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Abstract

Off-policy policy evaluation is a fundamental
problem in reinforcement learning. As a re-
sult, many estimators with different tradeoffs
have been developed; however, selecting the
best estimator is challenging with limited data
and without additional interactive data collec-
tion. Recently, Su et al. (2020b) developed a data-
dependent selection procedure that competes with
the oracle selection up to a constant and demon-
strate its practicality. We refine the analysis to
remove an extraneous assumption and improve
the procedure. The improved procedure results
in a tighter oracle bound and stronger empirical
results on a contextual bandit task.

1. Introduction

Off-policy policy evaluation is a fundamental problem in
reinforcement learning. Moreover, in applications of rein-
forcement learning, the ability to evaluate potential policies
without deploying them is paramount to reducing risk. As a
result, developing off-policy estimators has been a subject
of intense research activity (e.g., (Horvitz & Thompson,
1952; Precup, 2000; Dudik et al., 2014; Jiang & Li, 2016;
Thomas & Brunskill, 2016; Wang et al., 2017; Farajtabar
etal., 2018; Liu et al., 2018; Kallus & Zhou, 2018; Voloshin
et al., 2019)).

However, selecting the best estimator for a particular appli-
cation is challenging. There is no straightforward analogue
to cross-validation in supervised learning. Recently, Su et al.
(2020b) introduced SLOPE, a generic, data-driven selection
procedure, which is provable competitive with the oracle
selection (up to a constant) and they demonstrate that it
empirically outperforms other selection approaches based
on MSE surrogates (Thomas & Brunskill, 2016; Wang et al.,
2017; Su et al., 2020a).
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By refining the analysis underlying their approach, we can
remove an extraneous assumption in their procedure and
tighten the oracle bound on performance. Furthermore, we
show that the improved procedure outperforms SLOPE on
the task introduced in Su et al. (2020b).

2. Background

We work in the same abstract setup as Su et al. (2020b).
Briefly, we would like to estimate a real-valued statistic
0* := 6(D) defined over an unknown data distribution D.
Given a finite set of estimators {6;(-)} defined over empiri-
cal data distributions and a (uniformly-weighted) empirical
data distribution D formed from an i.i.d. sample of data
{z;} from D, our goal is to choose the estimator that min-
imizes the absolute error to the statistic of interest 6*. In
other words, we would like a procedure that that selects an
estimator index ¢ such that

|6; — 0%| < CONST x min |§; — 6%,

where 6; := 6;(D) and CONST is a universal constant. To
start, we can bound the distance as

0; — 0| < |0; — 0| +|0; — 0;] = BIAS(i) + DEV (i),

where 0; = E, {él} . DEV (%) characterizes statistical fluc-

tuations, and we can generally bound it with high confidence,
whereas BIAS(4) is typically unknown.

2.1. SLOPE

Su et al. (2020b) introduce the SLOPE procedure based
on Lepski’s principle (Lepskii, 1991; 1992; 1993; Lepski
& Spokoiny, 1997; Mathé, 2006). The procedure assumes
a bound on bias B(i) > BIAS(i)' and access to a high
confidence bound on DEV (%) (i.e., with probability at least
1 -6, DEV(i) < CNF(¢) for all 4). The procedure also
requires monotonicity assumptions:

1. B(i) < B(i+1)

2. 3k > O such that s CNF (i) < CNF(i+1) < CNF(7)
Then defining 1(i) = [§; — 2CNF (i), 0; + 2 CNF(i)] and

i = max{i : i, 1(7) # 0},

'B(4) is not used in the procedure but appears in the bound.
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with probability at least 1 — 4,
16; — 0] <6 (1+ £~") min (B(i) + CNF(i)) .

So the SLOPE procedure provides an oracle inequality on
the competitiveness of the procedure. It is natural for many
families of estimators to exhibit a similar trade-off of com-
plexity, captured by the confidence bounds, with bias.

3. Methods

We improve the procedure by refining the analysis.

Theorem 1. Given § > 0, high confidence bounds CNF (i)
on the deviations (i.e., with probability at least 1 — §,
DEV (i) < CNF(i) for all i), and that we have ordered*
the estimators such that CNF (i) > CNF (i + 1). Selecting
our estimator as

i = max{i : |#;—0;| < CNF(i)+(v/6—1) CNF(5),j < i},

ensures that with probability at least 1 — 0,

16, — 0%] < (\/6+3) m_in<

7

ax BIAS(j) + CNF(z‘)> .

(S

In the common case that the estimator family has increas-
ing bias and tighter bounds on deviation with increasing ¢
(a family of estimators with a bias/variance trade-off e.g.,
importance weight clipping), then the bound simplifies to

10; — 0%| < (\/6 + 3) min (BIAS(i) + CNF(7))

In other words, we are able to compete with the oracle
estimator (up to a problem-independent constant). Com-
pared to Su et al. (2020b), we do not assume CNF(4) de-
creases slowly and thus our bound does not depend on the
problem-dependent parameter « that controls this decrease.
Asl>1 wehave V6+3<6<6(1+1)<6(1+r")

for the constant on the oracle bound.

Proof. We will prove a generalized bound. Let B(i) >
BIAS(7) be a bound on bias satisfying B(i) < B(i + 1).
Then, define ¢ = max{i : |§; — é]\ < aCNF(i) +
bCNF(j),j < i}, where a and b are constants that we
will optimize.

Lepski’s principle leverages the fact that comparing pairs of
estimators simplifies the problem. In our case, the difficulty
arises from the unknown bias of our estimators, however,
we do know that for a pair of estimators

B(j) = B(i) < |6; — 6]
<10 — 0;] +16: — 6, — (6: — 0) |
< |6; — 6] + CNF(i) + CNF(j), (D)

2We can increase CNF (i) to accommodate any ordering at the
expense of a worse bound.

which allows us to control the increase in bias in terms of
known quantities.

Leti* = min; B(i) + CNF(i). When i* = i, we are done,
so we consider the other two cases: 1) 7 < ¢* and 2) 7 > 7*.

1. We know that B(i) < B(i*), so we need to ensure that
CNF has not de(A:reased too much. By definition of ¢,
there exists 7 < ¢ such that

bCNF(j) + aCONF(i + 1) < |0; — 6;., |
< B(j) + B(i + 1) + CNF(j) + CNF(i + 1).

Implying that

(b—1)CNF(z) < (b— 1) CNF(§)

< B(j) + B(i+1) + (1 — a) CNF(i + 1))
<2B(i*) + (1 — a) CNF(i + 1))
<2B(i")

I

as long as a > 1. So, with b > 1, we conclude that

B(i) + ONF(i) < (bfl + 1) B(i*)

< (bfl + 1) (B(i*) + CNF(i*))

2. In the second case, CNF(%) < CNF(i*), so we need to
show that the bias is not too much larger. By definition
of 7 and Eq. 1,

B(i) — B(i*) < |6; — 6;-| + CNF(i) + CNF(i*)
< (a+1)CNF(i) + (b + 1) CNF(i*)

< (a+b+2) CNF(i*)

implying that

B(i) + CNF(i) < B(i*) + (a + b+ 3) CNF(4*)

<
< (a+b+3)(B(i*) + CNF(i*)).

Together, we conclude that
B(i) + CNF(i) <

max (<b_21 + 1) (a+b+ 3)) (B(i*) + CNF(i*))

Minimizing over a and b results ina = 1 and b = V6 —
1. Then choosing B(i) = max;<; BIAS(j) finishes the
proof. O

Previous works have focused on MSE as the evaluation
metric, so as a corollary, we have
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Figure 1. Experimental results for bandwidth selection of OPE
estimators for contextual bandits with continuous actions. The plot
shows the empirical CDF of normalized MSE (normalized by the
worst MSE for that condition) across all conditions.

Corollary 1.1. With the same assumptions as Thm I and
additionally that 0*,0; € [0, R] a.s. for all i and that CNF
is deterministic. Then, for any 6 > 0,

E {(9 — 9*)2] <C min (max BIAS(j)? + CNF(i; 5)2>

i <t
+ R?6,
where C'is a universal constant.

The proof follows immediately from Thm 1 and the proof
of (Corollary 4; Su et al., 2020b).

4. Experiments

Following Su et al. (2020b), we empirically evaluate the
procedure on bandwidth selection in a synthetic environ-
ment for continuous action contextual bandits. We follow
the same experimental protocol and modify the code pro-
vided with Su et al. (2020b) at https://github.com/
VowpalWabbit/slope-experiments to implement
our procedure.

Briefly, the experiment evaluates the procedure on environ-
ments with varying target and logging policies (NN, tree),
“softening” approaches for randomization following Fara-
jtabar et al. (2018) (friendly, adversarial), Lipshitz constant
(0.1, 1, 10), and samples (10, 100, 1000)°.

We use 7 different choices of geometrically spaced band-
widths {27 : i € [7]}. We evaluate the performance of each

*From the provided configuration file https://github.
com/VowpalWabbit/slope-experiments/blob/
master/scripts/ak_commands.py

of these fixed choices, SLOPE, and the improved procedure
(labeled SLOPE++ in the plot). As in Su et al. (2020b), we
use the empirical standard deviation to construct the high
confidence bound, which is valid asymptotically and usu-
ally yields better practical performance than a concentration
inequality.

To measure performance, we estimate the ground truth statis-
tic with 100k samples from the target policy. To aggregate
results across conditions, we normalize by the worst MSE
in each condition, then compute the empirical CDF of the
normalized MSE (Figure 1). Increasingly performant meth-
ods lie in the top-left quadrant. We see that SLOPE++ is
the top performer compared with the fixed bandwidths and
SLOPE.
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