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Abstract—On-policy imitation learning algorithms iteratively
improve policies by rolling them out and observing loss functions
from expert demonstrations. The theoretical properties of on-
policy imitation learning algorithms are often studied from an
online optimization or game-theoretic perspective. Of interest
recently are conditions necessary for guaranteeing the stability of
these algorithms. To analyze stability, we advocate the need for
a dynamic regret analysis, which measures the loss of a policy
compared to the best it could have done on its own distribution.
Using this notion of regret, we investigate stability conditions for
on-policy algorithms. We also show that in the infinite sample
case the average dynamic regret rate of follow-the-leader under
a stability condition and online gradient descent under slightly
stronger conditions tend to zero in the number of iterations.

I. INTRODUCTION

A fundamental problem in imitation learning by supervised
learning is covariate shift [1]], where the distribution of states
visited by the learned policy differs from those seen during
training time. Algorithms, often inspired by game-theoretic
formulations, such as DAGGER [8]], AGGREVATED [9]], LOKI
[3] and GAIL [6] have been proposed to mitigate the covariate
shift. These methods have been shown to perform well in
practice and their theoretical analyses support these empirical
observations. A fundamental area of concern recently has
been to determine under what conditions these algorithms are
guaranteed to be stable in the sense that they converge to a
locally optimal solution.

We study these properties for on-policy methods, which
iteratively rollout the current policy and observe a loss from
the expert. Specifically, we focus on the stability of in the
generic context of follow-the-leader and online gradient de-
scent, which underlie the aforementioned algorithms. Prior
work has employed online optimization analyses to achieve
regret bounds for these algorithms. In these analyses, the
loss function at an iteration of the algorithm is given by
the loss on the distribution of states induced by the current
policy parameters. In this work, we define the stability of an
algorithm on a particular problem as the convergence of the
policy parameters to the optimal parameters on policy’s own
distribution. Recently Cheng and Boots [2] proved results on
the convergence of the final policy for DAGGER, a follow-
the-leader algorithm, and suggested that the algorithm can be
unstable unless certain conditions are met.

Understanding the stability of imitation learning algorithms
in general is important because we are concerned with having
the policy perform the best it can on its current distribution.

Motivated by this, we advocate the need for dynamic regret
[10, [7, 4] as a metric for stability of imitation learning
algorithms. As opposed to the well known static regret which
measures hindsight performance with respect to the aggregate
of the observed losses, dynamic regret measures performance
of a policy at each instantaneous iteration. This metric accu-
rately reflects the goal of stability because it compares the
current policy against the best it could be on its distribution
with respect to the expert. In other fields, dynamic regret is
used for portfolio management and network routing analysis
where distributions change over time [3l].

Dynamic regret provides us with a general and well-studied
framework for evaluating stability of on-policy imitation
learning algorithms. Like with static regret, algorithms with
sublinear dynamic regret rates in the number of iterations
are preferred because their average regret rates tend to zero,
indicating convergence. As we will see in later sections, it also
provides the ability to leverage known information about how
the policy affects the state distribution, enabling us to obtain
precise statements about an algorithm’s performance. It is well
known that it is not possible to achieve sublinear dynamic
regret in general due to the possibility of well-informed or
adversarial loss functions [7]. However, in imitation learning,
we may use the regularity and predictability of the loss func-
tions to our advantage. Our contributions are the following:

1) We propose using a dynamic regret analysis to evaluate
the stability of on-policy imitation learning algorithms.

2) We present average dynamic regret rates for follow-the-
leader and online gradient descent.

II. PRELIMINARIES

In this section we introduce the notation, problem statement,
and assumptions for imitation learning in a supervised learning
setting. Let s; € S and u; € U be the state and control in a
Markov decision process. The probability of a trajectory 7 of
length 7" under policy m € Il : S — U is given by

T—1
Pr(7) = p(51) H Pr(ut]st)p(st41]8¢, ue)-
t=1

In this paper, we consider parametric policies, i.e., there is
a convex, normed space of parameters © with diameter D :=
maxg, g,co |1 — 02| and the imitation learning objective is
to find a parameterized policy w9 where 6 € O that reduces
some loss with respect to the expert policy 7* which may not



necessarily be attainable by ©. The loss of a policy 7 along
a trajectory 7 is a non-negative function J such that

T—1
J(rm) =Y (s, (s0)),

where ¢ : U x U — R>q is the instantaneous loss. We
consider the average loss of of a parameter 6; € © over the
distribution of trajectories generated by a possibly different
policy parameter 65 € O:

Ep(T;ﬂgl)J(Tv 7T92).

Thus, 6; controls the distribution of trajectories observed and
05 controls the predictions in the instantaneous loss. We refer
to the first argument as the distribution-generating parameter
and the second argument as the evaluation parameter. For
example behavior cloning, which involves sampling from
the supervisor’s distribution, would correspond to minimizing
E(r;x+)J (T, ) over 6 via empirical risk minimization.

The objective of imitation learning can be written as:

Ieré%lEP(T;ﬂe)J(T’ o),

This corresponds to rolling out and evaluating on the same
policy. It reflects the goal of having the policy do well on
its own induced distribution. This objective is challenging
and cannot be solved with regular supervised learning on the
expert’s distribution of trajectories since the distribution of
inputs is a function of the hypothesis [[1].

This paper will consider iterative on-policy algorithms over
N € N iterations. Specifically at any iteration n for 1 < n <
N, the policy parameter 6,, is rolled out as the distribution-
generating parameter and the loss E,;., 1J(7,mp), is ob-
served. For convenience denote f,,(0) := Ey(rir, )J(7,70).
Let V,,(0) := Vf,(0) denote the gradient in the evaluation
parameter at the nth iteration. These loss functions form the
sequence of losses used in the dynamic regret metric. In this
paper, we say that an algorithm is stable if the difference in
performance of the policy on its own distribution compared to
the optimal on the same distribution tends to zero.

Next we briefly describe the main assumptions of this
paper. The assumptions are stated formally in Section [V} For
the purpose of analysis, as in prior work in both imitation
learning and online optimization, we assume strong convexity
and smoothness of the loss function in the evaluation pa-
rameter. Strong convexity ensures the loss is curved at least
quadratically while smoothness guarantees it is not too curved.
As in [2], we also assume a regularity constraint on the f,
with respect to the distribution-generating parameter 6,,. This
assumption reflects the sensitivity of the loss with respect to
the state distribution.

III. ALGORITHMS

We now review two common algorithms in online opti-
mization that can be directly applied to imitation learning for
parameterized policies. Both algorithms are iterative and take
advantage of loss functions observed at each iteration.

A. Follow-The-Leader

DAGGER is a variant of the follow-the-leader algorithm. We
begin with a random initial parameter #,. Then at iteration n,
we roll out the current policy 7g, and observe loss function on
current policy’s distribution f,(#). We then update the policy
with the rule: 0,11 = argmingcg Y _; fm(6) and repeat.

B. Online Gradient Descent

Recently there has be interest in “imitation gradients” [3],
an imitation analogue of policy gradients in reinforcement
learning. Online gradient descent underlies such algorithms.
We begin with a random initial parameter 6; and stepsize 7.
At iteration n, we roll out 7y, and observe loss f,(6). Then
we update the policy with 0,11 = 0,, — nV f,,(0) and repeat.

IV. DYNAMIC REGRET

In order to show stability of an on-policy algorithm, we
are interested in showing that the policies generated by the
algorithm perform well on the loss on their own induced state
distributions. To measure this, we turn to the dynamic regret,
defined as

N
)= D _minfu(6). (1)

n=1

N
RD(alv s 791\7) = Z fn(0n
n=1

In comparison to the more well known static regret, which
compares the algorithm’s sequence of parameters to the single
fixed parameter, dynamic regret compares the nth policy to
the instantaneous best policy on the nth distribution. The
advantage of the dynamic regret metric is that the optima
track the changes in state distribution so that a policy’s
performance is always evaluated with respect to the most
relevant state distribution, which is the current one. Thus we
can examine stability properties of an algorithm by observing
the convergence of the average dynamic regret, defined as
1R,

The dynamic regret of an algorithm is fundamentally depen-
dent on the change in the loss functions over iterations, often
expressed in terms of quantities called variations. If the loss
functions change in an unpredictable manner, we can expect
large variation terms leading to large regret and instability.
This is the reason that sublinear dynamic regret bounds cannot
be obtained in general using only the assumptions commonly
used for static regret [10]. If instead the loss functions change
smoothly and slowly, we expect the variation to small, even
bounded in some cases. The ability to evaluate regret in terms
of the changes in the loss functions allows us to acquire precise
bounds and statements about stability.

In imitation learning, the variation of the loss functions
is related to the amount change in the state distribution
induced by the sequence of policies. Thus if these changes
are controlled to some extent, we can prove stability or, at the
very least, conditions for stability. The next section will use
these notions to show dynamic regret bounds and conditions
for stability of follow-the-leader and online gradient descent.



V. GUARANTEES

We now formally state the assumptions first introduced in
Section We begin with assumptions on the loss in the
evaluation parameter.

Assumption 5.1 (Strong Convexity):
01,05 € ©, Ja > 0 such that

fn(92) > fn(el) + <vn(91)792 - 91>

Assumption 5.2 (Smoothness and Bounded Gradient): For
all n € N and 64,0, € ©, 3y > 0 such that

[Vn(61) = Vi(62)]] < 7|01 — 62|

and 3G > 0 such that ||V, (61)] < G.

Finally, we state the regularity constraint on the loss as a
function of the distribution-generating parameter, in line with
Cheng and Boots [2].

Assumption 5.3 (Dynamics Regularity): For all n,m € N
and 0,,0,,,0 € ©, 38 > 0 such that

IV (8) = Vi ()] < 810 — O]

We now present our main novel results about well-studied
algorithms from online optimization in the context of im-
itation learning for the infinite sample case. Let 0 =
argmingcg f(0) be the optimal parameter at iteration n. We
begin with a result concerning a stability constant \ := g [2].

Lemma 5.4: Given the assumptions, the following equality
holds on the difference between consecutive optimal param-
eters for follow-the-leader and online gradient descent algo-
rithms at any n:

For all n € N and

[0
—116; — 05]|?.
+2||1 2|

Ol < Allnsr = Onl.

Proof: By strong convexity of f,, 41, we have §/0)

H9n+1

n+1||_

05117 < frs1(05) = Frt1 (0541) < [[Vara (0)]1167, 0

a/2/|05 41— 0,11 i 1 — 05l <
LIVg1(6;) — Vi (02)] < §||9n+1 — 0|, where the last
inequality uses Assumption ]

This lemma suggests that in the case where A < 1, we know
with certainty that (|0, — 6| < ||fn41 — 6, In other
words, the optimal parameters cannot runaway faster than the
algorithm’s parameters. This intuition is also consistent with
the findings of prior work [2], which shows that convergence
of the Nth policy can be guaranteed when A < 1 for follow-
the-leader.

A. Follow-The-Leader

We now introduce a dynamic regret corollary to Theorem
2 of Cheng and Boots [2].

Corollary 5.5: For follow-the-leader under the assump-
tions, if A < 1, then the average dynamic regret tends towards
zero in N.

Proof: The proof is immediate from the result of
Theorem 2 of Cheng and Boots [2]. We have f,(6,) —

. (Ael72G)? .
fa(0) < Summing from 1 to N, we get

S PTEICE Y
N N « N Aelr @ 2

Yome1 fn(On) — > fa(0) < Zn:lgoéyﬂﬁ/\)) =
O(max(1, N?*~1)). Then the average dynamic regret is
+Rp = O(max(1/N, N?*~2)), which goes to zero. |

B. Online Gradient Descent

For the analysis of dynamic regret bounds for online gradi-
ent descent, we require a stronger condition that a? > 2743.
Written another way, the condition is 2\ < 1) where X is
the stability constant and ¢ = % is the condition number of
fn. So we require that the problem is both stable and well-
conditioned.

In this proof, we will make use of a variation known as the
path variation, which measures the amount of change in the
optimal parameters of the loss functions.

Definition 5.6 (Path Variation): For a sequence of optimal
parameters from m to n given by 67,.,, = (0})m<i<n. the
path variation is defined as:

n—1
V(On) = D 1107 = 0511

Theorem 5.7: For online gradient descerl‘t under the as-
sumptions, if A < 1, 2\ < 7 and n = ;éf(aiﬁﬁ)), then the
average dynamic regret tends towards zero in V.

Before directly proving this theorem, we establish several
supporting results based on the path variation.

Lemma 5.8: For a sequence of predictions made by the
online gradient descent algorithm 6;.5 and a sequence of
optimal parameters 67.,, the following inequality holds on
the path variation:

m:m

V(0in) < 77 Z [0 —
Proof: From Lemma we have [|0; ., — 0|

B)10ns1 = Onll = L7V (0n)]] = n2[Vi(0n) — Vi (63)] <

ﬁ E1|6, —0y;]|, where the final inequality uses Assumption 5.
Then the result follows immediately. I

Lemma 5.9: Let p = (1 — an 4+ v?*n?)'/2, which is always
nonnegative for any positive choice of n because v > « by
definition. Then the following inequality holds

N

N
D N80 =Gl <1162 = 651+ D pllbn — 051l + V(O7.).

n=1 n=1

Proof: By strong convexity we have the following: 0 <
Q(fn(en) - fn(e;kl)) < 2<vn(9n)amn - 9:) - CY||9§§ - GHHQ'
By the update rule given in the algorithm:

10n41 = 031 = 1160 — 0V (0n) — 05|
= ||77vn(9n)||2 + 10n — 9:”2
- 277<Vn(0n)a en - 9:’» (2)
By rearranging the terms in (2) and combining with the very
first inequality, we arrive at the following:

1041 = 3117 < (1= an)[|6n — 0511 + 19V (6) -
Using Assumption [5.2] and the fact that V,,(6}) = 0
1041 — 03117 < (10 — 0511 — anl|6n, — 607]
+n ||vn n) = V(0 n)||2
< (1 —an+9) [0 =007 3



Then let p = (1 —an+ 72772)1/2. Following from [7], con-
sider the series:

N N
D 00 =05 = 1162 = 0511+ > 1100 = 05y + 65—y — 03]
n=1 n=2

N
< (162 = 03[l + D [0 — 651 ]| + V(6.)
n=2

N
<16 =631+ Y pll6n

n=1

Ol +V(01n);

where the second line uses the definition of the path variation
and the third line uses (3). |

Proof of Theorem 5.7t We begin by bounding the result
from Lemma [5.9] above by Lemma [5.8}

Z 16, — 03] < 162 — 03] + (p+n) Z 16, — 62

By rearranging the terms and bounding by the diameter of A’

Zne 0l .

iy

It can be shown that, under the assumptions, the choice of

n = % ensures that (1 —p — n%) is positive. By
the G-Lipschitz continuity of f,, we have

N
GD
fn (0 fn(07)
; Z: —p—n
and so Rp(6y,...,0n) = O(1). So we have +Rp =
O(1/N) which goes to zero. [ |

VI. Di1SCcUSSION AND FUTURE WORK

There are several important implications of these theorems.
The first is that there is an inherent property of stability
in on-policy algorithms. Even in the case considered in this
paper with assumptions of strong convexity and smoothness
and regularity of the dynamics, these algorithms may be at
risk of instability when the optima of the loss functions can
move faster than the policy parameters, suggesting that careful
regularization such as that described by Cheng and Boots [2]
may be necessary for on-policy algorithms to stabilize them.

Secondly, the use of dynamic regret to compare the perfor-
mance of a policy with the best on the same distribution allows
us to obtain precise bounds and insights to this stability. When
the O(1) bound is attained, the dynamic regret upper bound
is constant meaning that it does not grow with the number of
iterations. It is clear that in such cases the path variation is
also constant in the number of iterations which suggests the
series converges and thus the distances between consecutive
parameter solutions tend to zero.

These observations make sense intuitively when considering
the proofs. We want the parameter vector go towards a solution
as in Lemma [5.9) and simultaneously we want consecutive
solutions to move slowly as in Lemma [5.8] While these

may seem to be competing objectives, we can leverage the
regularity of the state distribution to combine the two yielding
improved regret rates when the stability conditions are met.

Finally the presented results have implications beyond
strictly on-policy algorithms. The GAIL algorithm iteratively
updates the policy based on a loss parameterized by an
adversarial discriminator. Between iterations, the discriminator
is updated, altering the loss function with respect to the change
in policy parameters. We believe that similar stability results
could exist for this algorithm and similar ones.
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