)]. [3]

E.P. Garshka, V.I. Samulionis, B.P.A. Ketis, and A.S. Zhyul'pa, Fiz. Tverd. Γ47 Tela 10, 611 (1968) [Sov. Phys.-Solid State 10, 480 (1968)].

V.V. Proklov, Yu.V. Gulyaev, and A.I. Morozov, ibid. 14, 986 (1972) [14, No. 3, 1972)].

[6]

- K.A. Ingebrigtsen, J. Appl. Phys. 41, 454 (1970).
 A.I. Morozov, Fiz. Tekh. Poluprov. 5, 1994 (1971) [Sov. Phys.-Semicond. 5, [7] 1732 (1972)].
- Yu.V. Gulyaev and V.I. Pustovoit, Zh. Eksp. Teor. Fiz. 47, 2251 (1964) [Sov. Phys.-JETP 20, 1508 (1965)]. Г87
- C. Fischler, J. Zucker, and E.M. Conwell, Appl. Phys. Lett. 17, 252 (1970).

FERRIMAGNETISM OF THE GARNET Mn 3 Cr 2 Ge 3 O 1 2

K.P. Belov, D.G. Mamsurova, B.V. Mill', and V.I. Sokolov Moscow State University Submitted 5 July 1972 ZhETF Pis. Red. 16, No. 3, 173 - 176 (5 August 1972)

Measurements of the magnetic properties of garnets containing magnetic ions only in the c- and a-sublattices were first carried out by Bozorth and Geller [1, 2]. It was established there that the c-a exchange interactions cause ferrimagnetism to occur in the garnets $\{Gd^{3+}\}[Mn_2^{2+}](GaGe_2)O_{12}$ and $\{Gd_2^{3+}Ca\}[Mn_2^{2+}](Ge_3)O_{12}$ (with Curie points θ close to θ and θ in the garnets $\{Mn_3^{2+}\}[Fe_2^{3+}](Ge_3)O_{12}$, $\{Gd_3^{3+}\}[Co_2^{2+}](GaGe_2)O_{12}$, and $\{Gd_3^{3+}\}[Ni_2^{2+}](GaGe_2)O_{12}$ down to $1.5^{\circ}K$.

In the present study we have established the presence of ferrimagnetism in the garnet $\{Mn_3^{2+}\}[Cr_2^{3+}](Ge_3)O_{12}$, the Curie point of which is 3.68 ± 0.03°K. To obtain information on the values of the intrasublattice exchange interactions of the ions ${\rm Mn}^{2+}$ and ${\rm Cr}^{3+}$, we measured also the magnetic properties of the "single-sublattice" garnets $\{Mn_3^2+\}[Ga_2](Ge_3)O_{12}$ and, earlier $\{Ca_3\}[Cr_2^{3+}](Ge_3)O_{12}$

The investigated polycrystalline samples were synthesized by a ceramic technology with double annealing in air at T = 1160°C; the phase composition was monitored by x-ray diffraction.

We present below the unit-cell parameters of the garnets investigated by us:

$$Mn_3Cr_2Ge_3O_{12}$$
, $a_0 = 12.028 \pm 0.004 \text{ Å}$,
 $Mn_3Ga_2Ge_3O_{12}$, $a_0 = 12.016 \pm 0.004 \text{ Å}$,
 $Ca_3Cr_2Ge_3O_{12}$, $a_0 = 12.260 \pm 0.002 \text{ Å}$.

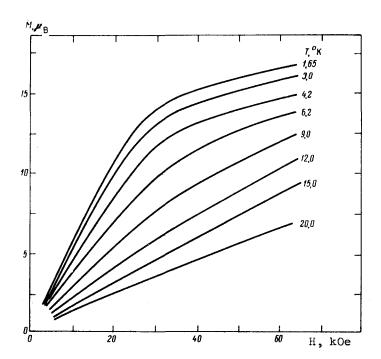


Fig. 1. Magnetization isotherms for a spherical sample (0.9 mm diameter) of the garnet $Mn_3Cr_2Ge_3O_{12}$.

The magnetic properties were measured with a vibration magnetometer [4] in the temperature interval 1.65 - 50°K and in magnetic fields up to 60 kOe. The temperature dependence of the specific heat of the garnet $\rm Mn_3Cr_2Ge_3O_{12}$ was measured by the vacuum-calorimeter method [5] in the interval 2 - 15°K.

Figure 1 shows the magnetization isotherms of the Mn₃Cr₂Ge₃O₁₂ samples, produced with a x-y recorder. We see that even at the lowest temperatures there is no saturation on the M(H) curves, and the magnetic moment at T = 1.65°K in a feld of 60 kOe reaches a very large value, M = 16.5 μ_B . Were the c-a interaction to have a collinear antiferromagnetic character, as in iron garnets, then one should expect for Mn₃Cr₂Ge₃O₁₂ near T = 0°K a magnetic moment M = (3M_{Mn}²+ - M_{Cr³+}) μ_B = 9 μ_B . The appearance of a value of M larger than 9 μ_B can obviously be attributed to rotation of the spin magnetic moments of the Cr³⁺ ions, which produce in a sufficiently strong external magnetic field a spin magnetic moment component that coincides in direction with the resultant spin moment of the Mn²⁺ ions. Unlike the iron garnets, where an effective magnetic field H_{eff} $^{\circ}$ 2 × 10⁶ Oe is produced at the a-sublattice ions by the d-sublattice, in the investigated garnet the Cr³⁺ ions are acted only by a field H_{eff} $^{\circ}$ 2 × 10⁴ Oe. This field, due to the c-a interaction, is comparable with the external magnetic field. It is also possible that the weak Mn²⁺-O²⁻-Cr³⁺ interaction gives rise to a non-collinear magnetic structure inside the sublattices c and a.

To determine the Curie temperature, we measured the specific heat of the $Mn_3Cr_2Ge_3O_{12}$ sample. The measured specific heat plotted in Fig. 2 demonstrates the existence at $\theta=3.68^{\circ}K$ of a narrow peak whose value is approximately 50 J/mole-deg. We relate its presence to the occurrence of ferrimagnetism of the $Mn_3Cr_2Ge_3O_{12}$ garnet as a result of the c-a interaction. The small maximum on the C(T) curve at $8.5^{\circ}K$ could be attributed to the presence of a magnetic impurity. However, diffraction patterns of the sample do not show any impurity line (sensitivity $\sim 2\%$ in terms of intensity).

Figure 2 shows also the temperature dependence of the spontaneous magnetization ($M_{\rm c}$) of the Mn₃Cr₂Ge₃O₁₂ garnet, calculated by the method of

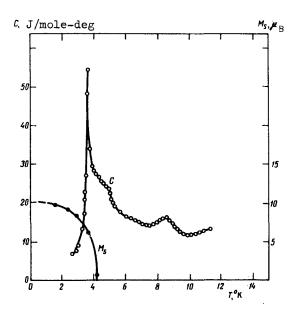


Fig. 2. Temperature dependence of the specific heat and of the spontaneous magnetic moment of the garnet Mn₃Cr₂Ge₃O₁₂.

thermodynamic coefficients from the dependences of H/M on M² [6]. Extrapolation of this curve to the value $M_{q} = 0$ yields $\theta \simeq 4.1^{\circ}$ K, and extrapolation to T = 0 °K yields a magnetic moment $(M_q)_0 =$ 10.2 μ_{B} .

It should be noted that the antiferromagnetic intrasublattice c-c and a-a interaction are small in the case of the ions Mn^{2+} and Cr^{3+} , and we estimate the ions Mn^{2+} and Cr^{3+} , and we estimate them at $\mathrm{J/k} \leq 0.1^{\circ}\mathrm{K}$. These values of the exchange-interaction parameters were obtained by us for the c and a sublattices by measuring the susceptibility of the "single-sublattice" garnets Mn₃Ga₂Ge₃O₁₂ and Ca₃Cr₂Ge₃O₁₂, in which no antiferromagnetic ordering is observed down to 1.5°K. The weak intrasublattice interactions of the Mn²⁺ and Cr³⁺ ions in the c and a sublattices of the garnet are apparently the main cause for the appearance of ferrimagnetism in the garnet Mn₃Cr₂Ge₃O₁₂.

We can explain from the same point of view also the absence of ferrimagnetism in the garnets Gd3Co2GaGe2O12 and

Gd3Ni2GaGe2O12 [1]. In fact, although the c-c interactions of the gadolinium ions are small ($T_{\rm N}$ < 0.3°K for Gd₃Ga₅O₁₂), the exchange a-a interactions of the ${\rm Co}^{2+}$ and ${\rm Ni}^{2+}$ ions exceed by one order of magnitude, according to [5], the corresponding values of ${\rm J_{aa}/k}$ for the ${\rm Cr}^{3+}$ ions. For the ${\rm Fe}^{3+}$ ions in the a sublattice, according to the data of [5], $J_{aa}/k \approx 0.4$ °K, which is probably also too large for the onset of ferrimagnetism in the garnet Mn₃Fe₂Ge₃O₁₂. Lind and Geller explained the absence of ferrimagnetism in this sample as being due to the unfavorable geometry of the exchange interactions [7]. Owing to the close values of a_0 in Mn₃Fe₂Ge₃O₁₂ (12.087 Å) and in Mn₃Cr₂Ge₃O₁₂ (12.028 Å), their structures should differ quite insignificantly. Therefore the decisive factor for the occurrence of ferrimagnetism in such compounds, in our opinion, is the presence of a definite ratio of the intra- and intersublattice exchange interactions.

R.M. Bozorth and S. Geller, Phys. Chem. Solids 11, 263 (1959). [1]

S. Geller and M.A. Gilleo, J. Appl. Phys. 30, Suppl No. 4, 297 (1959). K.P. Belov, B.V. Mill', G. Ronniger, V.I. Sokolov, and T.D. Hien, Fiz. Tverd. Tela 12, 1761 (1970) [Sov. Phys.-Solid State 12, 1393 (1970)].

V.I. Sokolov, PTE No. 5, 206 (1971).

L.G. Mamsurova, B.V. Mill', and V.I. Sokolov, Zh. Eksp. Teor. Fiz. (in press).

K.P. Belov, Magnitnye prevrashcheniya (Magnetic Transformations), FML, [6]

M.D. Lind and S. Geller, Z. Krist. 129, 5 - 6, 427 (1969). [7]