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Abstract

We propose a novel model for meta-generalisation, that is, performing prediction on novel tasks
based on information from multiple different but related tasks. The model is based on two cou-
pled Gaussian processes with structured covariance function; one model performs predictions by
learning a constrained covariance function encapsulatingthe relations between the various training
tasks, while the second model determines the similarity of new tasks to previously seen tasks. We
demonstrate empirically on several real and synthetic datasets both the strengths of the approach
and its limitations due to the distributional assumptions underpinning it.

Keywords: transfer learning, meta-generalising, multi-task learning, Gaussian processes, mixture
of experts

1. Introduction

The central problem of supervised learning isgeneralisation, learning input/ output relations from
training data that, when applied to unseen test data, will give good performance (in terms of an
appropriate loss function). A common assumption underlying many supervised learning algorithms
is that the training and testing data distribution are the same, which allows them to make predictions
of future instances of the problem at hand. On the other hand, in the complex world that we live
in we are usually faced with unseen but similar problems, situations which humanintelligence
handles by adaptively taking decisions on the new tasks using knowledge from similar tasks. In this
direction,Transfer learning(TL) has emerged as a framework to handle situations where there are
multiple but related problems to be solved. The term TL is used here in its broader sense, to cover
more specific areas of research such as domain adaptation, co-variate shift, sample selection bias,
self-taught learning, and multi-task learning. One of the main differences between these subfields
of TL lies in the availability of outputs (labels) for input data in the various tasks, no matter if it
is a regression or classification problem (Arnold et al., 2007). For example, the situation where
labels are available for all tasks is tackled by multi-task learning, which synergistically solves the
learning problem in all tasks simultaneously (Caruana, 1997; Bakker andHeskes, 2003; Ando and
Zhang, 2005). Domain adaptation (Daumé III and Marcu, 2006; Dauḿe, 2007; Crammer et al.,
2008; Mansour et al., 2009; Pan et al., 2009), co-variate shift (Sugiyama et al., 2007; Storkey and
Sugiyama, 2007; Bickel et al., 2009), and sample selection bias (Huang etal., 2007) are settings
appropriate for problems where labels are only available for a task that is similar to the task that we
wish to make predictions in (target task). Contrary to domain adaptation, and sample selection bias,
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self-taught learning (Raina et al., 2007) is a setting where labeled data areavailable for the target
task, but the learning algorithm wishes to also use unlabelled data from a source task to improve
performance. In its own right, self-taught learning is distinguishable fromsemi-supervised learning
(Chapelle et al., 2006), where labelled and unlabelled data are assumed to come from the same
task. The purpose of all these TL approaches is to enhance the generalisation power of a specific
algorithm by leveraging related (but different) knowledge from multiple tasks. In particular, it is
generally assumed that at least the input data for the target task will be availableduring the learning,
so that a measure of similarity between the training and target tasks can be estimated.

The question that we wish to raise in this work is whether the notion of generalisation can be
extended to the level of tasks as a form ofmeta-generalisation. Meta-generalisation is a concept
introduced in Baxter (2000), where the author argues whether a transfer learning algorithm can gen-
eralise well on totallyunseentasks after seeing sufficiently manysource(or training) tasks. We
emphasize that this is much more than a theoretically interesting question. Our motivating example
is a strongly applied one: we wish to create an automated diagnosis tool that can accommodate
variability among patients, so that, once trained on a sufficient number of patients, it can gener-
alise to new patients. In his work Baxter (2000) derives bounds on the generalisation error of this
problem in terms of a generalised VC-dimension parameter, as well as commentsthat the number
of source tasks and examples per task required to ensure good performance on novel tasks has to
be sufficiently large. While Baxter (2000) derives an algorithm to select asubset of features to
perform multi-task learning based on Neural Networks (NN), his work is more on the theoretical
side as no experimental results are presented. Besides that, the model proposed in this work needs
to be retrained in case a new target task arrives in order to learn a small number of task dependent
parameters.

One way to approach meta-generalising is through domain adaptation, by training a model on
the data of the source and the target set of tasks (Ben-David et al., 2007). This type of approach,
as well as the model proposed in Baxter (2000), are essentially trained in atransductive way, as the
algorithm is able to make predictions only on the test tasks that is trained on, or needs to be re-
trained in case a new task arrives. Obviously, the performance and the success of domain adaptation
algorithms depends strongly on certain assumptions, with most important the similarity between the
target and the source distribution (Ben-David et al., 2010). Clearly, if these assumptions are violated
then the success of these algorithms is doubtful.

The problem of sampling the space of tasks to make predictions on totally unseen tasks in the
inductive setting, which is the exact analog of generalising in the level of tasks, to the best of our
knowledge has not been specifically addressed. As we mentioned before, TL is separated into dif-
ferent sub-categories based on the level of supervision on the targettask. Hence, multi-task learning
can be seen as anInductiveTL algorithm since input data and labels are available for all the tasks
that we wish to make predictions. On the other end, settings like to Domain adaptation, Covariate
shift or Sample selection bias, can be viewed as a form ofTransductiveTL since the algorithm can
exploit only the input distribution of the target task they want to make predictions (Arnold et al.,
2007). On this basis, meta-generalising can be considered as a form ofUnsupervisedTL, since the
learning algorithm does not have any exploitable information about the target tasks during training
. Note, that this classification of TL algorithms is different from the one employed in Pan and Yang
(2010), where unsupervised TL encapsulates problems like dimensionalityreduction, density esti-
mation, or clustering but in situations where multiple tasks are involved, but is in agreement with
the taxonomy of TL algorithms introduced in Arnold et al. (2007).
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In this paper we investigate the use of coupled Gaussian process models to address this problem.
The model uses a multi-class Gaussian process for assigning probabilistically unseen tasks to source
tasks (determining task responsibilities), and then uses a multi-task Gaussian process (Bonilla et al.,
2008) to perform prediction in individual tasks. Extensive testing on real and simulated data shows
the promise of the model, as well as giving insight on the underlying assumptions.

The rest of the paper is organised as follows: in Section 2 we formally define the meta-
generalising problem, emphasizing the main assumptions and highlighting the important special
case offully observed tasks. In Section 3 and 4 we present our model and the inference methodol-
ogy used. We present our empirical results in Section 5, and we finish in Section 6 by discussing the
merits of our model in the context of the wider literature in transfer learning and meta-generalisation.

2. Meta-generalising

In this section, we formally state the problem of meta-generalising, while we introduce the notation
that will be used throughout this paper unless specified otherwise. For simplicity, we concentrate
on binary classification problems within each task, while we note that the same formalism applies
to regression and multi-class classification problems.

In a meta-generalising scenario the learner is provided with a set of source tasksTS =
{T s

1 , . . . ,T
s

M} which are used for training the model; testing is then performed on a set of target
tasksTT = {T t

1 , . . . ,T
t

H}. Each of theM source tasks will contain a training set of input/ output
pairs(x,y), while data from any of theH target tasks are hidden. For later convenience, we will
define the whole training set across tasks as a set of triplesTs = {xs

i ,y
st
i ,y

sx
i }

Ns

i=1, wherexs
i ∈ R

d is
the input feature vector,ysx

i ∈ {−1,+1} are the class labels, andyst
i ∈ {1, . . . ,M} is the source task

label indicating to which task the input/ output pair pertains, andNs = ∑M
j=1ns

j is the total number
of training pairs wherens

j is number of data points from thej th source task. Moreover, we will

write Xs
j = {xs

i j}
ns

j

i=1 to denote the total item set of thej th source task, whileysx
j = {ysx

i j }
ns

j

i=1 and

yst
j = {yst

i j}
ns

j

i=1 will be used to denote all class and task labels from thej th source task. In the rest of
the paper subscriptj will be used to refer to tasks, and subscripti to data points.

Each of theH target tasksT t
j will consist of a setXt

j = {xt
i j}

nt
j

i=1 of input points, wherent
j is

number of data points from thej th target task and both types of labels are missing. Likewise, the
total number of test points will be denoted byNt = ∑M

j=1nt
j . For reasons that will become clear later

on, it is further assumed that for each target task data pointxt
j there is information that it comes

from the j th target task, but there is no knowledge with which of the source tasks is moresimilar.
Note that each source task training inputxs

i is assigned two types of labels. This implies supervision
in both the levels of the tasks and the data, throughyst andysx respectively; task labelsyst indicate
from which of the source task a specific data point comes from, as a form of meta-level information,
and class labelsysx indicate to which class inside the task the data point belongs to, as a form of
inter-task information.

Meta-generalisation, as all machine learning methods, relies on certain assumptions. We con-
centrate on two basic assumptions; the first one is thesimilarity of the distributionof the target task
with at least one of the source tasks, while the second one is the agreementbetween the labels of
the distributions termed aslow-error joint prediction(Ben-David et al., 2010). Differently from
Ben-David et al. (2010), we will define thelow-error joint predictionbetween a source and a target
task as the errorλe between their predictive functionsfs and ft respectively, evaluated at the union
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of the source and the target setsX = Xs∪Xt , with N = Ns+Nt . Hence, the errorλe will be given
by,

λe =
N

∑
i=1

| ft(xi)− fs(xi)|,

wherexi ∈X. Intuitively, if the errorλe is large then there is a disagreement between the labels of the
source and target tasks distribution. Also note that, in a multi-task scenario theparameterλe can be
computed by training two separate models under the same learning framework (e.g., NN, GPs, etc)
since labeled data are available for both the source and target task. Thus, the predictive functions
of the source and target task can be estimated separately andλe can also be used as an empirical
measure of the relatedness of the two tasks. Conversely, in the scenariosof meta-generalising and
domain adaptation one has toassumethat the errorλe will be low, since labels are available only
for the source tasks. If one of these assumptions is not valid, then meta-generalisation can not be
expected to guarantee success.

We now give a formal definition of meta-generalising.

Definition 1 Given a set of source tasksTS and a set of target tasksTT , meta-generalising is an
inductive inference method that aims at making predictions on the set of target tasks by sampling
the space of source tasks .

We further define two possible scenarios: in thefully observed taskscase, we assume that the
similarity of the distribution assumption is perfectly met, so that the data generating distribution of
the target task is the same as that of one of the source tasks (but we do notknow which one). This
assumption is relaxed in thepartially observed tasksscenario, where we still assume similarity of
the distribution but we do not necessarily have identity.

The meta-generalising setting implies that there is hierarchical structure in the problem. The
data of each task are on the base level and the distribution of the tasks is on the meta level. Hence,
it is intuitive that mechanisms are required to

1. Model the distribution of the data of each task, and the distribution of the source tasks (corre-
lation between tasks).

2. Infer the level of correlation between the target task and the source tasks.

The first prerequisite leads us to multi-task learning, as many approaches offer mechanisms to
model both the data and the task distribution (Bakker and Heskes, 2003; Yuet al., 2005; Ando
and Zhang, 2005; Xue et al., 2007; Argyriou et al., 2008; Bonilla et al., 2008; Dauḿe III, 2009).
Following the multi-task route, informally speaking, the second prerequisite canbe translated as
the problem of which of theM outputs of the multi-task classifier to select to make predictions for
the target task. In some cases, task-descriptor features may be available, giving a direct measure of
task similarity. In this work, we are interested in the general case where no reliable task descriptor
features are available; we will then learn similarities between tasks through adistribution matching
pursuit.

Another way of approaching the problem of meta-generalisation is throughthe framework of
mixtures of experts(ME) (Jacobs et al., 1991; Waterhouse, 1997), under which a biggerlearn-
ing problem is broken down to smaller subproblems that are handled by individual experts. The
underlying assumption of this framework is that the data are generated by different processes (Wa-
terhouse, 1997, Ch. 2), an assumption that can also be made in the multi-task setting about the
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data generating mechanism of each task; under the ME framework each expert is used to model
the data generating process of each subproblem. These experts are then combined through a gating
network that models the responsibilities of the experts on each data partition. Hence, attacking the
meta-generalisation problem through the ME framework can be seen as an unsupervised alternative
method to that problem, that does not use the information about the origins of each task (the source
task labels) but instead allows the algorithm to automatically infer the data partitionsand the regions
of expertise of each expert. Therefore the ME approach is in direct connection to multi-task learning
and meta-generalisation in which cases the experts are equivalent to the tasks, and this framework
could be used as a rough lower bound on the performance of a multi-task classifier. Note though
that in principle it would be desirable to be able to automatically infer the number ofexperts as in
Rasmussen and Ghahramani (2001) which can be seen as a similar mechanism of finding cluster of
tasks, in contrast with the method of ME with GPs in Tresp (2000) where the number of experts had
to be knowna priori.

3. A Model for Meta-generalisation

Having identified the nature of the problem, we now propose a model for meta-generalising. The
model builds upon the multi-task learning framework of Bonilla et al. (2008) which is able to capture
the dependencies between the data and the tasks. In addition, we employ a classifier over the tasks
to learn the task labels (from which task each data point comes from). Both ofthose two learning
mechanisms, multi-task setting and classification of the tasks, are modeled by Gaussian Processes
(GPs), which are coupled by sharing a common hyper-prior. In the restof this section, we first give
a short introduction to GPs and we review multi-task learning with GPs of Bonilla et al. (2008), we
then present the model for meta-generalising, and finally we describe howto make predictions on
new tasks.

3.1 Multi-task Learning with Gaussian Processes

Gaussian processes (Rasmussen and Williams, 2005) provide a flexible modelling framework for
supervised learning which has become increasingly popular in recent years. A Gaussian Process
is a probability distribution over functionsf , where the joint distribution of function evaluations
over a finite set of inputs is a multivariate Gaussian distribution. At core of theGP prediction is the
covariance functionor kernel, parameterised byθx, that models the output covariance at different
pairs of input points, and in essence acts as a measure of similarity between different input locations.
In order for a covariance function to be valid it has to be positive semidefinite, and has to satisfy
Mercer’s theorem (Rasmussen and Williams, 2005).

In a multi-task scenario the interest lies in learningM related functionsf j , j = 1, . . . ,M, from
training dataxi j , yi j , i = 1, . . . ,n j , with x ∈ R

d, andn1+ . . .+nM = N. In the following of this
section, data points from taskj will be denoted byXj = [x1 j , . . . ,xn j j ] andX = [X1, . . . ,XM] will be
used to denote the set of all data points. Focussing on a regression problem for simplicity, the noise
model will be given by

yi j = f j(xi j )+ ε j , with ε j ∼N (0,σ2
j ), (1)

whereyi j (xi j ) denotes theith output (input) of thej th task. We note that each input point hasM func-
tion values associated with it (one per task); thiscomplete set of responseswill rarely be observed in
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practice, but function values corresponding to unobserved values can easily be marginalised using
the consistency of GPs

The multi-task model of Bonilla et al. (2008), which has been known in the geo-statistics com-
munity as the “Intrinsic Model of Coregionalization” (IMC) (Cressie, 1993), can be elegantly re-
covered from the theory of matrix variate distributions (Gupta and Nagar, 2000). Define the vector
f by stacking the columns ofF = [f1 . . . fM] into a single vector,f = vec(F), wheref j ∈ R

N×1 is the
column vector of all latent functions evaluations of taskj. Then theprobability density functionof
matrixF will be given by:

(2π)−
1
2NM|K t |−

1
2N|K x|−

1
2M exp

{

−
1
2

trace
(

(

K t)−1F(K x)−1FT
)

}

, (2)

whereK t ∈ R
M×M andK x ∈ R

N×N (Gupta and Nagar, 2000). This configuration implies that the
matrix K t models the correlations between the vectorsf j , that is, the tasks in the multi-task view,
andK x models the correlations between each element of vectorsf j . In the GP framework, this corre-
lation between function evaluations at different input points is captured bythe covariance function.
Then, by using some matrix algebra involving the vec and Kronecker operator, Equation (2) can be
written in the form Bonilla et al. (2008) proposed,

p(f|X) = GP (0,K t ⊗K x).

Employing this type of prior for the latent functionsf the noise model for the regression problem
stated in equation (1) becomes,p(y|f) =N (f,D⊗ I), whereD ∈ RM×M is diagonal withD j j = σ2

j

andI ∈ R
N×N is the identity matrix.

The key element of this formulation is the task covariance matrixK t which reflects the task
correlations. For example, ifK t was fixed to the identity matrix, then all tasks would be indepen-
dent but they would still share the same hyperparameters of the covariance function. Of course,
one of the main goals of multi-task learning is to learn these task dependencies.Bonilla et al.
(2008) approached this problem by parameterizing the task covariance matrix, with parametersθt ,
always retaining positive definite restrictions, and treating these parameters as hyperparameters to
be learned. Positive definite guarantees were achieved, by parameterizing a lower triangular matrix
L to employ the Cholesky factorizationK t = LLT . Most importantly, parameters related to the data
covariance function or the task covariance matrix can be learned in the standard GP formulation, by
maximizing the marginal likelihoodp(y|X) =

∫
p(y|f)p(f|X)df.

3.2 Model

In this section we describe the Coupled Multi-Task Multi-Class (CMTMC) modelwe propose for
meta-generalisation. The objectives of the model are first to model the dependencies between the
tasks, and second to assign unseen tasks to source tasks by finding tasksimilarities. The first ob-
jective is met through the Multi-task part of the model, while the second is achieved through the
Multi-class classifier. Figure 1 shows the graphical model of the CMTMC classifier. In this subsec-
tion we usex, yt

, andyx to refer toxs
, yst

, andysx to keep the notation light, since in the learning
phase only source tasks are involved. Therefore, notation introducedin Section 3.1 applies here.
Moreover, from Section 2 we have thatyt ∈ {1, . . . ,M} andyx ∈ {−1,+1} as the task and class
labels respectively. Since both class and task prediction are effectivelyclassification models, we
choose the probit and multinomial probit models as noise models respectively.Following Albert
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Figure 1: Coupled Multi-Task Multi-Class (CMTMC) model. Variablesf andg are the two sets of
GPs for the multi-task and multi-class classifiers respectively, whereas variableshx and
ht denote the auxiliary variables of the two classifiers; (a) graphical representation of the
training phase, (b) graphical representation of Meta-generalising.

and Chib (1993), we define two sets of auxiliary variablesht = vec(Ht), andhx = vec(Hx), which
as shown later on enables the multinomial and the binary probit model respectively. For later con-
venience, we will be usinght

j andht
n to denote thej th column andnth row of matrixHt .

Figure 1 shows that there are two directed channels of variables. The upper channel, with
variablesCt = {g,ht

,yt}, is responsible for learning the task labels, thus from which task each data
point comes from, while the lower channel, with variablesCx = {f,hx

,yx}, learns to classify the
data points inside every task and to find task correlations, through the standard multi-task classifier.

Thus, there are two sets of Gaussian Processes. The first one is responsible for the classification
over the tasksg|X,θx ∼ GP (0, I ⊗K x), whereg= vec(G), G = [g1, . . . ,gM], andg j ∈ R

N×1. The
second one is responsible for the multi-task classificationf|X,θx

,θt ∼ GP (0,K t ⊗K x), where as
stated before variablesθx and θt are used to denote the hyperparameters of the data covariance
function and task matrix respectively. As in the multi-class case we will have that f = vec(F), where
F = [f1, . . . , fM] andf j ∈ R

N×1. In the rest of the paper we will writeK x to denote the covariance
matrix between all data pointsX, unless specified otherwise. Moreover,I andK t will be M ×M,
where the identity matrix in the multi-class case implies independence between the classes, thus
g j |X,θx ∼GP (0,K x). The key objective is to learnM functionsg j for the multi-class classifier and
M related functionsf j for the multi-task classifier.

Note that the data covariance matrixK x is shared by both sets of processesg and f. This is
graphically illustrated by the fact that the node of hyperparametersθx is connected to both latent
functions; thus, the multi-class and the multi-task classifier share the same hyperparameter space
for θx. The multi-class classifier is restricted to have the same covariance function across the classes
in contrast with the standard model for multi-class classification with GPs, whichin principle al-
lows you to use different covariance functions across classes. In fact, the CMTMC model could be
decoupled into two separate classifiers with different sets of hyperparametersθx between the two
processesf andg. Seemingly, this decoupling would result in a more flexible model, but prelim-
inary experiments with both models, the CMTMC and the decoupled model, has shown that this
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restriction does not affect the performance. In contrast, it reduces dramatically the computational
cost since the hyperparameters of the data covariance function need to be estimated only one time.

The probit model is enabled in both channels by a standardized normal noise model over the
auxiliary variables,ht

i j |gi j ∼ N (gi j ,1), andhx
i | fi ∼ N ( fi ,1) (Albert and Chib, 1993; Csató et al.,

2000; Girolami and Rogers, 2006; Skolidis and Sanguinetti, 2011). The relationship between out-
putsyt andyx and auxiliary variablesht , andhx is deterministic and will be given by:

yt
i = j if ht

ji = max
1≤k≤M

{ht
ki},

p(yx
i |h

x
i ) =

{

δ(hx
i )δ(yx

i ) if yx
i =+1

δ(−hx
i )δ(−yx

i ) if yx
i =−1

,

whereδ is one if its argument is positive and zero otherwise, which completes the specification of
the model.

3.2.1 INFERENCE

Classification problems imply non-Gaussian noise models, which make inference intractable. To
address this intractability, we adopt a variational approximate treatment to the problem, as it is
computationally more efficient than sampling-based methods while retaining a reasonable accuracy
in empirically approximating posterior marginals.1 For a comprehensive comparison between these
approximations for GP multi-class classification, and on the multinomial probit model the interested
reader in referred to Girolami and Rogers (2006). The dependenciesof the random variablesΘ =
{g,ht

, f,hx} are depicted graphically in Figure 1.a and are summarized in the joint likelihood of the
CMTMC model as:

p(yt
,yx

,Θ|θx
,θt

,X) = p(yt |ht)p(ht |g)p(g|θx
,X)p(yx|hx)p(hx|f)p(f|θx

,θt
,X).

Variational methods approach this problem by approximating the joint posterior of the latent
variablesΘ within a family of tractable distributions; in our case, we will approximate the joint pos-
terior as a factored distributionp(Θ|yt

,yx
,X,θt

,θx)≈ Q(Θ) = ∏i=1Q(Θi) = Q(g)Q(ht)Q(f)Q(hx).
Minimizing the Kullback-Leibler divergence between the approximating and thetrue distribution is
equivalent to maximizing the following lower bound on the marginal likelihood

logp(yt
,yx|X,θx

,θt)≥
∫

Q(Θ) log
p(yt

,yx
,Θ|X,θx

,θt)

Q(Θ)
dΘ, (3)

which is found by applying Jensen’s inequality (MacKay, 2003). Standard results show that the
distributions that maximize the lower bound are given by

Q(Θi) =
exp(EQ(Θ\Θi){log p(yt

,yx
,Θ|X,θt

,θx)})∫
exp(EQ(Θ\Θi){log p(yt

,yx
,Θ|X,θt

,θx)})dΘi

whereQ(Θ\Θi) denotes the factorized distribution with theith component removed. Inference and
learning are performed in a variational EM algorithm: the E-step computes the variational posteri-
ors on the variablesΘ, and the M-step optimizes the hyperparametersθt

,θx given the expectations

1. Another setting for approximate inference producing comparable results with the Variational approach that could
have been employed is the EP approximation (Opper and Winther, 2000; Minka, 2001; Rasmussen and Williams,
2005); this has also been extended to the multi-class classification scenarioin Girolami and Zhong (2007).
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computed in the previous step. At each (E or M) iteration the variational lowerbound,L(Q) (given
in Appendix B Equation (15)), provably increases (or at worst remainsunchanged), and these two
steps are repeated until convergence.2 We now briefly summarize the calculations needed to perform
the E and M steps. The pseudo-algorithm of the training of the CMTMC model isgiven in Algo-
rithm 3.2.1. We omit any details and emphasize only the occurrence of the special form covariance
function we employ; fuller details can be found in Appendices A, and B.

E-step. The approximate posteriors for the multi-class classifier will be given by,

Q(g) =
M

∏
j=1

Ng j (g̃ j ,Σ
g), (4)

Q(ht) =
N

∏
n=1

N
yt

n
ht

n
(g̃n, I), (5)

whereΣg=
(

I +(K x)−1
)−1

=K x (I +K x)−1, g̃ j =Σ
gh̃t

j , andN yt
n

ht
n
(g̃n, I) denotes an M-dimensional

Gaussian distribution truncated such that jth dimension has the largest value if yt
n = j. In the lower

channel, the approximate posteriors for the multi-task classifier will be givenby,

Q(f) =Nf(f̃,Σ f ), (6)

Q(hx) =
NM

∏
i=1

(

f̃i +yx
i

N f̃i (0,1)

Φ(yx
i f̃i)

)

, (7)

where f̃ = Σ
f h̃x, andΣ

f = K t ⊗K x(I +K t ⊗K x)−1 and the tilde notation in the above random
variables denotes posterior expectation, that is,t̃(α) = EQ(α){t(α)}; more details can be found in
Appendix A.

M-step. The M-step optimises the lower bound with respect to the hyperparametersθx andθt .
This is performed by gradient descent; computation of the gradients of the lower bound given in
Equation (3) are somewhat intricate and are given in Appendix B.

Algorithm 1 CMTMC model - Training
1: Inputs : Xs

j , ysx
j , yst

j for j = 1, . . . ,M
2: Sample parametersg,ht

, f,hx from prior
3: Initialise hyper-parametersθx

,θt

4: repeat
5: E-step
6: ComputeQ(g) andQ(ht) for MC-classifier, Equations (4),(5)
7: ComputeQ(f) andQ(hx) for MT-classifier, Equations (6),(7)
8: M-step
9: Optimize hyperparametersθx

,θt , Equations (16), (16)
10: Compute Lower-bound on log-marginal likelihood, Equation(15)
11: until convergence

2. In practice, estimation of the convergence of the EM algorithm was inferred when the increase between iterations
was zero or smaller than a very small constant.
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3.3 Prediction on Novel Tasks

While in the previous section we described how to train the model on training datafrom the source
tasks, we now describe how to perform predictions on unseen target tasks. We adopt a mixture of
experts type approach; in these networks, multiple outputs are combined andweighted according
to the responsibilities they have on a certain prediction task. In a similar manner,the multi-task
classifier of the CMTMC model can be seen as a multi-output predictor, and the classifier over the
task labels (multi-class) can be used to infer the responsibilities of the outputs of the multi-task
classifier, since it produces posterior probabilities of task memberships. Then predictions on novel
tasks are computed according to

p(yf∗ =+1|x∗,X,yt
,yx) =

M

∑
j=1

p(yx∗
j =+1|x∗,yt∗

,X,yx)p(yt∗
j |x

∗
,X,yt), (8)

wherep(yx∗
j =+1|x∗,yt∗

,X,yx) = p(yx∗
j =+1|x∗,X,yx) is the posterior of thej th task belonging to

class “+1” from the multi-task classifier, andp(yt∗
j |x

∗
,X,yt) is the posterior ofx∗ coming from the

j th task, or the test point task responsibility from the multi-class classifier. A graphical representa-
tion of this process is given in Figure 1.b, where it is shown that nodesyt∗, andyx∗ are combined to
give the final predictionsyf∗.

However, the meta-generalisation scenario presents some additional challenges which are not
found in classical mixture of experts models. In many cases, a target task consists of abatchof
input points, and the simple fact that they all come from the same task contains valuable information
about the correlations between the associated outputs. Another closely related issue is that of the
correlation between the target task and the source tasks. In many multi-task problems it is a usual
phenomenon to observe groups of highly correlated tasks (e.g., Figure 3.b), while other times tasks
are correlated but in a more random fashion (e.g., Figure 6.b, 7.b). As wewill see in the experimental
sections, this can have important consequences in terms of predictive accuracy, and in terms of
choosing an appropriate prediction model.

In the following, we present two distinct scenarios for inferring the task responsibilities. Given
a target task withnt data pointsxt∗ = {xt∗

1 ,x
t∗
2 , . . . ,x

t∗
nt}, in the first scenario we treat each data point

from the target task individually to infer its task responsibilities, which we will refer to asPoint
to Point Gating(P2PGat). This approach neglects the information that all target points comefrom
the same task, and as we will see in the experimental section, is more appropriate when inter-task
correlations are weaker. In the second scenario we wish to combine the information from allnt test
points to infer the overall task responsibilities for the target task, which we will refer to asBatch
predictions.

3.3.1 POINT TO POINT GATING

Given a new input point which lacks both class and target labels, the CMTMC model combines
the predictions of a multi-task classifier using task responsibilities obtained from the multi-class
classifier channel. Thus, two sets of quantities need to be computed. The first set are the posterior
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probabilities of theM outputsp(yx∗
j =+1|x∗,X,yx) of the multi-task classifier, as

p(yx∗
j =+1|x∗,X,yx) =

∫
p(yx∗

j = 1|hx∗)p(hx∗|x∗,X,yx)dhx∗
,

≡
∫ +∞

0
Nhx∗

j
(λ∗

j ,υ
∗
j
2)dhx∗ = Φ

(

λ∗
j

υ∗
j

)

(9)

where we have used thatυ∗
j
2 = 1+kt

j j k
x
x∗x∗ −

(

kt
j ⊗kx

x,x∗

)T
(I +K t ⊗K x)−1

(

kt
j ⊗kx

x,x∗

)

, andλ∗
j =

kt
j ⊗ kx

x,x∗ (I +K t ⊗K x)−1 h̃x. Additionally, kt
j , kt

j j are used to denote thej th column and thej j th

element ofK t respectively,kx
x,x∗ is used to denote the covariance vector betweenX andx∗, andΦ is

the probit function.
The second set of quantities are the task responsibilities which are computedfrom Girolami and

Rogers (2006)

p(yt∗ = k|x∗,X,yt) =
∫

p(yt∗ = k|ht∗)p(ht∗|x∗,X,yt)dht∗

≡
∫ +∞

−∞
Nht∗

k
(µ∗k,ν

∗
k) ∏

m6=k

∫ ht∗
k

−∞
Nht∗

m
(µ∗m,ν

∗
m) dht∗

m dht∗
k , (10)

which can be evaluated using numerical integration as:

p(yt∗ = k|x∗,X,yt) = Ep(u)

{

∏
j 6=k

Φ

(

1
ν∗

j

[

uν∗
k +µ∗k −µ∗j

]

)}

, (11)

whereu∼Nu(0,1), ν∗
m = 1+kx

x∗,x∗ −kxT

x,x∗ (I +K x)−1kx
x,x∗ , andµ∗m = kxT

x,x∗ (I +K x)−1 h̃t
m.

In the P2PGat scenario, the novel input points are not assumed to sharea common task la-
bel. Therefore, class prediction is performed straightforwardly on every new input by inserting the
posterior probabilities obtained in Equations (9,10) in the gating network given by Equation (8).

3.3.2 BATCH

In a Bayesian way using all test pointsxt∗ to infer the overall task responsibility is performed
by replacing the univariate distributions from Equation (10) with the appropriate multivariate. As a
result the second integral of Equation (10) becomes the multivariate cumulative distribution function∫ ht∗

k
−∞Nht∗

m
(Mg∗

m ,Υ
∗) dht∗

m. Specifically the mean and the variance of the auxiliary variablesht∗
m on the

batch of test pointsx∗ will be given by:

Mg∗
m = E[ht∗

m|x
∗] = K xT

x,x∗
(

I +K x
x,x

)−1 h̃t
m (12)

Υ
∗ = cov[ht∗

m|x
∗] = I +K x

x∗,x∗ −K xT

x,x∗
(

I +K x
x,x

)−1K x
x,x∗ , (13)

whereK xT

x,x∗ is theN×nt covariance matrix of all training pointsX, and all test task data pointsx∗,
andK x

x∗,x∗ is thent ×nt full covariance matrix ofx∗. Equations (12) and (13), indicate that inferring
the tasks responsibilities on a set of points depends not only on the correlations between the test
points and the train points but also on the correlations between the test points themselves.
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Algorithm 2 CMTMC model - Meta-generalising
1: Inputs : xt∗ = [xt∗

1 , . . . ,x
t∗
nt ], Q(g), Q(ht), Q(f), Q(hx), X

2: for i = 1 tont do
3: for j = 1 toM do
4: Compute MC posterior probabilitiesp(yt∗

i j = j|xt∗
i ,X,yt), Equation (11)

5: Compute MT posterior probabilitiesp(yx∗
i j =+1|xt∗

i ,X,yx), Equation (9)
6: end for
7: end for
8: P2PGatpredictions
9: for i = 1 tont do

10: Computep(yf∗ =+1|x∗,X,yt
,yx), Equation (8) based on steps 4 and 5

11: end for
12: BATCH predictions
13: for j = 1 to M do
14: Compute overall task posterior probabilitiesp(yt∗ = k|x∗,X,yt), Equation (14)
15: end for
16: for i = 1 tont do
17: Computep(yf∗ =+1|x∗,X,yt

,yx), Equation (8) based on steps 5 and 14
18: end for

On the other hand, truncated multivariate Gaussian distributions are hard to deal with, and usu-
ally approximations are applied (Deak, 1980; Genz, 1992; Gassmann et al., 2002). The dimensions
of the multivariate distribution function in the batch prediction problem depend on the number of
data pointsn∗ of the target task, which can be several thousands depending the application. To the
best of our knowledge no method can tackle very high dimensional c.d.f. , and even approximations
can become extremely computationally intensive whenn∗ is more than a few dozens (these esti-
mations would be carried out within the inner loop of a VBEM algorithm, which would obviously
further aggravate the problem). A solution to this problem is to assume that datapoints from the
test task are i.i.d. from the unknown data generating distribution, and approximate it by:

p(yt∗ = k|x∗,X,yt)≈
∏n∗

i=1 p(yt∗
i = k|x∗i ,X,yt)

∑M
m=1 ∏n∗

j=1 p(yt∗
j = m|x∗j ,X,yt)

, (14)

wherep(yt∗
i = k|x∗i ,X,yt) are the task responsibilities computed individually for each test point. We

will adopt this approximation in the experimental section for computational reasons; calculations
using the full covariances in Equation (13) are unfeasible with more than 100 points (test or train-
ing). While this approximation may appear crude, we experimented extensively in medium-scale
problems using a reduced rank approximation forΥ

∗ (capturing up to 90% of the total variance),
but this did not appear to yield significant empirical advantages justifying thesubstantial computa-
tional costs. Note though that although the i.i.d. approximation misses the correlations between the
test samples, it still uses information from all test points to produce overall test task class posterior
probabilities.

The pseudo-algorithm for the stage of Meta-generalisation for both typesof predictions, P2PGat
and Batch, is given in algorithm 3.3.1.
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4. Experiments

This section aims at providing insights into the workings of our meta-generalising model through
empirical evidence. Experiments are presented for both the fully observed and partially observed
task scenarios described in Section 2, and in both cases we investigate boththe P2P gating and the
Batch mode of predictions on new tasks. The fully observed tasks case, considered in Section 4.1,
investigates the situation where data generating distribution of the target task isactually the same as
that of one of the source tasks. In this case all available tasks are used inthe training phase, but in
the testing phase the model has no information from which of the source task the target task comes
from. The second set of experiments, described in Section 4.2, considers the case of the partially
observed tasks. In this case the data generating distribution of the target task does not match the
distribution of one of the source tasks, so that the set of source tasks is strictly a subset of the set
of all tasks. Training is performed on the source tasks, and testing on the totally unseen target
tasks. While both scenarios are plausible applications of meta-generalising,Section 4.2 gives more
insight into the connections between the correlation structure of the tasks and the task prediction
mechanism on totally unseen tasks.

Five different data sets are considered in the experiments. The first twodata sets are artificially
generated to demonstrate the strengths and the limitations of the method; the first one satisfies
the assumptions of the model, and the second one, which is only considered inSection 4.1, is
in conflict with them. The third data set is a character classification problem between commonly
confused handwritten letters. The fourth data set is an automated diagnosisproblem: annotated
heartbeats from ECG recordings are used to discriminate normal from arrhythmic beats, and each
patient is considered as a task. The last data set, which is considered onlyin the second set of
experiments, is a landmine detection problem. More details are given in each section separately. We
present results for different training set sizes, and for each trainingsize experiments are repeated
25 times by randomly selecting the data points used for training from each task.Furthermore, in
both scenarios three types of outputs are considered from the CMTMC model; the batch written as
“BatchMCAppr”, the P2P gating written as “P2PMCGat”, and the “MAP” estimate which simply
selects the output of the multi-task classifier that has the highest posterior, something that is usually
considered in classifier fusion techniques (Kuncheva, 2002). As ourmethod essentially relies on
the covariance structure between tasks, two types of baseline comparisons are possible: in the worst
case, results should not be worse than completely ignoring the task structure and pooling together
all training data. We refer to this baseline as Pool. In the best case, our method should not be
statistically better than a method which leverages the same covariance structureand has access to
all the task label information, for example, a standard multi-task learning approach. We refer to this
best-case scenario as MTL; we compare with this only in the fully observed task scenario, as in the
partially observed case the meta-generalising results are generally quite far from this best case.

All methods are compared in terms of the area under the precision-recall curve, also known as
theAverage Precision(AP) (Davis and Goadrich, 2006). Simulation results were processed based on
the work of Brodersen et al. (2010), that provides a smooth estimate of theprecision-recall curve;3

an equivalent performance measure that could have been used is the Area Under the Curve (AUC)
(Hanley and Mcneil, 1982), which is also appropriate for imbalanced data sets. Note that simulation
results follow the same pattern with both measures. In all experiments the task covariance matrixKt

3. Code downloaded from:http://people.inf.ethz.ch/bkay/downloads.
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was parameterized as a correlation matrix (Rebonato and Jäckel, 2000), with unit diagonal, while
the data covariance functionKx is set specifically for each data set depending the application.

4.1 Fully Observed Tasks

In this scenario, the data distribution of the target task is the same as that of (at least) one of the
source tasks. This guarantees that the similarity of distribution assumption is met,however, as
we’ll see in the case of Toy dataII , the low joint prediction error assumption is not automatically
satisfied. Obviously, the actual input data will be different, due to the stochasticity of the data
generating process. Intuitively, the success of the model depends strongly on whether the model
will be able to infer correctly from which of the source tasks the target taskactually comes from.
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Figure 2: Toy data set I distribution; (a) scatter plot and density for the first cluster of tasks (1-3),
(b) scatter plot and density for the second cluster of tasks (4-6).

4.1.1 TOY DATA SET I

The first toy data set is comprised of six binary classification tasks. This toyproblem was previously
used in Liu et al. (2009) in the context of semi-supervised multi-task learning. Data for the first
three tasks are generated from a mixture of two partially overlapping Gaussian distributions, and
similarly for the remaining three tasks. Hence, the six tasks cluster in two groups; for each task 600
data points were generated, which were equally divided between the two classes. The scatter plots
of the two clusters are shown in Figures 2.a and 2.b.

This data set is ideal for demonstrating the concept of the meta-generalisingfor three reasons.
First of all the assumptions of the model are satisfied. Secondly, the tasks group in two clusters.
The third reason is that the densities of the clusters though similar are not exactly the same; this is
illustrated in Figures 2.a and 2.b, which shows the contour plot of the densitiesof the two clusters.
We use an Automatic Relevance Determination (ARD) data covariance function, which employs a
different characteristic length scale for each feature, and is able to identify which features are more
relevant for classification (Rasmussen and Williams, 2005).
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Figure 3: Toy data set I classification Results; (a) Average AP over the 6tasks, (b) Hinton Diagram
of the task covariance matrix of the CMTMC model computed by averaging over the 25
repetitions with 50 data points per task.

Classification results are presented in Figure 3.a; the Y axis is the AP, and theX axis is the
number of data points from each task (DPET) used for training. The results show that, in this toy
problem, the Batch mode performs similarly to the ideal MTL case, although it has ahigh variance
for the case of 10 DPET. The P2PGat and Pooling method perform approximately 10% worse than
the Batch, while the MAP estimate gives roughly 20% less than the Batch. Moreover, Figure 3.b
shown the Hinton diagram4 (Hinton, 1989) of the task covariance matrix of the CMTMC model
which accurately recovers the structure of the tasks.

4.1.2 TOY DATA SET II

The second toy data set consists of four tasks which group into two clusters. The scatter plot as well
as the density of the two clusters are shown in Figures 4.a and 4.b, for the first and second cluster
respectively. The main feature of this data set, evident visually from Figure 4, is the similarity of the
data generating distribution for the two tasks. While the densities are peaked indifferent locations,
without class labels the tasks are almost identical, meaning that the multi-class classifier cannot
learn to discriminate between the two tasks. As in the previous example, each task consisted of 600
data points equally divided between the two classes, and we used the ARD covariance function.

Figure 5.a shows the results the different methods produced. As expected, the Batch mode fails
to correctly identify the task responsibilities; as a result, it gives a lower average AP than the MTL,
a difference which does not decrease with the number of DPET, indicatingstatistical inconsistency.
This is reinforced by the Hinton diagram ofK t in Figure 5.b, where it fails to identify the clusters of
the tasks. Even though this difference is small it is significant for this easy problem, where the MTL
algorithm performs close to 100%. Additionally, the P2PGat, the Pooling, and the MAP estimates
perform better that the Batch, but they also fail to reach the performanceof MTL.

4. The Hinton diagram is a graphical representation of the values in a data matrix; here, it is used to display the corre-
lations between the tasks.
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Figure 4: Toy data set II distribution;(a) scatter plot and density for the first cluster of tasks(1-2),
(b) scatter plot and density for the second cluster of task(3-4).

4.1.3 CHARACTER CLASSIFICATION

In this data set the task is to learn to classify between commonly confused handwritten letters,
which is included in the “Transfer learning Toolkit” of Berkeley Universityavailable athttp://
multitask.cs.berkeley.edu/. This data set is comprised of eight binary classification tasks.
The characters that are used and the number of samples are given in Table 1. Each sample is a 16×8
image, which results into a binary 128 feature vector. The covariance function that is employed for
this data set is theRadial Basis Function(RBF).
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Figure 5: Toy data set II classification Results; (a) Average AP over the4 tasks, (b) Hinton Diagram
of the task covariance matrix.

The classification results for this data set are presented in Figure 6.a. TheBatch method follows
closely the ideal MTL performance, and outperforms the P2PGat, Pooling,and the MAP methods
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Task 1 2 3 4 5 6 7 8

Letter c g m a i a f h
Number of data 2017 2460 1596 4016 4895 4016 918 858
Letter e y n g j o t n
Number of data 4928 1218 5004 2460 188 3880 2131 5004

Table 1: Description of the Character data set; each column is a task showingthe two letters as well
as the corresponding number of examples per character.

(although there is significant variability for small numbers of labeled data pertask). Figure 6.b
shows the Hinton diagram of the task covariance matrix, which indicates a morerandom structure
between the tasks, but finds that some tasks are more correlated than others, for example ‘a/g’
with ‘a/o’, and ‘i/j’ with ‘f/t’. It should be noted though, that in this data set the“low-error joint
prediction” assumption is partially violated since there is label disagreement between tasks ‘a/g’
and ‘g/y’, where the ‘g’ letter belongs to class “+1” in task ‘a/g’ and to “-1” in task ‘g/y’. This does
not seem to have any adverse effect on the performance of the model, presumably as the difference
between letters ‘a’ and ‘y’ is sufficient to unambiguously assign the targettask to the correct source
task.

10 20 30 40 50 60 70

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

DPET

A
ve

ra
ge

 A
P

Character Classification

 

 

MTL
BatchMCAppr
P2PMCGat
MAP
Pool

c/e g/y m/n a/g i/j a/o f/t h/n

c/e

g/y

m/n

a/g

i/j

a/o

f/t

h/n

Task

T
a

sk

Character Classification

(a) (b)

Figure 6: Character Classification Results; (a) Average AP over the 8 tasks, (b) Hinton Diagram of
the task covariance matrix.

4.1.4 ARRHYTHMIA CLASSIFICATION

The arrhythmia data set consists of seven ECG recordings from different patients, which were ac-
quired from the MIT-BIH Arrhythmia database (Goldberger et al., 2000).Each recording corre-
sponds to a large number of heart beats, which is summarized in Table 2. Each patient is treated
as a separate task, and the goal is to classify each heart beat into two classes, normal or premature
ventricular contraction (PVC) arrhythmic beats. The same problem was considered in Skolidis et al.
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(2008) using single task GP classifiers. Each recording was sampled at 360Hz, and annotation pro-
vided by the database was used to separate the beats before any preprocessing. Each beat segment,
consisting of 360 data points (one minute), was transformed into the frequency domain using a Fast
Fourier Transform with a Hanning window. Only the first ten harmonics areused as features for
classifying heart beats, as most of the information of the signal is containedin these harmonics.

Recording ID 106 200 203 217 221 223 233

Total number of data 2021 2567 2970 406 2349 2417 3053

Number of Normal heart beats 1503 1740 2526 244 1954 1955 2224
Number of PVC heart beats 518 827 444 162 395 462 829

Table 2: Description of the Arrhythmia data set.

Figure 7.a shows the average AP over the seven tasks. On average, theBatch method performs
better than the P2PMCGat, the MAP, and the Pool, while it presents a small advantage compared
to MTL. Interestingly, the MAP approach is consistently worse than other methods, a situation that
will be reversed in the partially observed tasks scenario. As in the character classification problem
the task covariance matrixK t , shown in Figure 7.b, demonstrates that there are correlations between
the tasks but in more random way.

10 20 30 40 50 60 70
0.88

0.9

0.92

0.94

0.96

0.98

1

DPET

A
ve

ra
ge

 A
P

Arrhythmia Classification

 

 

MTL
BatchMCAppr
P2PMCGat
MAP
Pool

106 200 203 217 221 223 233

106

200

203

217

221

223

233

Recording

R
e

co
rd

in
g

Arrhythmia Classification

(a) (b)

Figure 7: Arrhythmia Classification Results; (a) Average AP over the 7 tasks, (b) Hinton Diagram
of the task covariance matrix.

4.1.5 OBSERVATIONS

This set of experiments has demonstrated the effectiveness of the CMTMCmodel in situations
where the data distribution of the target task comes from one of the source tasks. Several observa-
tions are made:

1. In the fully observed tasks scenario, the space of tasks has been sampled sufficiently (by
definition). In this case the Batch mode should theoretically be the best method,since all data
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points are needed to produce an accurate estimate of the density of the target task. This is
empirically confirmed in our investigation, as Batch closely approaches the MTL results in
all cases.

2. If the “low-error joint prediction” assumption is violated, then meta-generalising becomes a
very hard problem, possible unsolvable. The performance on the second toy example was
not particularly bad, since all methods achieved higher that 90% in terms of AP, but none of
methods reached the performance of the MTL algorithm, and the performance did not appre-
ciably improve when more training data were provided, indicating statistical inconsistency.
This effect could be dramatically increased if for example the classes between the clusters
were anti-correlated, so that similar data generating distributions could be potentially associ-
ated with opposite predictions. Note though that if discriminative task descriptor features are
available then this problem can be overcome, because augmenting the feature space would
result in a different mapping of the latent functionf .

3. If the model assumptions are met, the correlation structure of the tasks does not have a strong
influence on the predictions, since the Batch mode outperformed the P2PGatgating and MAP
estimate in all experiments. As we will see, this will be a crucial difference between the fully
and partially observed tasks scenario.

4.2 Partially Observed Tasks

We now consider the harder problem of making predictions on completely unseen tasks. In this
case,a priori we have no guarantee that any of the underlying modelling assumptions (similarity
of distribution and low-error joint prediction) may hold. However, in some situations it is not
unrealistic to assume that inter-task correlations will be structured, for example by the presence of
clustersof similar tasks. These clusters may be evident from the experimental designof the problem
(as in the case of the landmine data set discussed below), or may become evident from the training
phase on the source tasks, if the learned task covariance matrix exhibits a strong block structure.

We are not aware of other methods that has a distribution matching mechanism to perform
predictions on totally unseen tasks. Therefore, in this section we will only compare the different
inference mechanisms of the CMTMC model (Batch and P2PGat) with a GP modeltrained by
pooling all data together and with the MAP combination of classifiers.

4.2.1 TOY DATA SET I

We consider the toy data set that was used in Section 4.1.1 consisting of two clusters of tasks; in
this section, training tasks are selected by randomly selecting equal number of tasks from each
cluster. The challenge for the model is to correctly classify the task, giventhe similarity of the
task distributions between the two clusters (see Figure 2). While it could be argued that, as the
tasks in each cluster have the same data generating distribution, this example is very close to the
fully observed case scenario (and it certainly is if we consider the underlying tasks to be two rather
than six), it is still a useful illustrative example as a limiting case where assumptions are perfectly
met. Experimental results are presented for two and four training tasks in Figures 8.a and 8.b
respectively. Naturally, as this data set is designed to match our modelling assumptions, the Batch
method outperforms all other methods; it is interesting however that the method successfully detects
from which cluster of tasks the unseen target task comes from even for relatively small training set
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Figure 8: Average AP on the unseen tasks of Toy data setI ; (a) training on 2 tasks generalising on
4, (b) training on 4 tasks generalising on 2.

sizes. Comparing the performance of the Toy data setI in the fully and partially observed cases, in
Figures 3 and 8 respectively, reveals that the same levels of AUC are achieved in both experimental
setups, indicating that the task classification GP is highly confident of the correct result.

4.2.2 LANDMINE DETECTION

The landmine detection data set consists of images measured with airborne radar systems, and the
goal is to predict landmines or clutter (Xue et al., 2007). Data are collected from 19 landmine fields,
which are considered as subtasks, and each point is represented by anine-dimensional feature vector.
Tasks 1-10 correspond to regions that are relatively highly foliated whiletasks 11-19 correspond to
regions that are bare earth or desert. Figure 9 shows the number of datapoints from each task
and each class, which indicates that this data set is highly imbalanced in favorof the Clutter (‘-1’)
class. The experimental setup suggests the presence of two clusters of tasks corresponding to the
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Figure 9: Landmine detection data distribution.
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geomorphology of the region the observations come from; this is confirmed byour preliminary
investigation (not shown), as well as from previously published results on this data set by Xue et al.
(2007) and Liu et al. (2009). Thus, in this data set training tasks are setby randomly selecting
equal number of tasks from the first cluster, tasks 1-10, and from the second cluster, tasks 11-19.
Experiments are presented for two, four, and eight training tasks. The data covariance function that
is used for this data set is the ARD.

Figures 10.a, 11.a, and 12.a shows the mean AP on the 17, 15, and 11 unseen target tasks for
each partition respectively. Due to the high imbalance between the classes (Landmine-Clutter) the
achieved AP of all methods is very low. Therefore, in this data set we also present the AP of a
random predictor which clearly shows the improvement of each method considered. Note that in
terms of AUC the results obtained in this work are consistent with previous studies in this data set
(Xue et al., 2007; Liu et al., 2009), which are presented in Appendix C Figure 14 for completeness.
Moreover, it is noticed that there are large overlapping error bars between all methods. Large error
bars give evidence that there might be two levels of performance. Therefore, for each partition we
provide the average AP for each cluster separately; subfigures (b) from Figures 10, 11, and 12 show
the average AP for the first cluster, and subfigures (c) for the second cluster. Measuring the AP in
each cluster separately gives significantly smaller error bars, and reveals interesting structures in the
problem. Specifically, the performance on the second cluster is always better than on the first cluster
by a considerable margin. Moreover, comparing the methods on each cluster separately we see that
the Batch method outperformed the pooling and the P2PGat in most of the cases, particularly in
the first cluster where the advantages become very significant as we increase the number of tasks/
DPETs. The correlation structure within the second cluster is looser, immplyinga weaker applica-
bility of our modelling assumptions. However it should be pointed out that this is asubstantially
harder pattern recognition task compared to the toy data set considered above. For example, Liu
et al. (2009) that investigated the application of semi-supervised MTL on thisdata set achieved a
best performance of 78% AUC; the CMTMC (which relies on the more flexibleGP framework for
MTL) achieves an average AUC above 76% on totally unseen tasks havingtrained ononly8 source
tasks with 100 DPET (see Figure 14).
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Figure 10: AP on the 17 unseen tasks of Landmine data set; training on 2 tasks, generalising on 17;
(a) AP over 17 tasks, (b) AP over 9 tasks of the first cluster, (c) AP over 8 tasks of the
second cluster.
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Figure 11: Average AP on the 15 unseen tasks of Landmine data set; training on 4 tasks, generalis-
ing on 15; (a) Overall AP over 15 tasks, (b) Average AP over 8 tasks of the first cluster,
(c) Average AP over 7 tasks of the second cluster.
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Figure 12: Average AP on the 11 unseen tasks of Landmine data set; training on 8 tasks, generalis-
ing on 11; (a) Overall AP over 11 tasks, (b) Average AP over 6 tasks of the first cluster,
(c) Average AP over 5 tasks of the second cluster.

4.2.3 ARRHYTHMIA CLASSIFICATION

As a second real data set, we return to the arrhythmia classification problemintroduced in Section
4.1.4. The results from the fully observed tasks scenario indicate an unclear pattern of correlations
between the tasks, as summarised in the task covariance matrix Figure 7.b, which calls into question
the validity of the similarity of distribution assumption. Fortunately, in this application the classes
have a physical interpretation. For example normal heart beats between different patients, although
not exactly the same, can be expected to be similar, and a PVC arrhythmic heart beat of one patient
can not have the wave form of a normal heart beat from another patient. This allows us to assume
that the classes between the tasks will not be anti-correlated, so that at least the low-error joint
prediction assumption should approximately hold.

Since there are no obvious clusters among tasks, in this set of experiments the training tasks
are chosen by randomly selecting some for training and keeping the rest astest tasks. Figure 13
presents the results on the unseen tasks that were obtained by training the CMCMT model with
4 and 5 tasks. First of all, we observe that the average AUC in the partially observed case is a
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lot lower than in the fully observed case, something perhaps to be expectedsince, contrary to the
previous two examples, the model assumptions are not fully met in this data set. Surprisingly, the
method that achieved the best performance was the MAP, and no principledjustification can be
given for that. Secondly, we observe that the performance in this set ofexperiments exhibits some
interesting patterns as the number of training tasks increases. Specifically,for four training tasks
the performance of all methods does not significantly improve as we increase the number of data
points per task, and in some cases it even deteriorates, a phenomenon thatwas also observed for
2 and 3 training tasks but results are omitted for brevity. This indicates that if the space of tasks
has not been sampled sufficiently, the model can not yield good generalisation performance to new
tasks, even if the number of training data increases. In contrast, for fivetraining tasks the MAP
and P2PGat methods yield a significant improvement of performance as the number of data points
increases (levelling off after 200 DPETs).
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Figure 13: Average AP on the unseen tasks of Arrhythmia data set on different number of training
tasks; (a) training on 4 tasks, generalising on 3, (b) training on 5 tasks, generalising on
2.

Empirically, it would appear that the P2PGat method is preferable to the Batch method when the
model assumptions are violated. Intuitively, one could argue that the Batch method is less flexible,
as the relative contribution of the different single-class predictors is fixed across all points in the
target task. Therefore, if the model assumptions are violated, leading to anincorrect task labelling,
the propagated error could have a worse effect in Batch than in P2PGat.This is partly confirmed
by the analysis of Toy data setII in Section 4.1.2, where the model assumptions were violated and
P2PGat gave significantly higher AP than the Batch method.

4.2.4 CHARACTER CLASSIFICATION

For reasons of completeness, we present an analysis of the characterclassification problem in the
partially observed tasks scenario. Here the validity of the model assumptionsis dubious; neverthe-
less, we believe that interesting lessons can be learned from model failure. The fully observed tasks
analysis of the character classification problem did not reveal any clusters of tasks. Furthermore,
there is no reason to believe that the low-error joint prediction assumption mayhold: some tasks
might even be anticorrelated, as in tasks ‘a/g’ and ‘g/y’, where letter ‘g’ belongs to the negative class
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for task ‘a/g’, and to the positive class for task ‘g/y’. Therefore, the character classification problem
is ill-suited for this type of experiments. This is borne out by experimental evidence: simulation
results with 4, 5, and 6 training tasks, which are omitted for brevity, indicated that increasing the
number of tasks and the number of training points per task does not improve the performance in any
of the methods. Specifically, the results obtained were close to that of a random predictor indicating
statistical inconsistency of the model assumptions with the data.

4.2.5 OBSERVATIONS

Meta-generalising in a partially observed tasks scenario is an extremely hard problem; neverthe-
less, we believe there are some interesting points that can be made from the previous experimental
analysis. Below we summarise the most important observations for this scenario.

1. In situations where there are clusters of tasks, even though the model hasn’t seen all tasks, the
Batch method can still make accurate predictions that reaches the performance of the fully
observed tasks case. Pragmatically, one could consider whether the training phase of the
model has revealed clusters of tasks when deciding which prediction methodto apply.

2. In multi-task problems where the correlations between the tasks are less pronounced, but
where the low-error joint prediction is satisfied and where a sufficient number of training
tasks is available, the method that is most appropriate is the P2PGat, since it provides a more
flexible task assignment mechanism than the Batch mode. The validity of the low-error joint
prediction assumption can sometimes be assessed from the nature of the problem (as in the
arrhythmia case).

3. Sufficient exploration of the task space is essential for the success of the method. While
we have not tested our model for very large numbers of training tasks, theresults suggest
that often a significant improvement in performance can be achieved whenthe number of
training tasks crosses a critical number, indicating a sufficient coverageof the task space.
This phenomenon was observed in the Arrhythmia classification problem for2 and 3 training
tasks where the performance of the models remained the same as the number oftraining
samples per task increased. In essence more training data lead to strongerbiases for meta-
generalisation in target tasks that are not correlated with any of the trainingtasks.

4. In most cases, when the assumptions of the model are only approximately met and when the
exploration of the task space is insufficient, the generalisation performanceon totally unseen
tasks is still modest, and it may be that other approaches based on mixtures ofGP experts
(Tresp, 2000) achieve similar results. An extensive comparison with theseapproaches would
be interesting, but outside the scope of the present work.

5. Conclusions

In this paper we presented an investigation on the use of Gaussian Processes for meta-generalisation,
that is, predicting on unseen learning tasks by leveraging the information ofseveral, related tasks.
Our model attacks the meta-generalisation problem by coupling two GPs, a multi-class classifier
that learns task responsibilities, and a multi-task classifier that learns prediction models on indi-
vidual tasks as well as learning the global correlation structure between training tasks. While it
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should be emphasized that this is an initial attempt to address what is certainly a very ambitious
problem, we believe the model will prove useful to understand meta-generalisation. First of all, it
provides a constructive approach to meta-generalisation: most previousstudies (Baxter, 2000) have
been mainly theoretical investigations attempting to establish the necessary conditions for meta-
generalisation to work, or have focused on the domain adaptation scenario(Ben-David et al., 2007,
2010). Our model is an attempt to translate these conditions into a model, and to investigate how
well such a model may perform on real meta-generalisation problems.

It is important to remark that our method crucially relies on the ability to learn the covariance
matrix of a GP: the fundamental ingredient in this work is the task correlation matrix which cap-
tures the correlations between source tasks. This not only has a significant impact on the prediction
results, but can reveal the presence of clusters of tasks within the data,hence guiding the choice of
the appropriate prediction method (Batch or P2PGat). Many multi-task learningapproaches do not
explicitly model the correlations, but transfer learning solely through some shared prior over param-
eters (Yu et al., 2005, e.g.). While this could have computational advantages, we would argue that
the implicit modelling of task correlations would make them less suitable for meta-generalisation.
A common problem, shared by many GP models, is the computational cost when samples become
large, which would be the probable situation in many applications such as personalised medicine.
Our approach also suffers from the cubic scaling of matrix inversions needed within GP inference;
while sparsity inducing approaches could be helpful (Snelson and Ghahramani, 2006), it would be
interesting to explore sparsity within the task space as well as within the data space.

While we believe that our results are encouraging and help clarify the importance of the various
assumptions underlying meta-generalisation, it remains undeniable that in manypractical situations
it is impossible to assess the validity of these assumptions, making meta-generalisation an extremely
challenging problem. Possible avenues to extend the applicability of the approach could be to
consider task descriptor features, or to introduce a semi-supervised element in the model in the
spirit of domain adaptation approaches.
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Appendix A. Approximate Inference

This appendix computes the approximate posteriors forQ(g), Q(f) andQ(hx). The posterior of
Q(Ht) can be found in Girolami and Rogers (2006) and therefore details are omitted.
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A.1 Q(g)

The approximate posterior forQ(g) is computed as Girolami and Rogers (2006)
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whereZi = Φ(± f̃i) for yx
i =±1. The approximate posterior ofQ(Ht) can be computed in a similar

manner, and we refer the interested reader to Girolami and Rogers (2006).
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Appendix B. Lower Bound

This appendix presents the analytical form of the variational bound as well as the gradients of the
bound with respect to the hyperparametersθx andθt .

B.1 Lower Bound on Log Marginal Likelihodd

The lower bound on the log marginal likelihood is computed by
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Terms that depend on hyperparametersθx andθt are:
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B.2 Gradients on Lower Bound

The gradients with respect to the parameters of the data covariance function K x are computed from:
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While the gradients with respect to the parameters of the task covariance matrixare computed from:
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Appendix C. Additional Results on the Landmine Detection Problem

This appendix provides additional results for the Landmine detection problem (section 4.2.2) from
the Partially observed tasks scenario. In contrast to the results presented in section 4.2.2 where
methods were compared in terms of AP, Figure 14 presents results in terms of AUC, similarly to
previous studies in that data set (Xue et al., 2007; Liu et al., 2009).
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Figure 14: AUC on the Landmine detection problem; (a) AUC over 17 tasks bytraining on 2 tasks,
(b) AUC over 15 tasks by training on 4 tasks, (c) AUC over 11 tasks by training on 8
tasks.
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H. Dauḿe III. Bayesian multitask learning with latent hierarchies. InProceedings of the 25th
Conference on Uncertainty in Artificial Intelligence, pages 135–142, Montreal, Canada, 2009.

H. Dauḿe III and D. Marcu. Domain adaptation for statistical classifiers.Journal of Artificial
Intelligence Research, 26(1):101–126, 2006.

J. Davis and M. Goadrich. The relationship between precision-recall and roc curves. InProceedings
of the 23rd International Conference on Machine Learning, pages 233–240, Pittsburgh, USA,
2006.

I. Deak. Three digit accurate multiple normal probabilities.Numerische Mathematik, 35(4):369–
380, 1980.

H. I. Gassmann, I. Deak, and T. Szantai. Computing multivariate normal probabilities: A new look.
Journal of Computational and Graphical Statistics, 11(4):920–949, 2002.

A. Genz. Numerical computation of multivariate normal probabilities.Journal of Computational
and Graphical Statistics, 1(2):141–149, 1992.

719



SKOLIDIS AND SANGUINETTI

M. Girolami and S. Rogers. Variational bayesian multinomial probit regression with gaussian pro-
cess priors.Neural Computation, 18(8):1790–1817, 2006.

M. Girolami and M. Zhong. Data integration for classification problems employing Gaussian pro-
cess priors. InAdvances in Neural Information Processing Systems 19, pages 465–472, Vancou-
ver, Canada, 2007.

A. L. Goldberger, L. A. N. Amaral, L. Glass, J. M. Hausdorff, P. Ch.Ivanov, R. G. Mark, J. E.
Mietus, G. B. Moody, C.-K. Peng, and H. E. Stanley. Physiobank, physiotoolkit, and physionet:
Components of a new research resource for complex physiologic signals. Circulation, 101(23):
215–220”, 2000.

A. K. Gupta and D. K. Nagar.Matrix Variate Distributions. Chapman & Hall/CRC, 2000.

J. A. Hanley and B. J. Mcneil. The meaning and use of the area under a receiver operating charac-
teristic (ROC) curve.Radiology, 143(1):29–36, April 1982.

G.E. Hinton. Connectionist learning procedures.Artificial Intelligence, 40(1-3):185–234, 1989.

J. Huang, A. J. Smola, A. Gretton, K M. Borgwardt, and B. Schölkopf. Correcting sample selection
bias by unlabeled data. InAdvances in Neural Information Processing Systems 19, pages 601–
608, Vancouver, Canada, 2007.

R.A. Jacobs, M.I. Jordan, S.J. Nowlan, and G.E. Hinton. Adaptive mixtures of local experts.Neural
Computation, 3(1):79–87, 1991.

L.I. Kuncheva. A theoretical study on six classifier fusion strategies.IEEE Transactions on Pattern
Analysis and Machine Intelligence, 24(2):281–286, 2002.

Q. Liu, X. Liao, H. Li, J. R. Stack, and L. Carin. Semisupervised multitask learning. IEEE Trans-
actions on Pattern Analysis Machine Intelligence, 31(6):1074–1086, 2009.

D.J.C. MacKay.Information Theory, Inference, and Learning Algorithms. Cambridge University
Press, 2003.

Y. Mansour, M. Mohri, and A. Rostamizadeh. Domain adaptation with multiple sources. InAd-
vances in Neural Information Processing Systems 21, pages 1041–1048, Vancouver, Canada,
2009.

T.P. Minka. Expectation propagation for approximate bayesian inference. In Proceedings of the 17th
Conference on Uncertainty in Artificial Intelligence, volume 17, pages 362–369, San Francisco,
CA, USA, 2001.

M. Opper and O. Winther. Gaussian processes for classification: mean-field algorithms. Neural
Computation, 12(11):2655–2684, 2000.

S. J. Pan and Q. Yang. A survey on transfer learning.IEEE Transactions on Knowledge and Data
Engineering, 22(10):1345–1359, 2010.

S.J. Pan, I.W. Tsang, J.T. Kwok, and Q. Yang. Domain adaptation via transfer component analysis.
IEEE Transactions on Neural Networks, 22(2):199–210, 2009.

720



A CASE STUDY ON META-GENERALISING: A GAUSSIAN PROCESSESAPPROACH

R. Raina, A. Battle, H. Lee, B. Packer, and A.Y. Ng. Self-taught learning: Transfer learning from
unlabeled data. InProceedings of the 24th International Conference on Machine Learning, pages
759–766, Corvallis, OR, USA, 2007.

C. E. Rasmussen and C. K.I. Williams.Gaussian Processes for Machine Learning. MIT press,
2005.

C.E. Rasmussen and Z. Ghahramani. Infinite mixtures of gaussian processexperts. InAdvances in
Neural Information Processing Systems 14, pages 881–888, Vancouver, Canada, 2001.
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