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Wavelets, Ridgelets, and Curvelets
for Poisson Noise Removal

Bo Zhang, Jalal M. Fadili, and Jean-Luc Starck

Abstract—In order to denoise Poisson count data, we introduce
a variance stabilizing transform (VST) applied on a filtered
discrete Poisson process, yielding a near Gaussian process with
asymptotic constant variance. This new transform, which can be
deemed as an extension of the Anscombe transform to filtered
data, is simple, fast, and efficient in (very) low-count situations. We
combine this VST with the filter banks of wavelets, ridgelets and
curvelets, leading to multiscale VSTs (MS-VSTs) and nonlinear
decomposition schemes. By doing so, the noise-contaminated
coefficients of these MS-VST-modified transforms are asymp-
totically normally distributed with known variances. A classical
hypothesis-testing framework is adopted to detect the significant
coefficients, and a sparsity-driven iterative scheme reconstructs
properly the final estimate. A range of examples show the power
of this MS-VST approach for recovering important structures of
various morphologies in (very) low-count images. These results
also demonstrate that the MS-VST approach is competitive rela-
tive to many existing denoising methods.

Index Terms—Curvelets, filtered Poisson process, multiscale
variance stabilizing transform, Poisson intensity estimation,
ridgelets, wavelets.

I. INTRODUCTION

DENOISING images of Poisson counts arise from a variety
of applications including astronomy and astrophysics [1],

biomedical imaging [2], etc. Typically, we observe a discrete
dataset of counts where is a Poisson random
variable of intensity , i.e., . Here, we suppose that

s are mutually independent. The denoising aims at estimating
the underlying intensity profile from .

1) Literature Overview: A host of estimation methods have
been proposed in the literature. Major contributions consist of
the following. 1) Variance stabilization: A classical solution
is to preprocess the data by applying a variance stabilizing
transform (VST) such as the Anscombe transform [3], [4].
It can be shown that the transformed data are approximately
homoscedastic and Gaussian. Once we are brought to the
Gaussian denoising problem, standard approaches such as
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wavelet thresholding [5], [6] are used before the VST is in-
verted to get the final estimate. Haar–Fisz transform is another
widely used VST [7], [8], which combines the Fisz trans-
form [9] within the Haar transform. Jansen [10] introduced
a conditional variance stabilization (CVS) approach which
can be applied in any wavelet domain resulting in stabilized
coefficients. 2) Wavelet wiener filtering: Nowak and Baraniuk
[11] and Antoniadis and Sapatinas [12] proposed a wavelet do-
main filter, which can be interpreted as a data-adaptive wiener
filter in a wavelet basis. 3) Hypothesis testing: Kolaczyk first
introduced a Haar domain threshold [13], which implements a
hypothesis testing procedure controlling a user-specified false
positive rate (FPR). The hypothesis tests have been extended
to the biorthogonal Haar domain [14], leading to more regular
reconstructions for smooth intensities. [15] derived the proba-
bility density function (pdf) of any wavelet coefficient, which
allows hypothesis tests in an arbitrary wavelet basis. However,
as the pdf has no closed forms, [15] is more computationally
complex than Haar-based methods. [16] proposed “corrected”
versions of the usual Gaussian-based thresholds for Poisson
data. However, the asymptotic approximation adopted by [16]
may not allow reasonable solutions in low-count situations.
4) Empirical Bayesian and penalized ML estimations: Em-
pirical Bayesian estimators are studied in [17], [18], [10], [19].
The low-intensity case apart, Bayesian approaches generally
outperform the direct wavelet filtering [11], [12] (see also
[20] for a comparative review). Poisson denoising has also
been formulated as a penalized maximum likelihood (ML)
estimation problem [21], [22]–[24] within wavelet, wedgelet
and platelet dictionaries. Wedgelet (platelet-) based methods
are more efficient than wavelet-based estimators in denoising
piecewise constant (smooth) images with smooth contours. To
the best of our knowledge, no Poisson denoising method has
been proposed for the ridgelet and curvelet transforms.

2) This Paper: In this paper, we propose a VST to stabi-
lize the variance of a filtered discrete Poisson process, yielding
a near Gaussian process. This new transform, which can be
deemed as an extension of the Anscombe transform to filtered
data, is simple, fast and efficient in (very) low-count situations.
The rationale behind the benefits of stabilizing a filtered version
of the original process is as follows. It is well known that the per-
formance of the Anscombe VST deteriorates as the intensity be-
comes low [1] (typically for ), i.e., as the SNR decreases.
Hence, one can alleviate this limitation and enhance the perfor-
mance of the VST if the SNR is increased before stabilization.
This can be achieved by prefiltering the original process pro-
vided that the filter acts as an “averaging” kernel, or a low-pass
filter. A detailed asymptotic analysis will support these claims.
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By recognizing that a large family of multiscale transforms
are computed from filtering equations (e.g., wavelets), the pro-
posed VST can be seamlessly combined with their filter banks,
leading to multiscale VSTs (MS-VSTs). Toward the goal of
Poisson denoising, we are allowed to choose or design the most
adaptive transform for the sources to be restored based on their
morphology. Indeed, owing to recent advances in modern com-
putational harmonic analysis, different multiscale transforms
were shown to be very effective in sparsely representing dif-
ferent kinds of information. For example, to represent regular
structures with point singularities, a qualified candidate is the
wavelet transform [1], [25]. The ridgelet transform [26] is very
effective in representing global lines in an image. The curvelet
system [27], [28] is highly suitable for representing smooth
images away from contours. These transforms are also com-
putationally attractive particularly in large-scale applications.
We will show that our VST can be easily coupled with these
different multiscale geometrical decompositions, yielding nor-
mally distributed coefficients with known variances. A classical
hypothesis testing framework is then adopted to detect the sig-
nificant coefficients, and a sparsity-driven iterative scheme is
proposed to reconstruct the final estimate. We show that the
MS-VST approach provides a very effective denoiser capable
of recovering important structures of various (isotropic, line-like
and curvilinear) shapes in (very) low-count images.

The paper is organized as follows. In Section II, a detailed
analysis is provided to characterize the VST. Section III outlines
the general denoising setting for using MS-VST with wavelets.
Then, Section III-B and C shows how the VST can be combined
with the isotropic undecimated wavelet transform (IUWT) and
the standard separable undecimated wavelet transform (UWT),
respectively. Denoising by MS-VST combined with ridgelets
and curvelets are respectively presented in Sections IV and V.
Section VI provides a discussion on the numerical results ob-
tained, followed by a brief conclusion and the perspectives of
our work. Mathematical proofs are deferred to Appendix.

II. VST OF A FILTERED POISSON PROCESS

Given a Poisson process where s are indepen-
dent and , is the filtered process
obtained by convolving with a discrete filter . We will use

to denote any one of the s. Let us define
for . In addition, we adopt a local homogeneity as-
sumption that for all within the support of .

A. VST-Heuristics

It can be seen that the variance of is proportional
to the intensity . To stabilize , we seek a transformation

such that is (asymptotically) constant, say
1, irrespective of the value of .

Heuristically, the Taylor expansion gives us
, where . We

then have .
Hence, by setting , we obtain a differential equa-
tion , of which the solution is given
by . This implies that the square-root
transform could serve as a VST. It is possible to use higher

order Taylor expansions to find VST of different forms, but
solving the associated differential equations is found difficult
since they are highly nonlinear.

B. VST-Rigor

We define the square-root transform as follows:

(1)

where is a normalizing factor. Lemma 1 confirms our heuris-
tics that is indeed a VST for a filtered Poisson process (with
a nonzero-mean filter) in that is asymptotically normally
distributed with a stabilized variance as becomes large.

Lemma 1 (square Root as VST): If , , ,
then we have

(2)
with the sign function.

This result holds true for any , of which the value con-
trols the convergence rate in (2). The Section II-C provides an
analysis of the asymptotic rate and determines the optimal value
of .

C. Optimal Parameter of the VST

To simplify the asymptotic analysis, we assume a non-neg-
ative filter and a positive constant (a nonpositive with a
negative can also be considered). Thus, our VST is simplified
to . We can now derive the asymptotic
expansions of and as stated in Proposition 1. Note
that the last point in the proposition results directly from Lemma
1.

Proposition 1 (Optimal Parameter of the VST):
1) Define . Then we have

(3)

(4)

2) For the VST to be second order accurate and to have
asymptotic unit variance, and must satisfy

(5)

3) For and as above, .

Proposition 1 tells us that for the chosen value of , the first
order term in the expansion (4) disappears, and the variance is
almost constant up to a second order residue. Note that if there
is no filtering , given by (5) equals 3/8, i.e., the value
of the Anscombe VST.
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Fig. 1. Behavior of (a) [Z] and (b) Var [Z] as a function of the underlying intensity, for the Anscombe VST, 2-D Haar–Fisz VST, the proposed VST with a
low-pass filter h = 2D B -spline filter and the CVS transform with the same filter h.

TABLE I
C AND C OF DIFFERENT FILTERS

Now fix to the value given in (5). Once the asymptotic ex-
pectation is normalized to , the coefficient of the higher order
term in (3) is given by (6). Similarly, the asymp-
totic variance being normalized to 1, the coefficient of the term

in (4) is shown in (7)

(6)

(7)

These higher order coefficients (6) and (7) can be used to eval-
uate the stabilization efficiency for a given filter. The ideal filters
will be those minimizing (6) and (7). Table I shows the values
of and for different filters, where corresponds
to the Anscombe VST (no filtering). Note that the values for
the Anscombe VST are 10 or even 100 times larger than for the
other cases, indicating the benefits of filtering prior to the sta-
bilization. This is also confirmed by the simulations depicted
in Fig. 1, where the estimates of (resp. ) obtained
from replications are plotted as a function of the intensity

for Anscombe [3] (dash-dotted), Haar–Fisz [7] (dashed), our
VST (solid) and CVS [10] (dotted). The asymptotic bounds, i.e.,

for the expectation and 1 for the variance, are also shown.
It can be seen that for increasing intensity, and
stick to the theoretical bounds at different rates depending on the
VST used. Quantitatively, Poisson variables transformed using
the Anscombe VST can be reasonably considered to be unbi-
ased and stabilized for , using Haar–Fisz for , and
using CVS and our VST (both after low-pass filtering with the
chosen ) for .

III. DENOISING BY MS-VST WAVELETS

A. General Setting

In this section, the proposed VST will be incorporated within
the multiscale framework offered by the (non-necessarily sep-
arable) UWT [25], [29], [30], giving rise to the MS-VST. The
undecimated transform is used since it provides translation-in-
variant denoising. Below, we first discuss the 1-D denoising
case, and the multidimensional extension will be straightfor-
ward (Section III-B2 and III-C2).

The UWT uses an analysis filter bank to decompose a
signal into a coefficient set , where

is the wavelet (detail) coefficients at scale and is the ap-
proximation coefficients at the coarsest resolution . The pas-
sage from one resolution to the next one is obtained using the
“à trous” algorithm [31], [32]

where if and 0 otherwise, ,
and “ ” denotes convolution. The reconstruction is given by:

. The filter bank

needs to satisfy the exact reconstruction condition.
Now the VST can be combined with the UWT in the fol-

lowing way: since are low-pass filters (so have nonzero
means), we can first stabilize the approximation coefficients

using the VST, and then compute in the standard way the
detail coefficients from the stabilized s. Note that the VST
is now scale-dependent (hence, MS-VST). By doing so, the
asymptotic stabilized Gaussianity of the s will be transferred
to the s, as will be shown later. Thus, the distribution of the

s being known (Gaussian), we can detect the significant coef-
ficients by classical hypothesis tests. With the knowledge of the
detected coefficients, the final estimate can be reconstructed. In
summary, UWT denoising with the MS-VST involves the fol-
lowing three main steps.

1) Transformation (Sections III-B and C): Compute the
UWT in conjunction with the MS-VST.
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Fig. 2. Diagrams of the MS-VST + wavelets in 1-D. (a) MS-VST combined with the IUWT. The left dashed frame shows the decomposition part and the right
one illustrates the direct inversion; (b) MS-VST combined with the standard UWT. The decomposition part is shown and no direct inversion exists.

2) Detection (Section III-D): Detect significant detail coeffi-
cients by hypothesis tests.

3) Estimation (Section III-E): Reconstruct the final estimate
iteratively using the knowledge of the detected coefficients.

The last step needs some explanation. The signal reconstruction
requires inverting the MS-VST-combined UWT after the de-
tection step. However, the nonlinearity of the MS-VST makes
a direct inversion impossible in the general case. Even for the
IUWT, which uses special filter banks yielding an invertible
MS-VST, the direct inverse will be seen to be suboptimal.
Hence, we propose to reformulate the reconstruction as a
convex sparsity-promoting optimization problem and solve it
by an iterative steepest descent algorithm (Section III-E).

B. MS-VST IUWT

The IUWT [33] uses the filter bank
where is typically a symmetric low-pass filter such

as the -Spline filter. The particular structure of the analysis
filters leads to the iterative decomposition scheme shown
in the left part of (8). The reconstruction is trivial, i.e.,

. This algorithm is widely used in astronomical
applications [1] and biomedical imaging [34] to detect isotropic
objects.

As stated in Section III-A, we apply the VST on the s re-
sulting in the stabilization procedure shown in the right part
of (8)

(8)

Note that the filtering step on can be rewritten as a filtering
on , i.e., , where
for and . is the VST operator at scale (see
Lemma 1)

(9)

Let us define . Then according to (5), the
constant associated to should be set to

(10)

This stabilization procedure is directly invertible as we have

(11)

The decomposition scheme and the inversion of MSVST
IUWT are also illustrated in Fig. 2(a).

1) Asymptotic Distribution of the Detail Coefficients:
Theorem 1 (Asymptotic Distribution of ): Setting

, if is constant within the support of the

filter , then we have

(12)
Here, represents the scalar product. This is a very useful
result showing that the detail coefficients issued from locally
homogeneous parts of the signal (null hypothesis , see Sec-
tion III-D) follow asymptotically a centered normal distribution
with an intensity-independent variance. The variance only de-
pends on the filter and the current scale. Hence, the stabilized
variance (and also the constants , , ) can all be pre-
computed for any given .

2) Extension to the Multidimensional Case: The filter bank
in becomes , ,

where . Note that is in general
nonseparable. The MS-VST decomposition scheme remains the
same as (8), and the asymptotic result above holds true. The
complexity for precomputing , , and the stabilized
variance in (12) remains the same as in the 1-D case.

C. MS-VST Standard UWT

In this section, we show how the MS-VST can be used to
stabilize the wavelet coefficients of a standard separable UWT.
In the same vein as (8), we apply the VST on the approximation
coefficients , leading to the following scheme [see also the
block-diagram of Fig. 2(b)]

(13)
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where , and is
defined as in (10).

1) Asymptotic Distribution of the Detail Coefficients:
Theorem 2 (Asymptotic Distribution of ): Setting

, if is constant within the support of the filter

, then , where

(14)

Parallel to Theorem 1, Theorem 2 shows the asymptotic nor-
mality of the wavelet detail coefficients obtained from locally
homogeneous parts of the signal (null hypothesis , see Sec-
tion III-D). Here, the values of , , and can all be
precomputed once the wavelet has been chosen.

2) Extension to the Multidimensional Case: The scheme (13)
can be extended straightforwardly to higher dimensional cases,
and the asymptotic result above holds true. For example, in the
2-D case, the UWT is given by the left part of (15) and the
version combined with the MS-VST is given in the following:

(15)

where is the convolution of by the separable filter ,
i.e., convolution first along the rows by and then along the
columns by . The complexity of precomputing the constants

, , and remains the same as in the 1-D case.

D. Detection by Wavelet-Domain Hypothesis Testing

Our wavelet-domain detection is formulated by hypothesis
tests [35], i.e., versus .
A coefficient is considered insignificant if the null hypothesis

is true, while it is significant if the alternative is met.
Note that wavelet coefficients computed from locally homoge-
neous parts of the signal are insignificant. Indeed, if there were
no noise, these coefficients obtained by applying the classical
UWT scheme would be zero-valued, since any wavelet has a
zero mean. Thanks to Theorems 1 and 2, the distribution of
under the null hypothesis is now known (Gaussian).

Hypothesis tests can be carried out individually in a coeffi-
cient-by-coefficient manner. First, the user prespecifies a FPR
in the wavelet domain, say . Then the -value of each coeffi-
cient is calculated under . Here,
is the standard normal cumulative distribution function, and
is the asymptotic standard deviation of after being stabilized
by the MS-VST. Finally, all the coefficients with will be
considered to be insignificant.

If we desire a control over global statistical error rates, mul-
tiple hypothesis tests should be used. For example, the Bonfer-
roni over-conservative correction controls the probability of er-
roneously rejecting even one of the true null hypothesis, i.e., the
family-wise error rate (FWER). Alternatively, one can carry out
the Benjamini and Hochberg procedure [36] to control the false
discovery rate (FDR), i.e., the average fraction of false detec-
tions over the total number of detections. The control of FDR
has the following advantages over that of FWER: 1) it usually
has a greater detection power; 2) it can easily handle correlated
data [37]. The latter point allows the FDR control in nonorthog-
onal wavelet domains. Minimaxity of FDR has also been studied
in various settings (see [38], [39] for details).

E. Iterative Reconstruction

Following the detection step, we have to invert the MS-VST
scheme to reconstruct the estimate. For the standard UWT case,
direct reconstruction procedure is unavailable since the convo-
lution (by ) operator and the nonlinear VST operator
do not commute in (13). For the IUWT case, the estimate can be
reconstructed by (11). However, this direct MS-VST inversion
followed by a positivity projection1 could entail a loss of im-
portant structures in the estimate (see results in Section III-F).
Here, we propose to reformulate the reconstruction as a convex
optimization problem described below, and solve it iteratively.
This procedure will be shown to better preserve the significant
structures in the data than the direct inverse. In the following,
we will concentrate on the 1-D case for clarity.

We suppose that the underlying intensity function is
sparsely represented in the wavelet domain. We define the
multiresolution support [40] , which is determined by the set
of detected significant coefficients at each scale and location

, i.e.,

is significant i.e.,
(16)

The estimation is then formulated as a constrained sparsity-
promoting minimization problem in terms of the wavelet co-
efficients . A component of can be indexed by the usual
scale-location index (i.e., ). The indices can also be
renumbered so that is mapped to a vector in . In this case,
a component of is indexed in a 1-D way, i.e., . Hereafter,
both notations will be used. Our optimization problem is given
by

where

(17)

where represents the wavelet transform operator, and
its (weak-generalized) left inverse (synthesis operator). Recall
that is the observed count data vector. Clearly, we seek the

1Positivity projection because Poisson intensity is always nonnegative.
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sparsest solution by minimizing the -objective [41], [42]
within the feasible set . The set requires that
the significant elements of preserve those of the data ; the
set ensures a positive intensity estimate.

Equation (17) is a convex optimization problem which can
be cast as a linear program (LP) and solved using interior-point
methods. However, the computational complexity of the LP
solver increases dramatically with the size of the problem.
Classical projected (sub-)gradient method is also difficult to
apply here since the projector on the feasible set is unknown.
Below we propose an alternative based on the hybrid steepest
descent (HSD) [43]. The HSD approach allows minimizing
convex functionals over the intersection of fixed point sets of
nonexpansive mappings. It is much faster than LP, and in our
problem, the nonexpansive mappings do have closed forms.

Theorem 3: Let . Define the following regularized
optimization problem :

where

(18)

Define the HSD iteration scheme [43]

(19)

where is the gradient of , and

in
otherwise

(20)

where represents the projection onto the nonnegative or-
thant, and and are the projectors onto their respective
constraint sets. The step sequence satisfies

and

(21)
Suppose that in b)-e) below, represents a tight frame decom-
position and its pseudo-inverse operator. Then we have:

a) the solution set of (17) is the same as that of (18) with
;

b) is nonexpansive, and its fix point set is
;

c) , with any , , where is

the unique solution to (18);
d) as , the sequence is bounded, therefore,

it has at least one limit point;
e) as , every limit point of the sequence is a

solution to (17).
Theorem 3 implies that in practice instead of directly solving
(17), one can solve its smoothed version (18) by applying (19)

with a small . In real problems, may be simplified to
, since the exact value of is not im-

portant and can be considered to be sufficiently large so that the
constraint is always satisfied. We also point out that although
Theorem 3 assumes a tight frame decomposition and pseudo-in-
verse reconstruction, in our experiments, we observed that the
iterations (19) applied equally to general frame decompositions
and inverses, and performed very well even with (see re-
sults in Section III-F). For , (19) rewrites

(22)

where is the limiting gradient2 of as
. Equation (22) is implemented in practice as a soft

thresholding with a threshold (noted as ). Now the
MS-VST denoising using the IUWT and the standard UWT is
presented in Algorithm 1 and 2, respectively.

Algorithm 1 MS-VST IUMT

Require: ; a low-pass filter ,

Detection

1: for to do

2: Compute and using (8).

3: Test assuming the normal statistics (Theorem 1), get the
estimate , and update .

4: end for

Estimation

5: Estimate by:

6: Estimate by:

7: Initialize

8: for to do

9:

10: .

11: end for

12: Get the estimate .

Algorithm 2 MS-VST Standard UWT

Require: ; a wavelet filter bank ,

Detection

1: for to do

2: Compute and using (13).

3: Test assuming the normal statistics (Theorem 2) and
update .

4: end for

2Clearly,rJ(d) is also an element of the subgradient of J which is given by
@J(d)[i] = sgn(d[i]) if d[i] 6= 0 and @J(d)[i] 2 [�1; 1] otherwise.
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Estimation

5: Initialize , if ; 0 otherwise.

6: for to do

7:

8: .

9: end for

10: Get the estimate .

In Algorithm 1, steps 1– 6 obtain a first estimate of by di-
rectly inverting MS-VST IUWT after zeroing the insignificant
wavelet coefficients. The direct inverse serves as the initialization
of the iterations. In step 6, the term corrects the bias
due to squaring an estimate. Indeed, if , then

. We can
also see that every iteration of (22) involves a projection onto
that restores all the significant coefficients. This actually results
in a better preservation of the important structures in the data
than the direct inverse (see also the results in Section III-F).

In Algorithm 2 the initialization is provided by the detected
significant wavelet coefficients (step 5). For both algorithms,

is the maximum number of iterations. A possible choice
of the step sequence is a linearly decreasing one:

, . It can be noted
that for chosen as above, the conditions in (21) are all
satisfied as . The computational cost of the whole
denoising is dominated by the iterative estimation step. This step
involves an analysis and a synthesis at each iteration and thus
has a complexity of , where is
the complexity of UWT and is the number of data samples.

F. Applications

1) Simulated Biological Image Restoration: We have sim-
ulated an image containing disk-like isotropic sources on a
constant background [see Fig. 3(a)] where the pixel size is 100

100 nm. From the leftmost column to the rightmost one,
source radii increase from 50 to 350 nm. This image has been
convolved with a Gaussian function with a standard deviation of
103 nm which approximates a confocal microscope PSF [44].
The source amplitudes range from 0.08 to 4.99, and the back-
ground level is 0.03. This spot grid can be deemed as a model for
cellular vesicles of different sizes and intensities. A realization
of the photon-count image is shown in Fig. 3(b). We present the
restoration results given by Anscombe [4] [Fig. 3(c)], Haar–Fisz
[7] [Fig. 3(d)], CVS [10] [Fig. 3(e)], Haar hypothesis tests [13]
[Fig. 3(f)], platelet estimation [23], [45], [24] [Fig. 3(g)], and the
MS-VST denoiser using iterative [Fig. 3(h)] and direct [Fig. 3(i)]
reconstructions. IUWT has been used to produce the results in
Fig. 3(c), (d), (e), (h), and (i); standard Haar UWT is used in
Fig. 3(f); cycle spinning with a total of 25 shifts is employed in
Fig. 3(d) and (g) to attenuate the block artifacts. The controlled
FPR in all the wavelet-based methods is set to 5 ; for the
platelet approach, the trade-off factor between the likelihood
and the penalization is set to 1/3 (see [24]).

As revealed by Fig. 3, all the estimators perform compara-
tively well at high intensity levels (right part of the images).

For low-intensity sources, Haar–Fisz, CVS, Platelets and the
MS-VST are the most sensitive approaches. We can see that
the IUWT-based methods preserve better the isotropic source
shapes than the other methods. Some residual noise can be seen
in the estimate of CVS.

We also quantify the performances in terms of the nor-
malized mean integrated square error (NMISE) per bin from
the denoised signals. The NMISE is defined as:

, where is the intensity
estimate. Note that the denominator plays the role of variance
stabilization in the error measure. In our experiments, NMISEs
are evaluated based on 5 replications. The MS-VST denoiser
provides the second lowest error, which is slightly larger than
that of the platelet estimate. The platelet estimator offers an
efficient piecewise linear approximation to the image. However,
on the isolated smooth spots, it tends to alter the isotropic shapes
and produces some artifacts. The regularity in the result could
be improved by averaging a larger number of cyclic shifts, but
leading to a very time-consuming procedure (a computation-time
benchmark is shown for a real example in Section V-C2).

Finally, we can also observe that the iterative reconstruction
Fig. 3(i) improves restoration of low-flux sources (see the upper
part of the image) compared to the direct inverse Fig. 3(j). This
phenomenon is clearly expected.

2) Astronomical Image Restoration: Fig. 4 compares the
restoration methods on a galaxy image. The FDR control is em-
ployed in Anscombe, Haar–Fisz, CVS, Haar hypothesis tests,
and the MS-VST methods. Among all the results, Haar–Fisz,
CVS, Platelets and the MS-VST estimates detect more faint
sources. It is found that Haar–Fisz, Haar hypothesis tests,
Platelets and the MS-VST with iterative construction generate
comparable low NMISE values, among which the iterative
MS-VST leads to the smallest one.

IV. DENOISING BY MS-VST RIDGELETS

A. Ridgelet Transform

The ridgelet transform [26] has been shown to be very effec-
tive for representing global lines in an image. Ridgelet analysis
may be constructed as a wavelet analysis in the radon domain.
Recall that the 2-D radon transform of an object is the collec-
tion of line integrals indexed by given by

(23)

where is the Dirac distribution. Then the ridgelet transform is
precisely the application of a 1-D wavelet transform to the slices
of the radon transform where the angular variable is constant
and is varying. For each scale , position and angle

, the 2-D ridgelet function is defined from a
1-D wavelet function as

(24)

A ridgelet is constant along the lines .
Transverse to a ridge is a wavelet.

Thus, the basic strategy for calculating the continuous
ridgelet transform is first to compute the radon transform

and second, to apply a 1-D wavelet transform to the
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Fig. 3. Denoising an image of simulated spots of different radii (image size: 256 � 256). (a) Simulated sources (amplitudes 2 [0:08; 4:99]; background = 0.03);
(b) observed counts; (c) Anscombe-denoised image (IUWT, J = 5, FPR = 5 � 10 , NMISE = 2:34); (d) Haar–Fisz-denoised image (IUWT, J = 5,
FPR = 5� 10 , 25 cyclic shifts (five for each of the axes), NMISE = 0:33); (e) CVS-denoised image (IUWT, J = 5, FPR = 5� 10 , NMISE = 0:81);
(f) image denoised by Haar hypothesis tests (Haar UWT, J = 5, FPR = 5� 10 , NMISE = 0:10); (g) platelet-denoised image (
 = 1=3, 25 random cyclic
shifts, NMISE = 0:059); (h) MS-VST-denoised image (IUWT, J = 5, FPR = 5� 10 , N = 20 iterations, NMISE = 0:069); (i) MS-VST-denoised
image (IUWT, J = 5, FPR = 5 � 10 , direct inverse, NMISE = 0:073).

slices . Different digital ridgelet transforms can be
derived depending on the choice of both the radon algorithm
and the wavelet decomposition [46]. For example, the slant
stack radon (SSR) transform [47], [48] is a good candidate,
which has the advantage of being geometrically accurate, and
is used in our experiments. The inverse SSR has, however, the
drawback to be iterative. If computation time is an issue, the
recto-polar radon transform is a good alternative. More details
on the implementation of these radon transforms can be found
in [28], [46], [47], and [48].

B. MS-VST With Ridgelets

As a radon coefficient is obtained from an integration of the
pixel values along a line, the noise in the radon domain follows

also a Poisson distribution. Thus, we can apply the 1-D MS-VST
wavelet detection described in Section III to the slices of the
radon transform. Let denote the ridgelet mul-
tiresolution support, where indicates that the stabilized
ridgelet coefficient at projection angle , scale and location

is significant. being available, we can formulate a con-
strained -minimization problem in exactly the same way as in
the wavelet case (Section III-E), which is then solved by HSD it-
erations. Hence, the Ridgelet Poisson denoising algorithm con-
sists of the following three steps.

Algorithm 3 MS-VST Ridgelets

1: Apply the radon transform.
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Fig. 4. Denoising a galaxy image (image size: 256 � 256). (a) Galaxy image (intensity 2 [0; 5]); (b) observed counts; (c) Anscombe-denoised image (IUWT,
B -spline filter bank, J = 5, FDR = 0:1, NMISE = 0:15); (d) Haar–Fisz-denoised image (IUWT, B -spline filter bank, J = 5, FDR = 0:1, 25 cyclic shifts
(five for each of the axes), NMISE = 0:04); (e) CVS-denoised image (IUWT, B -spline filter bank, J = 5, FDR = 0:1,NMISE = 0:074); (f) denoised image
by Haar hypothesis tests (Haar UWT, J = 5,FDR = 0:1,NMISE = 0:036); (g) platelet-denoised image (
 = 1=3, 25 random cyclic shifts,NMISE = 0:038);
(h) MS-VST-denoised image (IUWT,B -spline filter bank, J = 5,FDR = 0:1,N = 20 iterations,NMISE = 0:035); (i) MS-VST-denoised image (IUWT,
B -spline filter bank, J = 5, FDR = 0:1, direct inverse, NMISE = 0:051).

2: For each radon slice, apply the 1-D MS-VST UWT
detection and update .

3: Apply the HSD iterations to the ridgelet coefficients before
getting the final estimate.

C. Results

We have simulated an image with smooth ridges shown
in Fig. 5(a). The peak intensities of the vertical ridges vary
progressively from 0.1 to 0.5; the inclined ridge has a max-
imum intensity of 0.3; the background level is 0.05. A Poisson-
count image is shown in Fig. 5(b). The biorthogonal 7/9 filter
bank [25] is used in the Anscombe [Fig. 5(c)], Haar–Fisz

[Fig. 5(d)], CVS [Fig. 5(e)], and MS-VST UWT [Fig. 5(g)]
approaches. The denoised image using Haar hypothesis tests
is presented by Fig. 5(f). The estimates by Platelets and by
MS-VST Ridgelets are shown in Fig. 5(h) and (i), respec-
tively. Due to the very low-count setting, the Anscombe esti-
mate is highly biased. Among all the wavelet-based methods,
MS-VST UWT leads to the smallest error, but is outper-
formed by the Platelet and the MS-VST-based ridgelet esti-
mates. The two latter methods result in the lowest NMISE
values among all the competitors. Clearly, this is because
wavelets are less adapted to line-like sources. It can also be
seen that the shape of the ridges is better preserved by the
ridgelet-based estimate.
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Fig. 5. Poisson denoising of smooth ridges (image size: 256 � 256). (a) Intensity image (the peak intensities of the nine vertical ridges vary progressively from
0.1 to 0.5; the inclined ridge has a maximum intensity of 0.3; background = 0:05); (b) Poisson noisy image; (c) Anscombe-denoised image (UWT, 7/9 filter bank,
J = 4, FDR = 10 ,NMISE = 0:83); (d) Haar–Fisz-denoised image (UWT, 7/9 filter bank, J = 4, FDR = 10 , 25 cyclic shifts (five for each of the axes),
NMISE = 0:035); (e) CVS-denoised image (UWT, 7/9 filter bank, J = 4, FDR = 10 , NMISE = 0:034); (f) image denoised by Haar + FDR (J = 4,
FDR = 10 , NMISE = 0:044); (g) image denoised by MS-VST + UWT (7/9 filter bank, J = 4, FDR = 10 , N = 10 iterations, NMISE = 0:023);
(h) platelet-denoised image (
 = 1=3, 25 random cyclic shifts, NMISE = 0:017); (i) MS-VST + ridgelets (J = 4, FDR = 10 , N = 10 iterations,
NMISE = 0:017).

V. DENOISING BY MS-VST CURVELETS

A. First Generation Curvelet Transform

The ridgelet transform is efficient for finding only the lines
of the size of the image. To detect line segments, a partitioning
need to be introduced. The image is first decomposed into
smoothly overlapping blocks of side-length pixels, and the
ridgelet transform is applied independently on each block. This
is called the local ridgelet transform. The curvelet transform

[49], [50] opens the possibility to analyze an image with
different block sizes, but with a single transform. The idea
is to first decompose the image into a set of wavelet bands
using the IUWT, and to analyze each band with a local ridgelet
transform. The block size is changed at every other scale. The
coarsest resolution of the image is not processed. This
transform has been shown to provide optimal approximation
rate for piecewise images away from contours, and is
very effective in detecting anisotropic structures of different
lengths. More details can be found in [28] and [49].
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B. MS-VST With Curvelets

As the first step of the algorithm is an IUWT, we can stabi-
lize each resolution level in the same way as described in Sec-
tion III-B. We then apply the local ridgelet transform on each
stabilized wavelet band. Significant Gaussianized curvelet co-
efficients will be detected by hypothesis tests from which the
curvelet multiresolution support is derived. Finally, the same
to the wavelet and ridgelet case, we solve a constrained -mini-
mization problem on the curvelet coefficients by HSD iterations
before reconstructing the estimate. We now present a sketch of
the Poisson curvelet denoising algorithm.

Algorithm 4 MS-VST Curvelets

1: Apply the MS-VST IUWT with scales to get the
stabilized wavelet subbands .

2: Set .

3: for to do

4: Partition the subband with blocks of side-length and
apply the digital ridgelet transform to each block to obtain the
stabilized curvelet coefficients.

5: Test the stabilized curvelet coefficients to obtain .

6: if then

7:

8: else

9:

10: end if

11: end for

12: Apply the HSD iterations to the curvelet coefficients before
getting the final estimate.

It is not as straightforward as with the wavelet and ridgelet
transforms to derive the asymptotic noise variance in the
stabilized curvelet domain. In our experiments, we derived
them using simulated data with Poisson noise only. After
having checked that the standard deviation in the curvelet
bands becomes stabilized as the intensity level increases
(which means that the stabilization is working properly), we
stored this standard deviation for each wavelet scale

, each ridgelet scale , and each direction angle . Then,
once the stabilized curvelet transform is applied to our data,
these values of serve in the hypothesis testing
framework described in Section III-D to test the significance
of each stabilized curvelet coefficient at each scale and
direction angle .

C. Applications

1) Natural Image Restoration: Fig. 6 compares different
restoration methods on the Barbara image. The original image
is heavily scaled down to simulate a low-intensity setting
[Fig. 6(a), intensity ]. The FDR control is

employed in Anscombe [Fig. 6(c)], Haar–Fisz [Fig. 6(d)],
CVS(Fig. 6(e)], Haar hypothesis tests [Fig. 6(f)], MS-VST
UWT [Fig. 6(g)], and MS-VST curvelet [Fig. 6(i)]. As the
image is piecewise regular with smooth contours, platelets and
curvelets take their full power and provide the best results.
In terms of NMISE, MS-VST Curvelet results in the most
accurate estimate. Visually, MS-VST Curvelet best preserves
the fine textures.

2) Biological Image Restoration: Fig. 7 compares the
methods on an image of fluorescent tubulin filaments stained
with Bodipy FL goat anti-mouse IgG.3 The same denoising
settings are used as for Fig. 6. MS-VST UWT outperforms
all the wavelet-based methods; among all the compared
approaches, MS-VST Curvelet leads to the best result both
quantitatively and visually. For this example, we also evaluated
the computation time of the tested methods on a 1.1 GHz PC,
giving: Anscombe (C++ codes, 4 s), Haar–Fisz (C++ codes,
90 s), CVS (Matlab codes, 3 s), Haar hypothesis tests (C++
codes, 8 s), MS-VST UWT (C++ codes, 18 s), Platelets
(Matlab MEX codes, 2404 s), MS-VST Curvelet (Matlab
codes, 1287 s). This time benchmark shows that our MS-VST

UWT provides a fast solution among the wavelet-based
estimators; MS-VST Curvelet is more computationally
intensive but is about twice as fast as platelet denoising in our
example.

VI. DISCUSSION AND CONCLUSION

In this paper, we have introduced a novel variance stabi-
lization method and shown that it can be easily combined
with various multiscale transforms such as the undecimated
wavelet (isotropic and standard), the ridgelet and the curvelet
transforms. Based on our multiscale stabilization, we were able
to propose a new strategy for removing Poisson noise and our
approach enjoys the following advantages.

• It is efficient and sensitive in detecting faint features at a
very low-count rate.

• We have the choice to integrate the VST with the multiscale
transform we believe to be the most suitable for restoring
a given kind of morphological feature (isotropic, line-like,
curvilinear, etc).

• The computation time is similar to that of a Gaussian de-
noising, which makes our denoising method capable of
processing large data sets.

Comparison to competing methods in the literature show that
the MS-VST is very competitive offering performance as
good as state-of-the-art approaches, with low computational
burden. This work can be extended along several lines in
the future. First, the curvelet denoising could be improved
if the VST is applied after the radon transform in the local
ridgelet transform step, rather than on the wavelet coefficients
as proposed here. This is, however, not trivial and requires
further investigations. Second, new multiscale transforms have
been recently proposed such as the fast curvelet transform [51]
and the wave atom transform [52], and it would also be very
interesting to investigate how our MS-VST could be linked to

3The image is available on the ImageJ website http://rsb.info.nih.gov/ij
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Fig. 6. Poisson denoising of the Barbara image (image size: 256 � 256). (a) Intensity image (intensity2 [0:93; 15:73]); (b) Poisson noisy image; (c) Anscombe-
denoised image (UWT, 7/9 filter bank, J = 4, FDR = 0:1, NMISE = 0:26); (d) Haar–Fisz-denoised image (UWT, 7/9 filter bank, J = 4, FDR = 0:1, 25
cyclic shifts (five for each of the axes), NMISE = 0:28); (e) CVS-denoised image (UWT, 7/9 filter bank, J = 4, FDR = 0:1, NMISE = 0:28); (f) denoised
image by Haar+FDR (Haar UWT, J = 4, FDR = 0:1, NMISE = 0:29; (g) denoised image by MS-VST + UWT (UWT, 7/9 filter bank, J = 4, N = 5
iterations, FDR = 0:1, NMISE = 0:26); (h) platelet-denoised image (
 = 1=3, 25 random cyclic shifts, NMISE = 0:18); (i) denoised image by MS-VST +
curvelets (J = 4, N = 5 iterations, FDR = 0:1, NMISE = 0:17).

them. Finally, here we have considered the denoising with a
single multiscale transform only. If the data contains features
with different morphologies, it could be better to introduce
several multiscale transforms in the denoising algorithm. This
could be done in a very similar way as in the Gaussian noise
case [53].

APPENDIX

Proof of Lemma 1:
Proof: Suppose a filtered Poisson process

, where and all are indepen-
dent. Assuming , , , and ,
Lévy’s continuity theorem shows that

(25)

Then, by applying the Delta-method [54] with the function
and (25), Lemma 1 follows.

Proof of Proposition 1:
Proof: Expand in the neighborhood of , we

obtain

(26)

where the Lagrangian form of the remainder is given by

(27)

with strictly between and . The following lemma gives
an asymptotic bound on the expectation of the remainder .

Lemma 2: Consider a filtered Poisson
process where is a nonnegative FIR filter with . If
and , then .

Proposition 1 results immediately from Lemma 2. Using (26)
and (27), we can derive the Taylor expansion of about
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Fig. 7. Poisson denoising of fluorescent tubulins (image size: 256 � 256). (a) Intensity image (intensity2 [0:53; 16:93]); (b) Poisson noisy image; (c) Anscombe-
denoised image (UWT, 7/9 filter bank, J = 4, FDR = 0:1, NMISE = 0:095); (d) Haar–Fisz-denoised image (UWT, 7/9 filter bank, J = 4, FDR = 0:1, 25
cyclic shifts (five for each of the axes), NMISE = 0:096); (e) CVS-denoised image (UWT, 7/9 filter bank, J = 4, FDR = 0:1, NMISE = 0:10); (f) denoised
image by Haar+FDR (Haar UWT, J = 4, FDR = 0:1, NMISE = 0:10; (g) denoised image by MS-VST + UWT (UWT, 7/9 filter bank, J = 4, N = 5
iterations, FDR = 0:1, NMISE = 0:090); (h) platelet-denoised image (
 = 1=3, 25 random cyclic shifts, NMISE = 0:079); (i) denoised image by MS-VST
+ curvelets (J = 4, N = 5 iterations, FDR = 0:1, NMISE = 0:078).

up to order . Then, (3) follows from Lemma 2.
Equation (4) can be proved similarly. (ii) can be easily verified,
and the last statement (iii) follows from Lemma 1.

It remains to prove Lemma 2. We will make use of the
Cramér–Chernoff inequality [55].

Lemma 3 (Cramér–Chernoff): Let be i.i.d.
real random variables. Consider the sum . Let

be the moment generating function (mgf) of
and define for (

is thus valued). Then, we have for all

is strictly positive if . It can also be shown
that is concave and is strictly concave if is not almost
surely a constant. Now, we have the following lemma.

Lemma 4: Consider a filtered Poisson process
where are independent, and is a

filter of length with . Then, for all ,
there exists depending only on and such that

Proof: Rewrite as follows:

where such that and are i.i.d.
Poisson variables. It can be noted that are also i.i.d. vari-
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ables. We will apply Lemma 3 on . First let us calculate
as follows:

(28)

where is the mgf of . We will evaluate at
. Since is not almost surely a constant,

must be attained at a unique . Thus, setting ,
we take the derivative of the argument in (28) and set it to
zero, resulting in the equation necessarily satisfied by

(29)

is given by

(30)

Both (29) and (30) show that and depend only on and .
We have in addition , since . We can now
apply Lemma 3, giving

Now we are at the point to prove Lemma 2.
Proof: It can be seen from (27) that satisfies

(31)

Denote and . We have

(32)

where there exists and the second term in (32)
results from Lemma 4. Then

We will conclude by showing that
. The moment and the cumulant of the

centered random variable are related by

(33)

It can be shown by induction that is a polynomial of
, which has a minimal order 1 and a maximal order

. The th cumulant of is for .
Therefore, . Consequently, satis-
fies

This shows that .
Proofs of Theorem 1 and 2: We will prove Theorem 1

below, and Theorem 2 can be proved in the same way.
Proof: Let and

. Suppose ,

, and . Then Lévy’s continuity
theorem results in

(34)

Define .
We obtain the desired result by applying the multivariate Delta-
method with the function and (34).

Proof of Theorem 3: We will first need to prove Lemma 5.
Given a Hibert space with inner product and induced
norm , we call a mapping nonexpansive if for
all . Suppose that a mapping

is nonexpansive and . Then is
attracting (w.r.t. ) if for every ,
we have . Properties of nonexpansive
and attracting mappings can be found in [56]. For a given set

, a mapping is -strongly monotone over
if there exists such that
for all . Let us point out that in our case, is .

Lemma 5: With the same notations as in Theorem 3, we
have:

a) , , , and are all closed convex nonempty sets;
b) and are attracting, and and

;
c) , and if represents a tight frame and

is the pseudo-inverse operator, then is nonexpansive;
d) if is attracting, is nonexpansive, and

, then is nonexpansive with
.

Proof: (a) and (b) can be easily verified; (c) results from
the fact that ([25]) and that is a projector
(so nonexpansive). To prove (d), can be easily verified to be
nonexpansive. It is obvious that
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. To prove the other inclusion, pick . It is
sufficient to show that . Suppose that ,
then necessarily . Now pick any

. Since is attracting, we have

which is absurd. Thus,
.

Let us now prove Theorem 3.
Proof: (a) can be easily verified. (b) is a direct result

of Lemma 5 (d). To prove (c), we note that is convex and
. It can be verified that

is -Lipschitzian and -strongly monotone
over . Then (c) results from the convergence theorem
of HSD [43]. (d) is obvious. To prove (e), we have for any
convergent subsequence of , say , that

(35)

Then by taking the limit on both sides of (35), we
have . since is closed. is thus
a solution to (18) with , and, hence, also a solution to (17)
by (a).
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