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Abstract

We propose a novel model for meta-generalisation, thategfppming prediction on novel tasks
based on information from multiple different but relatedkss The model is based on two cou-
pled Gaussian processes with structured covariance ématne model performs predictions by
learning a constrained covariance function encapsul#tiegelations between the various training
tasks, while the second model determines the similarityewf tasks to previously seen tasks. We
demonstrate empirically on several real and synthetic sl both the strengths of the approach
and its limitations due to the distributional assumptionderpinning it.

Keywords: transfer learning, meta-generalising, multi-task leagniGaussian processes, mixture
of experts

1. Introduction

The central problem of supervised learningeneralisationlearning input/ output relations from
training data that, when applied to unseen test data, will give good penficer(@n terms of an
appropriate loss function). A common assumption underlying many supétesaing algorithms
is that the training and testing data distribution are the same, which allows them éqnealictions
of future instances of the problem at hand. On the other hand, in the comphid that we live
in we are usually faced with unseen but similar problems, situations which hintedliigence
handles by adaptively taking decisions on the new tasks using knowlemgesimilar tasks. In this
direction, Transfer learning(TL) has emerged as a framework to handle situations where there are
multiple but related problems to be solved. The term TL is used here in its bireanise, to cover
more specific areas of research such as domain adaptation, co-vhifiateasnple selection bias,
self-taught learning, and multi-task learning. One of the main differenetgden these subfields
of TL lies in the availability of outputs (labels) for input data in the various tasksmatter if it
is a regression or classification problem (Arnold et al., 2007). For ebartige situation where
labels are available for all tasks is tackled by multi-task learning, which gigtierlly solves the
learning problem in all tasks simultaneously (Caruana, 1997; BakkeHaskles, 2003; Ando and
Zhang, 2005). Domain adaptation (Da@ril and Marcu, 2006; Daug 2007; Crammer et al.,
2008; Mansour et al., 2009; Pan et al., 2009), co-variate shift (8ogiyet al., 2007; Storkey and
Sugiyama, 2007; Bickel et al., 2009), and sample selection bias (Huaalg 2007) are settings
appropriate for problems where labels are only available for a task thatilarsto the task that we
wish to make predictions in (target task). Contrary to domain adaptation aamgle selection bias,

(©2012 Grigorios Skolidis and Guido Sanguinetti.



SKOLIDIS AND SANGUINETTI

self-taught learning (Raina et al., 2007) is a setting where labeled datevaitable for the target
task, but the learning algorithm wishes to also use unlabelled data fronreedask to improve
performance. In its own right, self-taught learning is distinguishable Bemi-supervised learning
(Chapelle et al., 2006), where labelled and unlabelled data are assumeghéofrom the same
task. The purpose of all these TL approaches is to enhance the Iggatena power of a specific
algorithm by leveraging related (but different) knowledge from multiplegadk particular, it is
generally assumed that at least the input data for the target task will iebderduring the learning
so that a measure of similarity between the training and target tasks can beexdtima

The question that we wish to raise in this work is whether the notion of geraratiscan be
extended to the level of tasks as a formneéta-generalisationMeta-generalisation is a concept
introduced in Baxter (2000), where the author argues whether adrdeafning algorithm can gen-
eralise well on totallyjunseerntasks after seeing sufficiently maspurce(or training) tasks. We
emphasize that this is much more than a theoretically interesting question. Ourtmgtexeample
is a strongly applied one: we wish to create an automated diagnosis tool thatcammodate
variability among patients, so that, once trained on a sufficient number ohfstiecan gener-
alise to new patients. In his work Baxter (2000) derives bounds on thergiésation error of this
problem in terms of a generalised VC-dimension parameter, as well as contimeritse number
of source tasks and examples per task required to ensure goodnpemt on novel tasks has to
be sufficiently large. While Baxter (2000) derives an algorithm to selexitmset of features to
perform multi-task learning based on Neural Networks (NN), his work isenom the theoretical
side as no experimental results are presented. Besides that, the mgubsigorin this work needs
to be retrained in case a new target task arrives in order to learn a smddenwof task dependent
parameters.

One way to approach meta-generalising is through domain adaptation, bggraimodel on
the data of the source and the target set of tasks (Ben-David et al.,. ZD@i%)type of approach,
as well as the model proposed in Baxter (2000), are essentially traingcainsgluctive way, as the
algorithm is able to make predictions only on the test tasks that is trained oegds 1o be re-
trained in case a new task arrives. Obviously, the performance anddbess of domain adaptation
algorithms depends strongly on certain assumptions, with most important the gyniéween the
target and the source distribution (Ben-David et al., 2010). Clearly,sethesumptions are violated
then the success of these algorithms is doubtful.

The problem of sampling the space of tasks to make predictions on totallyrutesie in the
inductive setting, which is the exact analog of generalising in the level k$tas the best of our
knowledge has not been specifically addressed. As we mentionee p€fois separated into dif-
ferent sub-categories based on the level of supervision on the tasgetHence, multi-task learning
can be seen as dnductiveTL algorithm since input data and labels are available for all the tasks
that we wish to make predictions. On the other end, settings like to Domain adap@dticariate
shift or Sample selection bias, can be viewed as a forifrarfisductiverL since the algorithm can
exploit only the input distribution of the target task they want to make preditidmold et al.,
2007). On this basis, meta-generalising can be considered as a fainsopervised'L, since the
learning algorithm does not have any exploitable information about thet taiges during training
. Note, that this classification of TL algorithms is different from the one engzlog Pan and Yang
(2010), where unsupervised TL encapsulates problems like dimensiamalitgtion, density esti-
mation, or clustering but in situations where multiple tasks are involved, but igreement with
the taxonomy of TL algorithms introduced in Arnold et al. (2007).
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In this paper we investigate the use of coupled Gaussian process modidsdassathis problem.
The model uses a multi-class Gaussian process for assigning probaliyistiszeen tasks to source
tasks (determining task responsibilities), and then uses a multi-task Gausgiaagp(Bonilla et al.,
2008) to perform prediction in individual tasks. Extensive testing ohanead simulated data shows
the promise of the model, as well as giving insight on the underlying assuraption

The rest of the paper is organised as follows: in Section 2 we formally elé¢fie meta-
generalising problem, emphasizing the main assumptions and highlighting the intspéaial
case offully observed taskdn Section 3 and 4 we present our model and the inference methodol-
ogy used. We present our empirical results in Section 5, and we finisltiio66 by discussing the
merits of our model in the context of the wider literature in transfer learnidgragta-generalisation.

2. Meta-generalising

In this section, we formally state the problem of meta-generalising, while welinteothe notation
that will be used throughout this paper unless specified otherwise.irplicty, we concentrate
on binary classification problems within each task, while we note that the samalifem applies
to regression and multi-class classification problems.

In a meta-generalising scenario the learner is provided with a set of esaasksZs =
{Z?,...,73} which are used for training the model; testing is then performed on a setget tar
tasksZr = {7},...,Z}}. Each of theM source tasks will contain a training set of input/ output
pairs (x,y), while data from any of théi target tasks are hidden. For later convenience, we will
define the whole training set across tasks as a set of tfifles {3, y™, y>}° | wherex® € RY is
the input feature vectoy®* € {—1,+1} are the class labels, apgt € {1,...,M} is the source task
label indicating to which task the input/ output pair pertains, bfie- z'}":l n? is the total number

of training pairs Wherenf is number of data points from thg" source task. Moreover, we will

write X¥ = {x }I , to denote the total item set of th&" source task, whilg/$* {yij},n' , and

yft {ySt}I , will be used to denote all class and task labels fromjtheource task. In the rest of
the paper subscrigtwill be used to refer to tasks, and subscnm data points.

Each of theH target tasksZ;' will consist of a seiX| = {x”}, , of input points, wheren is
number of data points from th;éh target task and both types of labels are missing. L|keW|se the
total number of test points will be denoted K= 2 1 nt For reasons that will become clear later
on, it is further assumed that for each target task data ;xfj)lmere is information that it comes
from the ji" target task, but there is no knowledge with which of the source tasks is siroilar.
Note that each source task training inglis assigned two types of labels. This implies supervision
in both the levels of the tasks and the data, throyiyandy®X respectively; task labelg' indicate
from which of the source task a specific data point comes from, as a fometa-level information
and class labelg® indicate to which class inside the task the data point belongs to, as a form of
inter-task information

Meta-generalisation, as all machine learning methods, relies on certamgss. We con-
centrate on two basic assumptions; the first one isitmdarity of the distributiorof the target task
with at least one of the source tasks, while the second one is the agrdesheaen the labels of
the distributions termed dew-error joint prediction(Ben-David et al., 2010). Differently from
Ben-David et al. (2010), we will define thew-error joint predictionbetween a source and a target
task as the errox. between their predictive functiorfg and f; respectively, evaluated at the union
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of the source and the target sats= XSU X!, with N = NS+ Nt. Hence, the erroke will be given
by,

N
)\e:.;‘ft(xi)_fso(i)"

wherex; € X. Intuitively, if the error¢ is large then there is a disagreement between the labels of the
source and target tasks distribution. Also note that, in a multi-task scenaparthmetei. can be
computed by training two separate models under the same learning framewnrNN, GPs, etc)
since labeled data are available for both the source and target task. tiéysedictive functions
of the source and target task can be estimated separately.arah also be used as an empirical
measure of the relatedness of the two tasks. Conversely, in the scesfariesa-generalising and
domain adaptation one hasdassumehat the erroi\ will be low, since labels are available only
for the source tasks. If one of these assumptions is not valid, then megaaisation can not be
expected to guarantee success.

We now give a formal definition of meta-generalising.

Definition 1 Given a set of source task and a set of target task@r, meta-generalising is an
inductive inference method that aims at making predictions on the set ef tagks by sampling
the space of source tasks .

We further define two possible scenarios: in thity observed tasksase, we assume that the
similarity of the distribution assumption is perfectly met, so that the data generaginidpuation of
the target task is the same as that of one of the source tasks (but we lkdwnotvhich one). This
assumption is relaxed in thgartially observed taskscenario, where we still assume similarity of
the distribution but we do not necessarily have identity.

The meta-generalising setting implies that there is hierarchical structure imdhkem. The
data of each task are on the base level and the distribution of the tasks & et level. Hence,
it is intuitive that mechanisms are required to

1. Model the distribution of the data of each task, and the distribution of tivesdasks (corre-
lation between tasks).

2. Infer the level of correlation between the target task and the sowskes ta

The first prerequisite leads us to multi-task learning, as many approaffeemechanisms to
model both the data and the task distribution (Bakker and Heskes, 200& ay 2005; Ando
and Zhang, 2005; Xue et al., 2007; Argyriou et al., 2008; Bonilla et 8082 Daung IIl, 2009).
Following the multi-task route, informally speaking, the second prerequisitdedranslated as
the problem of which of thé outputs of the multi-task classifier to select to make predictions for
the target task. In some cases, task-descriptor features may be ayaijiéhblg a direct measure of
task similarity. In this work, we are interested in the general case whergiable task descriptor
features are available; we will then learn similarities between tasks throdigtridution matching
pursuit.

Another way of approaching the problem of meta-generalisation is thrtheyframework of
mixtures of expert$ME) (Jacobs et al., 1991; Waterhouse, 1997), under which a biggen-
ing problem is broken down to smaller subproblems that are handled byduadivexperts. The
underlying assumption of this framework is that the data are generatediésedifprocesses (Wa-
terhouse, 1997, Ch. 2), an assumption that can also be made in the multittagk aleout the
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data generating mechanism of each task; under the ME framework epeft exused to model
the data generating process of each subproblem. These expertsnacertiigned through a gating
network that models the responsibilities of the experts on each data partigmeeHattacking the
meta-generalisation problem through the ME framework can be seen as@meuvised alternative
method to that problem, that does not use the information about the origiastotask (the source
task labels) but instead allows the algorithm to automatically infer the data paramoiite regions
of expertise of each expert. Therefore the ME approach is in diractezion to multi-task learning
and meta-generalisation in which cases the experts are equivalent toktheatas this framework
could be used as a rough lower bound on the performance of a multi-tasifiela Note though
that in principle it would be desirable to be able to automatically infer the numbexperts as in
Rasmussen and Ghahramani (2001) which can be seen as a similar mmaabidimsling cluster of
tasks, in contrast with the method of ME with GPs in Tresp (2000) where timbeuof experts had
to be knowna priori.

3. A Model for Meta-generalisation

Having identified the nature of the problem, we now propose a model for gegtaralising. The
model builds upon the multi-task learning framework of Bonilla et al. (2008¢kis able to capture
the dependencies between the data and the tasks. In addition, we emplssiféeclaver the tasks
to learn the task labels (from which task each data point comes from). Bdtlosé two learning
mechanisms, multi-task setting and classification of the tasks, are modeled ssidaBrocesses
(GPs), which are coupled by sharing a common hyper-prior. In thefésis section, we first give
a short introduction to GPs and we review multi-task learning with GPs of Bonila €£008), we
then present the model for meta-generalising, and finally we describéchmake predictions on
new tasks.

3.1 Multi-task Learning with Gaussian Processes

Gaussian processes (Rasmussen and Williams, 2005) provide a flexibddingpttamework for
supervised learning which has become increasingly popular in recarg.yA Gaussian Process
is a probability distribution over functionk, where the joint distribution of function evaluations
over a finite set of inputs is a multivariate Gaussian distribution. At core dsth@rediction is the
covariance functioror kernel| parameterised b§*, that models the output covariance at different
pairs of input points, and in essence acts as a measure of similarity betiffesntinput locations.

In order for a covariance function to be valid it has to be positive semitiefind has to satisfy
Mercer’'s theorem (Rasmussen and Williams, 2005).

In a multi-task scenario the interest lies in learnMgelated functions;j, j =1,...,M, from
training datax;j, yij, i=1,...,nj, with x € RY, andny + ... +ny = N. In the following of this
section, data points from tagkwill be denoted byXj = [xyj,...,Xq,j] @andX = [Xy,...,Xu] will be
used to denote the set of all data points. Focussing on a regressidenpifob simplicity, the noise
model will be given by

Vij = fj(%j) +€j, with gj ~ 9\[(0,0'1-2), Q)

whereyij (xj) denotes thé" output (input) of thgt" task. We note that each input point hsunc-
tion values associated with it (one per task); tomplete set of responsesl rarely be observed in
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practice, but function values corresponding to unobserved valuesasly be marginalised using
the consistency of GPs

The multi-task model of Bonilla et al. (2008), which has been known in thesgggigstics com-
munity as the Intrinsic Model of Coregionalizatich(IMC) (Cressie, 1993), can be elegantly re-
covered from the theory of matrix variate distributions (Gupta and Na§a0)2 Define the vector
f by stacking the columns df = [f;...fu] into a single vectorf = veq(F), wheref; € RN* is the
column vector of all latent functions evaluations of tgskhen theprobability density functiomf
matrix F will be given by:

(2m0)~ ENM K|~ 3N XM exp{—;trace((Kt)lF (KX)—lFT) } , )

whereK! € RM*M andK* ¢ RN*N (Gupta and Nagar, 2000). This configuration implies that the
matrix K! models the correlations between the vecfgrghat is, the tasks in the multi-task view,
andK* models the correlations between each element of vetorsthe GP framework, this corre-
lation between function evaluations at different input points is capturatidogovariance function.
Then, by using some matrix algebra involving the vec and Kronecker tmpeEguation (2) can be
written in the form Bonilla et al. (2008) proposed,

p(fIX) = GP(0,K' @ KX).

Employing this type of prior for the latent functiofighe noise model for the regression problem
stated in equation (1) becomegy|f) = A(f,D® 1), whereD € R™*M is diagonal withDj; = o%
andl € RN*N s the identity matrix.

The key element of this formulation is the task covariance matfixvhich reflects the task
correlations. For example, K! was fixed to the identity matrix, then all tasks would be indepen-
dent but they would still share the same hyperparameters of the covafiametion. Of course,
one of the main goals of multi-task learning is to learn these task dependeiBoedla et al.
(2008) approached this problem by parameterizing the task covariandg, méth parameter$',
always retaining positive definite restrictions, and treating these paranastéryperparameters to
be learned. Positive definite guarantees were achieved, by paraingtariawer triangular matrix
L to employ the Cholesky factorizatidét = LL". Most importantly, parameters related to the data
covariance function or the task covariance matrix can be learned in tteasti@P formulation, by
maximizing the marginal likelihoog(y|X) = [ p(y|f) p(f|X)df.

3.2 Model

In this section we describe the Coupled Multi-Task Multi-Class (CMTMC) medepropose for
meta-generalisation. The objectives of the model are first to model thediepeaes between the
tasks, and second to assign unseen tasks to source tasks by findisgriestties. The first ob-
jective is met through the Multi-task part of the model, while the second is ahigwough the
Multi-class classifier. Figure 1 shows the graphical model of the CMTME&sdiar. In this subsec-
tion we usex, y*, andy* to refer toxs, y*t, andy® to keep the notation light, since in the learning
phase only source tasks are involved. Therefore, notation introdncgection 3.1 applies here.
Moreover, from Section 2 we have thyte {1,...,M} andy* € {—1,+1} as the task and class
labels respectively. Since both class and task prediction are effectileedgification models, we
choose the probit and multinomial probit models as noise models respectralgwing Albert
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Figure 1: Coupled Multi-Task Multi-Class (CMTMC) model. Variabfeandg are the two sets of
GPs for the multi-task and multi-class classifiers respectively, whereeblesh* and
ht denote the auxiliary variables of the two classifiers; (a) graphical septation of the
training phase, (b) graphical representation of Meta-generalising.

and Chib (1993), we define two sets of auxiliary variaiiles- veqH!), andh* = veq(H*), which
as shown later on enables the multinomial and the binary probit model resgbgcEor later con-
venience, we will be using’ andh}, to denote thg'" column anch™" row of matrixH".

Figure 1 shows that there are two directed channels of variables. Tger gpannel, with
variablesC! = {g,ht,y!}, is responsible for learning the task labels, thus from which task each data
point comes from, while the lower channel, with variab@s= {f, h*,y*}, learns to classify the
data points inside every task and to find task correlations, through theastamdlti-task classifier.

Thus, there are two sets of Gaussian Processes. The first onedssip for the classification
over the taskg|X,0* ~ GP(0,1 ® K¥), whereg = vedG), G = [gs,...,0um], andg; € RN*L. The
second one is responsible for the multi-task classificati¥ng,8' ~ GP(0,K! @ KX), where as
stated before variable8* and ' are used to denote the hyperparameters of the data covariance
function and task matrix respectively. As in the multi-class case we will havé thaeF), where
F = [f1,...,fm] andfj € RN*L. In the rest of the paper we will writ* to denote the covariance
matrix between all data poinb$, unless specified otherwise. MoreoveandK! will be M x M,
where the identity matrix in the multi-class case implies independence between gkesclthus
0j|X,8* ~ GP(0,KX). The key objective is to leard functionsg; for the multi-class classifier and
M related function$; for the multi-task classifier.

Note that the data covariance matKX is shared by both sets of procesgeandf. This is
graphically illustrated by the fact that the node of hyperparaméteis connected to both latent
functions; thus, the multi-class and the multi-task classifier share the sameasgaeter space
for 8. The multi-class classifier is restricted to have the same covariance functassahe classes
in contrast with the standard model for multi-class classification with GPs, whiphinciple al-
lows you to use different covariance functions across classesctirtli@ CMTMC model could be
decoupled into two separate classifiers with different sets of hypenedeast* between the two
processe$ andg. Seemingly, this decoupling would result in a more flexible model, but prelim-
inary experiments with both models, the CMTMC and the decoupled model, bas ghat this
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restriction does not affect the performance. In contrast, it redueesatically the computational
cost since the hyperparameters of the data covariance function nee@stirbated only one time.

The probit model is enabled in both channels by a standardized normalmoiel over the
auxiliary variableshi;|gij ~ AL(gij, 1), andhy|fi ~ A((fi,1) (Albert and Chib, 1993; Csatet al.,
2000; Girolami and Rogers, 2006; Skolidis and Sanguinetti, 2011). dlaganship between out-
putsy' andy* and auxiliary variableg', andh* is deterministic and will be given by:

— i t t
V=1 i hj = max {hig},

o(h)d(y* if y‘=+1
iy = { MO Iy =

O(—h)o(—yr) if yr=-1
whered is one if its argument is positive and zero otherwise, which completes thdisgian of
the model.

3.2.1 INFERENCE

Classification problems imply non-Gaussian noise models, which make inéeirginactable. To
address this intractability, we adopt a variational approximate treatment tadbtem, as it is
computationally more efficient than sampling-based methods while retaining@niaae accuracy

in empirically approximating posterior marginal$or a comprehensive comparison between these
approximations for GP multi-class classification, and on the multinomial probit intteelmterested
reader in referred to Girolami and Rogers (2006). The dependewitike random variable® =
{g,ht,f,hX} are depicted graphically in Figure 1.a and are summarized in the joint likeliHabé o
CMTMC model as:

p(y',y*,©]6%,8',X) = p(y'|h") p(h'|g) p(g|6%, X) p(y*|h*) p(h*|f) p(f|6¥, 6", X).

Variational methods approach this problem by approximating the joint postdribe latent
variables® within a family of tractable distributions; in our case, we will approximate the jobst p
terior as a factored distributign(®y!, y*, X, 8", 8%) ~ Q(0) = [i—1 Q(6i) = Q(9)Q(h") Q(f)Q(hX).
Minimizing the Kullback-Leibler divergence between the approximating antttieedistribution is
equivalent to maximizing the following lower bound on the marginal likelihood

P(y',y*,©[X,6*,6")
Q(©)
which is found by applying Jensen’s inequality (MacKay, 2003). Stahdesults show that the

distributions that maximize the lower bound are given by
_ eXF(EQ(O\Oi) {Iog p(yt ) yX’ e’X7 eta eX)})
fEX[XEQ(@\@i){lOg p(yt’yx’@p(’et’ex)})d@i
whereQ(0\ ©;) denotes the factorized distribution with thecomponent removed. Inference and

learning are performed in a variational EM algorithm: the E-step computestiaional posteri-
ors on the variable®, and the M-step optimizes the hyperparame®y8* given the expectations

logp(y".y[X.88) > [ Q(©)log de. ©

Q)

1. Another setting for approximate inference producing comparabldtsewith the Variational approach that could
have been employed is the EP approximation (Opper and Winther, 2006@aM2001; Rasmussen and Williams,
2005); this has also been extended to the multi-class classification scien@molami and Zhong (2007).
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computed in the previous step. At each (E or M) iteration the variational Ibawnd, 2 (Q) (given
in Appendix B Equation (15)), provably increases (or at worst remanthanged), and these two
steps are repeated until convergefhakfe now briefly summarize the calculations needed to perform
the E and M steps. The pseudo-algorithm of the training of the CMTMC modgés in Algo-
rithm 3.2.1. We omit any details and emphasize only the occurrence of thialdpem covariance
function we employ; fuller details can be found in Appendices A, and B.

E-step. The approximate posteriors for the multi-class classifier will bendiye

M
Q(9) = [126(3;,=9), 4
(9) ﬂ%( )
N YN
Q(h') = 176 @ 1), (5)

-1 ~
wherex9 = (I + (KX)’1> = KX(1 +K*) ™, g = X%, and%{"(gn, ) denotes an M-dimensional

Gaussian distribution truncated such th&t gimension has the largest value §f¥ j. In the lower
channel, the approximate posteriors for the multi-task classifier will be diyen

NM [ (0,
o) -] <fi +yx7qf‘(§fl))> , @

wheref = =%, and &f = K! @ KX(I + K! @ K*)~1 and the tilde notation in the above random
variables denotes posterior expectation, thaf({s,) = Eq. {t(a)}; more details can be found in
Appendix A.

M-step. The M-step optimises the lower bound with respect to the hypenpéeesd* and6'.
This is performed by gradient descent; computation of the gradients ofles lwound given in
Equation (3) are somewhat intricate and are given in Appendix B.

Algorithm 1 CMTMC model - Training
L Inputs : X3, y3¥ ytfor j=1,....M
2: Sample parametegsht,f,h* from prior
3: Initialise hyper-paramete, '

4: repeat

5. E-step

6: ComputeQ(g) andQ(ht) for MC-classifier, Equations (4),(5)
7: ComputeQ(f) andQ(h*) for MT-classifier, Equations (6),(7)
8: M-step

9: Optimize hyperparamete8, 6', Equations (16), (16)

10:  Compute Lower-bound on log-marginal likelihood, EquatfdB)
11: until convergence

2. In practice, estimation of the convergence of the EM algorithm wasr@dexhen the increase between iterations
was zero or smaller than a very small constant.
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3.3 Prediction on Novel Tasks

While in the previous section we described how to train the model on trainingrdatghe source
tasks, we now describe how to perform predictions on unseen targst ¥%& adopt a mixture of
experts type approach; in these networks, multiple outputs are combinegedgitted according
to the responsibilities they have on a certain prediction task. In a similar maheemulti-task

classifier of the CMTMC model can be seen as a multi-output predictor, @nabsifier over the
task labels (multi-class) can be used to infer the responsibilities of the outptite multi-task

classifier, since it produces posterior probabilities of task membershifgn gredictions on novel
tasks are computed according to

M
PIY™ = +1X XYLy = 5 P = 1Y Xy PO X, Xy, (8)
=1

wherep(y]” = X Y X, yX) = p(y;" = +1[x*, X,y*) is the posterior of thg'" task belonging to
class “+1” from the multi-task classifier, armjytj*\x*,x,yt) is the posterior ok* coming from the

jth task, or the test point task responsibility from the multi-class classifier. phigal representa-
tion of this process is given in Figure 1.b, where it is shown that ngdeandy** are combined to
give the final predictiong*.

However, the meta-generalisation scenario presents some additionahgballghich are not
found in classical mixture of experts models. In many cases, a targetdaslksts of ebatch of
input points, and the simple fact that they all come from the same task cordgdirable information
about the correlations between the associated outputs. Another cldsgéddrissue is that of the
correlation between the target task and the source tasks. In many multirtdsé&ms it is a usual
phenomenon to observe groups of highly correlated tasks (e.g., FigmrevBile other times tasks
are correlated butin a more random fashion (e.qg., Figure 6.b, 7.b). Adlkgee in the experimental
sections, this can have important consequences in terms of predictiveaegcand in terms of
choosing an appropriate prediction model.

In the following, we present two distinct scenarios for inferring the taslponsibilities. Given
a target task witm' data pointsc* = {x*,x,...,x{;}, in the first scenario we treat each data point
from the target task individually to infer its task responsibilities, which we vefer to asPoint
to Point Gating(P2PGat). This approach neglects the information that all target points ftome
the same task, and as we will see in the experimental section, is more apjgregren inter-task
correlations are weaker. In the second scenario we wish to combine ¢henatfon from alln' test
points to infer the overall task responsibilities for the target task, which ifeefer to asBatch

predictions.

3.3.1 ROINT TO POINT GATING

Given a new input point which lacks both class and target labels, the CMiddel combines
the predictions of a multi-task classifier using task responsibilities obtainedtfie multi-class
classifier channel. Thus, two sets of quantities need to be computed. Streefiare the posterior
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probabilities of the outputsp(y;* = +1|x*,X,y*) of the multi-task classifier, as
p(y](* — +1|X*,X,yx) — / p(y](* — 1|hx*)p(hx*‘x*,X,yx)dhx*,

e A *2 X )\T
= [ 2 002 =0 (o ©
J

0

T
where we have used that® = 1+ k' K., — (ktJ ® k§7X*> (I +KtoK¥)™t <ktJ ® k)’ﬁjx*), and\} =

ki @k (I +K'@KX)™ Lhx. Additionally, k!, Ki; are used to denote th& column and thejj™"
element okt respectlvelyk _is used to denote the covariance vector betweemdx*, and® is
the probit function.

The second set of quantities are the task responsibilities which are confimue@irolami and
Rogers (2006)

P = KX, X.y) = [ POy = KIH) p(t[x", X.y"
ht*

+o00
= %L*(“;avra |_IK %t*(“fn? ) ht* dht*v (10)
— oo m

which can be evaluated using numerical integration as:

Py = KIx*, X, y') {]‘Lfb( [uvi + b — u,})} (11)

whereu ~ AG(0,1), Vi = 1+ K o — K (1 +KX) kS, andply = K (1+KX) "1 hRE,

In the P2PGat scenarlo the novel input points are not assumed toaslcaramon task la-
bel. Therefore, class prediction is performed straightforwardly onyavew input by inserting the
posterior probabilities obtained in Equations (9,10) in the gating network diyd=quation (8).

3.3.2 BatcH

In a Bayesian way using all test points to infer the overall task responsibility is performed
by replacing the univariate distributions from Equation (10) with the apgatgomultivariate. As a
result the second integral of Equation (10) becomes the multivariate cuveuwdadtribution function
ff:kx, Apt: (M %, ") dht:. Specifically the mean and the variance of the auxiliary varidtijesn the
batch of test pointg* will be given by:

ME = E[hti[x] = KS (1 +KX,) 7RG, (12)

T = covhiilx] = 1+ Koo — Ko (14 KE) K s (13)

whereKX' xx- 1S theN x n' covariance matrix of all training poinds, and all test task data poirnts,
andKX*.X* is thent x nt full covariance matrix ok*. Equations (12) and (13), indicate that inferring

the tasks responsibilities on a set of points depends not only on the tiomslaetween the test
points and the train points but also on the correlations between the test peimisaiies.
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Algorithm 2 CMTMC model - Meta-generalising

1 Inputs @ x™* = [X,... x4, Q(g), Q(hY), Q(f), Q(h¥), X

2: fori=1ton'do

3: for j=1toM do

4: Compute MC posterior probabilitiggyj; = j|X*,X,y"), Equation (11)
5: Compute MT posterior probabilitigs(y;] = +1x*, X, y¥), Equation (9)
6: end for

7: end for

8: P2PGatpredictions

9: for i =1ton' do

10:  Computep(y™ = +1|x*, X,y!,y*), Equation (8) based on steps 4 and 5
11: end for

12: BATCH predictions

13: for j=1toMdo

14: Compute overall task posterior probabilitipg/!* = k|x*, X, y!), Equation (14)
15: end for

: for i =1tont do
Computep(y™ = +1|x*,X,y!,y*), Equation (8) based on steps 5 and 14
: end for

PR
® N o

On the other hand, truncated multivariate Gaussian distributions are hagdltwith, and usu-
ally approximations are applied (Deak, 1980; Genz, 1992; Gassmahn28G2). The dimensions
of the multivariate distribution function in the batch prediction problem depenthe number of
data points, of the target task, which can be several thousands depending theatipplicTo the
best of our knowledge no method can tackle very high dimensional c.aid. e\@n approximations
can become extremely computationally intensive wheiis more than a few dozens (these esti-
mations would be carried out within the inner loop of a VBEM algorithm, which l@bviously
further aggravate the problem). A solution to this problem is to assume thapdiata from the
test task are i.i.d. from the unknown data generating distribution, andapyate it by:

[t PO = KX, X,y")

S : (14)
St 721 PO = mixs, X, yt)

Py =KX, X,y') ~

wherep(y* = k|x*, X, y!) are the task responsibilities computed individually for each test point. We
will adopt this approximation in the experimental section for computationabrsasalculations
using the full covariances in Equation (13) are unfeasible with more th@mpaidits (test or train-
ing). While this approximation may appear crude, we experimented extgnsiveedium-scale
problems using a reduced rank approximation¥or (capturing up to 90% of the total variance),
but this did not appear to yield significant empirical advantages justifyingubstantial computa-
tional costs. Note though that although the i.i.d. approximation misses the tiorelaetween the
test samples, it still uses information from all test points to produce ovesallask class posterior
probabilities.

The pseudo-algorithm for the stage of Meta-generalisation for both tfgeedictions, P2PGat
and Batch, is given in algorithm 3.3.1.
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4. Experiments

This section aims at providing insights into the workings of our meta-genemgaiisodel through

empirical evidence. Experiments are presented for both the fully olzbane partially observed
task scenarios described in Section 2, and in both cases we investigateebB2P gating and the
Batch mode of predictions on new tasks. The fully observed tasks aassidered in Section 4.1,
investigates the situation where data generating distribution of the target tatkadly the same as
that of one of the source tasks. In this case all available tasks are ugedtraining phase, but in
the testing phase the model has no information from which of the source tatkgjet task comes
from. The second set of experiments, described in Section 4.2, cansidecase of the partially
observed tasks. In this case the data generating distribution of the tasketdas not match the
distribution of one of the source tasks, so that the set of source tagkicily @ subset of the set
of all tasks. Training is performed on the source tasks, and testing onttily tanseen target
tasks. While both scenarios are plausible applications of meta-genera8sictipn 4.2 gives more
insight into the connections between the correlation structure of the tadkharask prediction

mechanism on totally unseen tasks.

Five different data sets are considered in the experiments. The firsldiasets are artificially
generated to demonstrate the strengths and the limitations of the method; the distisfies
the assumptions of the model, and the second one, which is only consideBadttion 4.1, is
in conflict with them. The third data set is a character classification probléweba commonly
confused handwritten letters. The fourth data set is an automated diagnalsiem: annotated
heartbeats from ECG recordings are used to discriminate normal frawyttamic beats, and each
patient is considered as a task. The last data set, which is considereih ahé/ second set of
experiments, is a landmine detection problem. More details are given in edidnseparately. We
present results for different training set sizes, and for each trasir@yexperiments are repeated
25 times by randomly selecting the data points used for training from eachRasthermore, in
both scenarios three types of outputs are considered from the CMTMEIntloe batch written as
“BatchMCAppr”, the P2P gating written as “P2PMCGat”, and the “MAP” estenahich simply
selects the output of the multi-task classifier that has the highest posteriatting that is usually
considered in classifier fusion techniques (Kuncheva, 2002). Asnetinod essentially relies on
the covariance structure between tasks, two types of baseline comgaaisqurossible: in the worst
case, results should not be worse than completely ignoring the task stracipooling together
all training data. We refer to this baseline as Pool. In the best case, ouodnghiobuld not be
statistically better than a method which leverages the same covariance stamadunras access to
all the task label information, for example, a standard multi-task learningpoaplpr We refer to this
best-case scenario as MTL; we compare with this only in the fully obserg&dtznario, as in the
partially observed case the meta-generalising results are generally quifniehis best case.

All methods are compared in terms of the area under the precision-repad, @so known as
theAverage PrecisiofAP) (Davis and Goadrich, 2006). Simulation results were processeditwen
the work of Brodersen et al. (2010), that provides a smooth estimate pfebsion-recall curvé;
an equivalent performance measure that could have been used issth&Ader the Curve (AUC)
(Hanley and Mcneil, 1982), which is also appropriate for imbalanced eé#taNote that simulation
results follow the same pattern with both measures. In all experiments the taslaose matrix:

3. Code downloaded frontit t p: / / peopl e. i nf. et hz. ch/ bkay/ downl oads.
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was parameterized as a correlation matrix (Rebonato ackkl 2000), with unit diagonal, while
the data covariance functidf is set specifically for each data set depending the application.

4.1 Fully Observed Tasks

In this scenario, the data distribution of the target task is the same as thatledgg one of the
source tasks. This guarantees that the similarity of distribution assumption ihovetyer, as
we’ll see in the case of Toy datd, the low joint prediction error assumption is not automatically
satisfied. Obviously, the actual input data will be different, due to the agiidity of the data
generating process. Intuitively, the success of the model dependglgtan whether the model
will be able to infer correctly from which of the source tasks the targetdatkally comes from.

Toy data set | - Tasks 1-3 Toy data set | - Tasks 4-6
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Figure 2: Toy data set | distribution; (a) scatter plot and density for teediuster of tasks (1-3),
(b) scatter plot and density for the second cluster of tasks (4-6).

4.1.1 Toy DATA SET |

The first toy data set is comprised of six binary classification tasks. Thgrtdytem was previously
used in Liu et al. (2009) in the context of semi-supervised multi-task learridaga for the first
three tasks are generated from a mixture of two partially overlapping Gaudistributions, and
similarly for the remaining three tasks. Hence, the six tasks cluster in two gjréargach task 600
data points were generated, which were equally divided between the tegeslalhe scatter plots
of the two clusters are shown in Figures 2.a and 2.b.

This data set is ideal for demonstrating the concept of the meta-generdisittigee reasons.
First of all the assumptions of the model are satisfied. Secondly, the tesks i two clusters.
The third reason is that the densities of the clusters though similar are rottyetk@ same; this is
illustrated in Figures 2.a and 2.b, which shows the contour plot of the deritiles two clusters.
We use an Automatic Relevance Determination (ARD) data covariance funetiich employs a
different characteristic length scale for each feature, and is able tofidenhich features are more
relevant for classification (Rasmussen and Williams, 2005).
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Toy data set | Toy Data set |

<3 *  MTL

vV BatchMCAppr
o p2PMCGat ||
- MAP
O Pool

10 20 30 40 50 60

Figure 3: Toy data set | classification Results; (a) Average AP over thek8, (b) Hinton Diagram
of the task covariance matrix of the CMTMC model computed by averagingtbge25
repetitions with 50 data points per task.

Classification results are presented in Figure 3.a; the Y axis is the AP, anddRis is the
number of data points from each task (DPET) used for training. Thdtseshow that, in this toy
problem, the Batch mode performs similarly to the ideal MTL case, although it highaariance
for the case of 10 DPET. The P2PGat and Pooling method performxapaiely 10% worse than
the Batch, while the MAP estimate gives roughly 20% less than the Batch. Mardeigure 3.b
shown the Hinton diagrafn(Hinton, 1989) of the task covariance matrix of the CMTMC model
which accurately recovers the structure of the tasks.

4.1.2 Toy DATA SET I

The second toy data set consists of four tasks which group into two du3tee scatter plot as well
as the density of the two clusters are shown in Figures 4.a and 4.b, forgherfit second cluster
respectively. The main feature of this data set, evident visually from &L the similarity of the
data generating distribution for the two tasks. While the densities are pealléfitient locations,
without class labels the tasks are almost identical, meaning that the multi-clagBeclassmnot
learn to discriminate between the two tasks. As in the previous example, eldotsisted of 600
data points equally divided between the two classes, and we used the ARDaoce function.

Figure 5.a shows the results the different methods produced. As edpieteBatch mode fails
to correctly identify the task responsibilities; as a result, it gives a lowaageeAP than the MTL,
a difference which does not decrease with the number of DPET, indicstatigtical inconsistency.
This is reinforced by the Hinton diagram kif in Figure 5.b, where it fails to identify the clusters of
the tasks. Even though this difference is small it is significant for this eadygm, where the MTL
algorithm performs close to 100%. Additionally, the P2PGat, the Pooling, anil&P estimates
perform better that the Batch, but they also fail to reach the perfornarid@L.

4. The Hinton diagram is a graphical representation of the values in a d@atix;nhere, it is used to display the corre-
lations between the tasks.
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Toy data set | - Tasks 1-2 Toy data set Il - Tasks 3-4

T F N 4
o N
: P

|

— T

Figure 4: Toy data set Il distribution;(a) scatter plot and density for tisé dluster of tasks(1-2),
(b) scatter plot and density for the second cluster of task(3-4).

4.1.3 GHARACTER CLASSIFICATION

In this data set the task is to learn to classify between commonly confusedvtitieid letters,
which is included in the “Transfer learning Toolkit” of Berkeley Universityailable atht t p: //

mul titask. cs. berkel ey.edu/. This data set is comprised of eight binary classification tasks.
The characters that are used and the number of samples are giveteid . TRRch sample is a 268
image, which results into a binary 128 feature vector. The covariancéidarthat is employed for
this data set is thRadial Basis FunctiofiRBF).

Toy data set Il Toy data set Il
1 T T Fr T £

. o
ﬁ ! ﬂ

09

Average AP

MTL
BatchMCAppr
P2PMCGat
MAP

Pool

(S =R

10 20 30 40 50 60
DPET

(@)

Figure 5: Toy data set Il classification Results; (a) Average AP ovet thsks, (b) Hinton Diagram
of the task covariance matrix.

The classification results for this data set are presented in Figure 6.8atttemethod follows
closely the ideal MTL performance, and outperforms the P2PGat, Poalmijthe MAP methods
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]Task H 1 2 3 4 5 6 7 8 \
Letter C g m a [ a f h
Number of data || 2017 2460 1596 4016 4895 4016 918 858
Letter e y n g i o] t n
Number of data || 4928 1218 5004 2460 188 3880 2131 5004

Table 1: Description of the Character data set; each column is a task shbwitvgp letters as well
as the corresponding number of examples per character.

(although there is significant variability for small numbers of labeled datags). Figure 6.b
shows the Hinton diagram of the task covariance matrix, which indicates arammtem structure
between the tasks, but finds that some tasks are more correlated thas) Gthexample ‘a/g’
with *a/o’, and ‘i/j’ with ‘f/t’. It should be noted though, that in this data set thew-error joint
prediction” assumption is partially violated since there is label disagreemamede tasks ‘a/g’
and ‘gly’, where the ‘g’ letter belongs to class “+1” in task ‘a/g’ and to"#itask ‘g/y’. This does
not seem to have any adverse effect on the performance of the moekinmbly as the difference
between letters ‘a’ and 'y’ is sufficient to unambiguously assign the taagktto the correct source
task.

Character Classification Character Classification

1 . . : . . .
*  MTL cle ’i m
l| v BatchMcAppr i

o P2PMCGat

i
. MAP

09| o Pool I

085} i T

10 20 30 40 50 60 70

Figure 6: Character Classification Results; (a) Average AP over th&s, g Hinton Diagram of
the task covariance matrix.

4.1.4 ARRHYTHMIA CLASSIFICATION

The arrhythmia data set consists of seven ECG recordings from diffeadients, which were ac-
quired from the MIT-BIH Arrhythmia database (Goldberger et al., 20@3ach recording corre-
sponds to a large number of heart beats, which is summarized in Table B.pEthent is treated
as a separate task, and the goal is to classify each heart beat into teesclagrmal or premature
ventricular contraction (PVC) arrhythmic beats. The same problem wasdsrad in Skolidis et al.
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(2008) using single task GP classifiers. Each recording was samplé@Hiz,3and annotation pro-
vided by the database was used to separate the beats before anggssinmp Each beat segment,
consisting of 360 data points (one minute), was transformed into the fregiden@in using a Fast
Fourier Transform with a Hanning window. Only the first ten harmonicsuaes as features for
classifying heart beats, as most of the information of the signal is contairiteedse harmonics.

| Recording ID | 106 200 203 217 221 223 238

] Total number of data \ 2021 2567 2970 406 2349 2417 3053
Number of Normal heart beats | 1503 1740 2526 244 1954 1955 2224
Number of PVC heart beats 518 827 444 162 395 462 829

Table 2: Description of the Arrhythmia data set.

Figure 7.a shows the average AP over the seven tasks. On averaBai¢henethod performs
better than the P2PMCGat, the MAP, and the Pool, while it presents a smatitageacompared
to MTL. Interestingly, the MAP approach is consistently worse than otheraudstla situation that
will be reversed in the partially observed tasks scenario. As in the deaxassification problem
the task covariance matri!, shown in Figure 7.b, demonstrates that there are correlations between
the tasks but in more random way.

Arrhythmia Classification Arrhythmia Classification
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Figure 7: Arrhythmia Classification Results; (a) Average AP over the &jdbk Hinton Diagram
of the task covariance matrix.

4.1.5 (BSERVATIONS

This set of experiments has demonstrated the effectiveness of the CMMdE! in situations
where the data distribution of the target task comes from one of the soskse everal observa-
tions are made:

1. In the fully observed tasks scenario, the space of tasks has begphedasufficiently (by
definition). In this case the Batch mode should theoretically be the best msthoel all data
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points are needed to produce an accurate estimate of the density of thetidakgeThis is
empirically confirmed in our investigation, as Batch closely approaches tHe rgults in
all cases.

2. If the “low-error joint prediction” assumption is violated, then meta-geliging becomes a
very hard problem, possible unsolvable. The performance on the déaprexample was
not particularly bad, since all methods achieved higher that 90% in termP,dfuA none of
methods reached the performance of the MTL algorithm, and the perfoenddshaot appre-
ciably improve when more training data were provided, indicating statisticahgistncy.
This effect could be dramatically increased if for example the classes betilie clusters
were anti-correlated, so that similar data generating distributions couldtbetiadly associ-
ated with opposite predictions. Note though that if discriminative task descfgzitures are
available then this problem can be overcome, because augmenting the fgzdae would
result in a different mapping of the latent functién

3. If the model assumptions are met, the correlation structure of the taskadideave a strong
influence on the predictions, since the Batch mode outperformed the Pg&igtand MAP
estimate in all experiments. As we will see, this will be a crucial difference datvthe fully
and partially observed tasks scenario.

4.2 Partially Observed Tasks

We now consider the harder problem of making predictions on completebeartsisks. In this
case,a priori we have no guarantee that any of the underlying modelling assumptions (gimilar
of distribution and low-error joint prediction) may hold. However, in someasitns it is not
unrealistic to assume that inter-task correlations will be structured, fongeaby the presence of
clustersof similar tasks. These clusters may be evident from the experimental ddsignproblem
(as in the case of the landmine data set discussed below), or may becoem &wth the training
phase on the source tasks, if the learned task covariance matrix exhitoaa@fslock structure.

We are not aware of other methods that has a distribution matching mechanisrfdaom
predictions on totally unseen tasks. Therefore, in this section we will omhpaoe the different
inference mechanisms of the CMTMC model (Batch and P2PGat) with a GP rradedd by
pooling all data together and with the MAP combination of classifiers.

4.2.1 Toy DATA SET |

We consider the toy data set that was used in Section 4.1.1 consisting of sterslof tasks; in
this section, training tasks are selected by randomly selecting equal nuintaeske from each
cluster. The challenge for the model is to correctly classify the task, dhversimilarity of the

task distributions between the two clusters (see Figure 2). While it couldduedithat, as the
tasks in each cluster have the same data generating distribution, this exangig ¢doge to the
fully observed case scenario (and it certainly is if we consider the lyioigtasks to be two rather
than six), it is still a useful illustrative example as a limiting case where assursgienperfectly
met. Experimental results are presented for two and four training tasks umeBi@.a and 8.b
respectively. Naturally, as this data set is designed to match our modellimgpissns, the Batch
method outperforms all other methods; it is interesting however that the metboekssfully detects
from which cluster of tasks the unseen target task comes from evesldtively small training set
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Training on "2" tasks, generalizing on "4" Training on "4" tasks, generalizing on "2"
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Figure 8: Average AP on the unseen tasks of Toy dat&; @) training on 2 tasks generalising on
4, (b) training on 4 tasks generalising on 2.

sizes. Comparing the performance of the Toy data gethe fully and partially observed cases, in
Figures 3 and 8 respectively, reveals that the same levels of AUC devedlin both experimental
setups, indicating that the task classification GP is highly confident of theataesult.

4.2.2 LANDMINE DETECTION

The landmine detection data set consists of images measured with airbaansysigms, and the
goal is to predict landmines or clutter (Xue et al., 2007). Data are colleced¥9 landmine fields,
which are considered as subtasks, and each point is representethbydimensional feature vector.
Tasks 1-10 correspond to regions that are relatively highly foliated wdmles 11-19 correspond to
regions that are bare earth or desert. Figure 9 shows the number gialats from each task
and each class, which indicates that this data set is highly imbalanced irofather Clutter (*-1")
class. The experimental setup suggests the presence of two clustesksotdaresponding to the
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Figure 9: Landmine detection data distribution.
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geomorphology of the region the observations come from; this is confirmexibpreliminary
investigation (not shown), as well as from previously published resnlthie data set by Xue et al.
(2007) and Liu et al. (2009). Thus, in this data set training tasks arkysetndomly selecting
equal number of tasks from the first cluster, tasks 1-10, and fromeitwnd cluster, tasks 11-19.
Experiments are presented for two, four, and eight training tasks. laecdvariance function that
is used for this data set is the ARD.

Figures 10.a, 11.a, and 12.a shows the mean AP on the 17, 15, and &h targget tasks for
each partition respectively. Due to the high imbalance between the classenilne-Clutter) the
achieved AP of all methods is very low. Therefore, in this data set we aésept the AP of a
random predictor which clearly shows the improvement of each methoddeoed. Note that in
terms of AUC the results obtained in this work are consistent with previougestirdthis data set
(Xue et al., 2007; Liu et al., 2009), which are presented in Appendix GrEitj4 for completeness.
Moreover, it is noticed that there are large overlapping error barsdgetall methods. Large error
bars give evidence that there might be two levels of performance. fbineréor each partition we
provide the average AP for each cluster separately; subfigurem(b)igures 10, 11, and 12 show
the average AP for the first cluster, and subfigures (c) for the sledoster. Measuring the AP in
each cluster separately gives significantly smaller error bars, analsémteresting structures in the
problem. Specifically, the performance on the second cluster is alwttgs thean on the first cluster
by a considerable margin. Moreover, comparing the methods on eaclr clegteately we see that
the Batch method outperformed the pooling and the P2PGat in most of the passsularly in
the first cluster where the advantages become very significant as wasecthe number of tasks/
DPETSs. The correlation structure within the second cluster is looser, immpaywepker applica-
bility of our modelling assumptions. However it should be pointed out that thissisbatantially
harder pattern recognition task compared to the toy data set considenszl dfor example, Liu
et al. (2009) that investigated the application of semi-supervised MTL ord#tésset achieved a
best performance of 78% AUC; the CMTMC (which relies on the more flex@seframework for
MTL) achieves an average AUC above 76% on totally unseen tasks hasingd ononly 8 source
tasks with 100 DPET (see Figure 14).

Training on "2" tasks, generalizing on"17" AP on the first Cluster AP on the second Cluster
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Figure 10: AP onthe 17 unseen tasks of Landmine data set; training ons2 gasieralising on 17;
(a) AP over 17 tasks, (b) AP over 9 tasks of the first cluster, (c) A 8utasks of the
second cluster.
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Training on "4" tasks, generalizing on'15" AP on the fist Cluster AP on the second Cluster
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Figure 11: Average AP on the 15 unseen tasks of Landmine data set;gram#tasks, generalis-
ing on 15; (a) Overall AP over 15 tasks, (b) Average AP over 8 tabksedfirst cluster,
(c) Average AP over 7 tasks of the second cluster.
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Figure 12: Average AP on the 11 unseen tasks of Landmine data set;gramitasks, generalis-
ing on 11; (a) Overall AP over 11 tasks, (b) Average AP over 6 tabksedfirst cluster,
(c) Average AP over 5 tasks of the second cluster.

4.2.3 ARRHYTHMIA CLASSIFICATION

As a second real data set, we return to the arrhythmia classification profilediuced in Section
4.1.4. The results from the fully observed tasks scenario indicate arampel#ern of correlations
between the tasks, as summarised in the task covariance matrix Figure 7 bcaltéénto question
the validity of the similarity of distribution assumption. Fortunately, in this applicatierctasses
have a physical interpretation. For example normal heart beats betiieard patients, although
not exactly the same, can be expected to be similar, and a PVC arrhythntibéabof one patient
can not have the wave form of a normal heart beat from another patibis allows us to assume
that the classes between the tasks will not be anti-correlated, so thastathedow-error joint
prediction assumption should approximately hold.

Since there are no obvious clusters among tasks, in this set of experimentaiting tasks
are chosen by randomly selecting some for training and keeping the resdtdasks. Figure 13
presents the results on the unseen tasks that were obtained by traininf1@dTCmodel with
4 and 5 tasks. First of all, we observe that the average AUC in the partiadlgreed case is a
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lot lower than in the fully observed case, something perhaps to be expaote] contrary to the
previous two examples, the model assumptions are not fully met in this datausptistgly, the
method that achieved the best performance was the MAP, and no pringigtéitation can be
given for that. Secondly, we observe that the performance in this sefpefriments exhibits some
interesting patterns as the number of training tasks increases. Specifwaflyr training tasks
the performance of all methods does not significantly improve as we irctbasnumber of data
points per task, and in some cases it even deteriorates, a phenomenaagteso observed for
2 and 3 training tasks but results are omitted for brevity. This indicates that gghce of tasks
has not been sampled sufficiently, the model can not yield good gengoaliparformance to new
tasks, even if the number of training data increases. In contrast, fotrdiveng tasks the MAP
and P2PGat methods yield a significant improvement of performance aartiteen of data points
increases (levelling off after 200 DPETS).

Training on "4" tasks, generalizing on"3" Training on "5" tasks, generalizing on"2"

0.96

I v BatchMCAppr
0 P2PMCGat
094F - map
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083t . wap
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L L L 082 L L L L
100 150 200 250 100 150 200 250
DPET DPET

(@) (b)

Figure 13: Average AP on the unseen tasks of Arrhythmia data set emafiffnumber of training
tasks; (a) training on 4 tasks, generalising on 3, (b) training on 5 taskeralising on
2.

Empirically, it would appear that the P2PGat method is preferable to the Batblodnehen the
model assumptions are violated. Intuitively, one could argue that the Batitiodhis less flexible,
as the relative contribution of the different single-class predictors igl fx®oss all points in the
target task. Therefore, if the model assumptions are violated, leadingno@mect task labelling,
the propagated error could have a worse effect in Batch than in P2RHGiatis partly confirmed
by the analysis of Toy data sHtin Section 4.1.2, where the model assumptions were violated and
P2PGat gave significantly higher AP than the Batch method.

4.2.4 (HARACTER CLASSIFICATION

For reasons of completeness, we present an analysis of the chatastgfication problem in the
partially observed tasks scenario. Here the validity of the model assumjgidabious; neverthe-
less, we believe that interesting lessons can be learned from model.faihedully observed tasks
analysis of the character classification problem did not reveal any dustéasks. Furthermore,
there is no reason to believe that the low-error joint prediction assumptiorhoidy some tasks
might even be anticorrelated, as in tasks ‘a/g’ and ‘g/y’, where letterélpigs to the negative class
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for task ‘a/g’, and to the positive class for task ‘g/y’. Therefore, tharacter classification problem
is ill-suited for this type of experiments. This is borne out by experimentaleeid: simulation
results with 4, 5, and 6 training tasks, which are omitted for brevity, indicatedinbreasing the
number of tasks and the number of training points per task does not impepertiormance in any
of the methods. Specifically, the results obtained were close to that of amgmedictor indicating
statistical inconsistency of the model assumptions with the data.

4.2.5 (BSERVATIONS

Meta-generalising in a partially observed tasks scenario is an extremelyphaslem; neverthe-
less, we believe there are some interesting points that can be made frometioeipexperimental
analysis. Below we summarise the most important observations for this gcenar

1. In situations where there are clusters of tasks, even though the nasté $een all tasks, the
Batch method can still make accurate predictions that reaches the peréermfatne fully
observed tasks case. Pragmatically, one could consider whether thegrairase of the
model has revealed clusters of tasks when deciding which prediction ntethpgly.

2. In multi-task problems where the correlations between the tasks are tssupced, but
where the low-error joint prediction is satisfied and where a sufficienmtbau of training
tasks is available, the method that is most appropriate is the P2PGat, sincédepra more
flexible task assignment mechanism than the Batch mode. The validity of the'lomjeent
prediction assumption can sometimes be assessed from the nature of tleenpfabin the
arrhythmia case).

3. Sufficient exploration of the task space is essential for the sucéebhe mnethod. While
we have not tested our model for very large numbers of training tasksesudts suggest
that often a significant improvement in performance can be achieved thikemumber of
training tasks crosses a critical number, indicating a sufficient coverhtee task space.
This phenomenon was observed in the Arrhythmia classification probleindiod 3 training
tasks where the performance of the models remained the same as the nurirbérimg
samples per task increased. In essence more training data lead to shiasgsrfor meta-
generalisation in target tasks that are not correlated with any of the traaskg.

4. In most cases, when the assumptions of the model are only approximateipanehen the
exploration of the task space is insufficient, the generalisation perfornoaniceally unseen
tasks is still modest, and it may be that other approaches based on mixtus&s efperts
(Tresp, 2000) achieve similar results. An extensive comparison with #mseaches would
be interesting, but outside the scope of the present work.

5. Conclusions

In this paper we presented an investigation on the use of Gaussiansg®tmsmeta-generalisation,
that is, predicting on unseen learning tasks by leveraging the informatisevefal, related tasks.
Our model attacks the meta-generalisation problem by coupling two GPs, a tasftidassifier
that learns task responsibilities, and a multi-task classifier that learns fwadicodels on indi-
vidual tasks as well as learning the global correlation structure betwammnty tasks. While it
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should be emphasized that this is an initial attempt to address what is certaiaty ambitious
problem, we believe the model will prove useful to understand meta-desai@n. First of all, it
provides a constructive approach to meta-generalisation: most pretialiss (Baxter, 2000) have
been mainly theoretical investigations attempting to establish the necessarorsnfbr meta-
generalisation to work, or have focused on the domain adaptation sc@anidDavid et al., 2007,
2010). Our model is an attempt to translate these conditions into a model, anés$tigate how
well such a model may perform on real meta-generalisation problems.

It is important to remark that our method crucially relies on the ability to learn thar@nce
matrix of a GP: the fundamental ingredient in this work is the task correlatiorixwaliich cap-
tures the correlations between source tasks. This not only has a signifigect on the prediction
results, but can reveal the presence of clusters of tasks within theheéatze guiding the choice of
the appropriate prediction method (Batch or P2PGat). Many multi-task leaaipiprgaches do not
explicitly model the correlations, but transfer learning solely through sdrae=d prior over param-
eters (Yu et al., 2005, e.g.). While this could have computational advantagesould argue that
the implicit modelling of task correlations would make them less suitable for megraeyation.
A common problem, shared by many GP models, is the computational cost whelesdecome
large, which would be the probable situation in many applications such asnpdised medicine.
Our approach also suffers from the cubic scaling of matrix inversioadegewithin GP inference;
while sparsity inducing approaches could be helpful (Snelson andr&tnali, 2006), it would be
interesting to explore sparsity within the task space as well as within the dat spa

While we believe that our results are encouraging and help clarify the inmpert the various
assumptions underlying meta-generalisation, it remains undeniable that inpneatigal situations
itis impossible to assess the validity of these assumptions, making meta-getieradinaxtremely
challenging problem. Possible avenues to extend the applicability of theambpoould be to
consider task descriptor features, or to introduce a semi-supervisaeérdglén the model in the
spirit of domain adaptation approaches.
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Appendix A. Approximate Inference

This appendix computes the approximate posterior)@), Q(f) and Q(h*). The posterior of
Q(H") can be found in Girolami and Rogers (2006) and therefore details are dmitte
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A.1 Q(g)

The approximate posterior f@(g) is computed as Girolami and Rogers (2006)
Q9 exp{EQ . (i S loapit o))+ g p(g,rx>> }
0 exp{EQ ht) (Z Iog%t (9j,1) +log Ag; (0,KX) > }
Dn% 9;.1) 7, (0.K),

~1
which gives thatQ(g) = 11L1Q(g;) = M1 2g;(3;,%9), where %9 = (I +(KX)‘1> =
KX(1 +K*)~*, andg; = %9ht,.

A2 Q(f)

Dexp{ (h¥) {Zlogp hX|f)+|09p(f|X)}}

0 ex { { W Th*+fTh*— %fo—éfT (Kt®KX)‘1f+const}}
Dexp{ + (K'®KX) 1)f+fTﬁ+const},

which glves thaQ(f) = A¢(f, =) wheref = £h%, and=’ = (1 + (K@ K¥) 1)1 = Kt @ KX(1 +
Kt@K*)~1

A.3 Q(h¥)

Q(h) O exp{EQ { Zilog p(y;Ih) 4 log p(hy| fi )}}

0 exp{log (ﬂ p(yﬂhf‘)) +1log (ﬂ%g(ﬂ : 1)) }

NM
O[] 26 )3(0)
which gives thaQ(hY) = 1%x(f., 1)3(h¥), and we have that

I maG(F 1) = o T for yi= 41
Q(hi() = 9\& )
(0,1
Z,foo f(%(fn ): &_fi)) fory?(:_
whereZ; = ®(+f;) for y* = +1. The approximate posterior QfH') can be computed in a similar
manner, and we refer the interested reader to Girolami and Rogers) (2006
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Appendix B. Lower Bound

This appendix presents the analytical form of the variational bound hasvthe gradients of the
bound with respect to the hyperparame@rande'.

B.1 Lower Bound on Log Marginal Likelihodd

The lower bound on the log marginal likelihood is computed by

L(Q) =Eq(e)[log p(y',y*,9,h",f, X, 6", 6%)]—
Eq(e)llog Q(9)Q(h")Q(f)Q(h)]

— _w |Og(2T[) — |Og(2T[) + g — %tl’aCE{Eg

2 Gn

m
M X g g
—Etrace(K = )——Iog|K !+ 5 log|> |+ZIogz§]

N
+ ZIogzﬁ—rog|I+Kt®K | — (Kt®K )i, (15)
n=1

N \

wherez, = Eyy) {14 P(U+Gni — Gnj) }, andzs = (5 fr).
Terms that depend on hyperparame@rand6' are:

M 1 -1 M 1
_ gy _ — PNV G- X g
L(Q)ox gt = > trace 39) E OmK”*  Om > trace(K b )
M X M t X t X
——Iog|K |+ = |Og‘zg‘—flog“+K QKX — ZfT (K @ K*) 72,

B.2 Gradients on Lower Bound

The gradients with respect to the parameters of the data covariance fukiétme computed from:

0 M _ _ -1
wL(q):—Etrace{Q(l—ka) oKX 4+KY I + 1}+ TKX QKX G
M xy—1 x\—11 M x1
+ 2trace{(l + K+ K 2trace{K Q}

+ %tface{(l RO 4 %fT (KoK Ko (K oK)
—%trace((l +K'eKY) K en). (16)

While the gradients with respect to the parameters of the task covariance anatciamputed from:

0 1 1, 1z 1 -1
g L@ = EfT (K'eK¥) "ExK*(K'eK¥)"f— étrace<(l +K'®KY) TE® KX) ,
whereQ = & and= = %‘gt
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Appendix C. Additional Results on the Landmine Detection Priolem

This appendix provides additional results for the Landmine detection pnofdection 4.2.2) from
the Partially observed tasks scenario. In contrast to the results prserdgection 4.2.2 where
methods were compared in terms of AP, Figure 14 presents results in ternig&fshmilarly to
previous studies in that data set (Xue et al., 2007; Liu et al., 2009).

Training on "2" tasks, generalizing on"17" Training on "4" tasks, generalizing on"15" Training on "8" tasks, generalizing on"11"
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Figure 14: AUC on the Landmine detection problem; (a) AUC over 17 taslisaining on 2 tasks,
(b) AUC over 15 tasks by training on 4 tasks, (c) AUC over 11 tasks bgitrgaon 8
tasks.
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