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Abstract—In general video game playing, the challenge is to
create agents that play unseen games proficiently. Stochastic
tree search algorithms, like Monte Carlo Tree Search, perform
relatively well on this task. However, performance is non-
transitive: different agents perform best in different games, which
means that there is not a single agent that is the best in all the
games. Rather, some types of games are dominated by a few
agents whereas other different agents dominate other types of
games. Thus, it should be possible to construct a hyper-agent
that selects from a portfolio, in which constituent sub-agents will
play a new game best. Since there is no knowledge about the
games, the agent needs to use available features to predict the
most suitable algorithm. This work constructs such a hyper-agent
using the General Video Game Playing Framework (GVGAI).
The proposed method achieves promising results that show the
applicability of hyper-heuristics in general video game playing
and related tasks.

I. INTRODUCTION

In order to be generally intelligent, an agent (artificial or
natural) needs to be capable of behaving intelligently in a
wide range of problems or environments. While one can use
artificial intelligence methods to solve a particular problem, the
resulting Al application is Al in only a narrow sense. To create
general Al, one therefore needs to develop algorithms that are
capable of solving a large number of problems. At least, this is
the definition of intelligence and artificial intelligence implied
by Legg and Hutter [1], variants of which are widely accepted
in the Artificial General Intelligence community [2]. In other
words, the Al application should not be dependent on the
human designer re-tailoring the algorithm for each problem,
otherwise we simply have a set of narrow Al solutions, with
a human designer choosing which one to apply where.

This is also part of the reasoning behind the General
Game Playing (GGP) [3] and General Video Game Playing
(GVGAI) [4] competitions. In both, competitors submit game-
playing agents, or controllers, that play any game adhering to
a given interface. The developers of these controllers do not
know at submission time which games their algorithms will
be tested on and the winner is the controller which plays these
unseen games best.

So far, the winners of the GGP and GVGAI competitions
are mostly based on generic tree search algorithms. In partic-
ular, algorithms based on some version of Monte Carlo Tree
Search (MCTYS) [5] have been performing well. However, other
very general algorithms, such as rolling horizon evolutionary
planning [6] have also achieved good results.
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It stands to reason that an algorithm that is capable of
solving a large number of dissimilar problems will in some
way be adaptive, such that it chooses which strategy to adopt
depending on the problem. The analogy is that a human
approaches different problems in various ways, depending
on some familiarity with the type or initial experiences with
solving these problems. In an artificial intelligence context,
we could imagine an agent that includes several problem-
solving algorithms or sub-agents, and chooses which one of
them to use every time it encounters a new problem. The
general concept of a method that selects sub-level methods to
solve a problem seems to have been proposed independently
in different lines of research and is couched in different
terminologies. These ideas have been expressed in hyper-
heuristics [7] [8], algorithm selection [9], meta-learning [10],
[11] and ensembles [12].

In this paper, we describe the creation of a “hyper-agent”
for general video game playing that utilizes the strengths of
multiple individual controllers to play unseen games better
than any of them individually. This hyper-agent uses an offline
learning approach, i.e. it uses set of trained instances to acquire
information about controllers performance and create a selec-
tion model that generalizes well for new, unseen games. For
clarity, we use the term hyper-agent instead of hyper-controller
because it does not directly control the main character but it
selects the best controller to do so.

Such an undertaking assumes that playing strength is non-
transitive, i.e. different controllers excel at different games,
and that there is some kind of regularity to which games are
played best by which controllers. It also assumes that we can
find game features that let us explore this regularity and use
it to predict which controller would play an unknown game
best. These assumptions are, as far as we can tell, hitherto
untested for our target domain (general video game playing),
making this paper the first attempt at using algorithm selection
or hyper-heuristic techniques in general video game playing.

For the experiments in this paper, we use the GVGAI
framework (the software used for the GVGAI competition),
and a number of controllers developed for the competition.
Based on a set of games, classifiers are trained to predict which
controller excels at a given game. Then a hyper-agent uses the
best classifier in games it has never been trained on. The final
goal is to choose the best controllers to play each game in real
time.



The paper is structured as follows. The next section de-
scribes general video game playing and the GVGAI framework
as well as some principles of hyper-heuristics and algorithm
selection. Section III describes our methodology: which con-
trollers we used as constituent controllers for our hyper-
heuristic agent, how we extracted features to use and collected
data on controller performance, and train classifiers to predict
the best controllers. Section IV describes the results of using
these classifiers in a hyper-heuristic agent, as well as an
attempt to use the cluster analysis to understand the game
space induced by the selected game features.

II. BACKGROUND

Hyper-heuristics are methods or learning mechanisms for
selecting or generating heuristics to solve computational
search problems [13]. To classify these methods two com-
ponents are considered: the nature of the heuristics’ search
space, and the different sources of feedback information.
According to the nature of the search space, the methods
can be defined as heuristic selection, when used for selecting
existing heuristics, and heuristic generation, when the goal
is to use existing heuristics to generate new ones [7], [9].
By this definition, heuristic selection has a large overlap with
the algorithm selection problem, where the goal is to select
the best algorithm to solve different instances of the problem
without modifying the algorithm [14]. In this work, we explore
the literature from both fields and although we prefer to use
the term hyper-agent, we acknowledge that it can also be
considered as an algorithm selection approach.

A. Hyper-heuristics

With regard to the feedback information, a hyper-heuristic
is considered a learning algorithm if it uses feedback from the
search process to improve its performance. This feedback can
be online and offline. It is online when the learning happens
while the algorithm is solving an instance of a problem. It is
offline if it uses information in the form of rules or programs,
from a set of training instances, that will hopefully generalize
well for unseen instances [13][15]. There are also hybrid
methodologies that combine online and offline feedback [16],
and heuristic selection with heuristic generation [17] [18].

Three requirements can be considered when defining a
hyper-heuristic approach. It has to manage a set of low-level
heuristics, it searches for a good method rather than for a good
solution, and most importantly, it uses only limited problem-
specific information in order to generalize well for other
applications [19]. The method proposed in this paper fulfills all
three requirements and can be classified as a selection hyper-
heuristic that uses offline feedback information.

A similar method has been proposed to explore patterns
of regularities of two heuristics for constraint satisfaction.
The collected performance of heuristics is used to generate
a heuristic that selects others in the constructive process to
produce a solution [20]. Another study uses feature extraction
and hyper-heuristics to improve the problem state representa-
tion of irregular packing problems [21].

Most of the applications of hyper-heuristics approaches have
been focused on problems in domains such as production
scheduling [22] and education timetabling [23]. In the games
domain, Li and Kendall use a heuristic selection mechanism
integrates a number of existing heuristics for specialized
strategic games into an automated game player [24]. Elyasaf
et al. evolve heuristics to guide staged deepening search to
develop top-notch solvers for the hard game of FreeCell [25].
Using a evolutionary algorithm to pick from a set a low-
level heuristics, Salcedo-Sanz et al. proposed a hyper-heuristic
method for the puzzle-game Jawbreaker [26] and Benbassat et
al. presents two types of approaches, “minimalist” (less human
knowledge in the setup) and “maximalist” (using human
knowledge in the setup) to evolve game strategies for board
games [27].

Although in the same domain, the methods proposed differ
from our problem in significant ways such as: the type of
games, the type of the heuristics’ search space and feed-
back information, and the information available to the hyper-
heuristic about the game and the low-level heuristics.

B. Algorithm Selection

One influential taxonomy of algorithm selection methods [9]
suggests that an algorithm can be identified in steps. First it
analyzes the type of portfolios, i.e the set of algorithms that
will be selected. A portfolio can be static [28], [29] if the
algorithms are defined a priori and never change or dynamic
if the portfolio changes while solving the problem [30]. From
the portfolio, methods can select the single best algorithm
or allocate times slots to combine results from different
algorithms. Concerning to when they select, the methods can
pick before the solving of the actual problem starts or while the
problem is being solved [31]. Another important step is how
this selection is made. The decision involves, for example,
analyzing accuracy, computational cost and time and even
number of low-level heuristics to manage [18]. Finally, there is
also an essential step that concerns about finding information
to help the selection, such as feature selection and extraction
[32],[28] and the use of the performance of the selected
algorithms in the past.

Based on the problem and data that we have and following
the proposed organization, our method can be defined as
using a static portfolio, that selects the best single algorithm
before the problem is being solved. Our selection method uses
machine learning models based on the previous performance
of our algorithms (controllers) in each instance (games). To
train these models we manually select features available at
the start of each game.

Algorithm selection has been applied to domains such as
linear algebra [33], linear systems [34] and specially to
combinatorial search problems [31], [29]. The use of algorithm
selection in games seems to be restricted to game theory [35]
and we could not find any applications in video games in the
literature.



C. General video game playing

In the past decade, video games have become increasingly
popular as an Al benchmarks, as they require a rich repertoire
of cognitive capabilities for humans to play well, but can be
simulated simply and cheaply on a computer. A number of
recent Al competitions have been based on different kinds of
video games. The GVGAI competition was created mainly to
counteract the problem that these competitions allow partici-
pants to tailor their submissions strongly to a particular game.
Instead, game-playing controllers submitted to the GVGAI
competition are pitted against a number of unseen games [4].
This separates it from e.g. the Arcade Learning Environment,
where controllers are trained to play a number of well-known
games [36]. Another difference is that GVGAI controllers get
access to a structured representation of the game state as well
as a simulator that allows the use of tree search algorithms to
play the games.

So far, the results have shown that methods based on
MCTS and MCTS-like algorithms have done very well on
this benchmark, but based on the algorithm superiority [37]
and in our observation, we see that performance is non-
transitive: different controllers play different games best. This
can be seen even when adding seemingly minor modifications
to the core MCTS algorithm; modifications that improve
performance of MCTS on one game may degrade performance
on another [38].

III. METHODS
A. Games

The games in the GVGALI platform are created using a Video
Game Description Language (VGDL) that is designed around
objects that interact in two dimensional space [39]. Using
level description and game description, VGDL can describe a
wide variety of video games, including approximate versions
of Space Invaders, Sokoban, Pong, Pac-Man, and Mario Bros.

In this work, we use 41 games available in the GVGAI
framework as of December 2015. Each game has five different
levels that differ from each other through variations on the
locations of sprites, resources available and variations on non-
player character (NPC) behavior.

B. Game-playing controllers

Since the hyper-agent selects the best low-level controllers,
its performance is directly related to the performance of the
controllers available in its portfolio. In light of that, it seems
reasonable to think that the portfolio should be composed
of the best controllers. However, based on previous work
[40] and on our analysis of the competition, we noticed
that the overall champions are able to perform well in most
of the games but fail badly in playing some specific ones.
Meanwhile other overall low-performance controllers are able
to win in these specific games. Therefore, we want a bal-
anced portfolio composed of complimentary controllers with
different strengths that, together, win a broader variety of
games. Another important characteristic is to select a number

of different controllers that guarantees variability but is not so
large that makes hard for the model to choose from [28].

Within these considerations, we use a static portfolio com-
posed of seven controllers. Three of them are high-performing
algorithms that were among the best places in 2014 and 2015
competition. The other four are standard algorithms created
by the developers of the framework with mediocre overall
performance but with good results in specific games where
the high-performing algorithms fail.

The controller adrienctx (ACT), created by Adrien
Couétoux and first place in 2014, uses the algorithm Open
Loop Expectimax Tree Search (OLETS) [4], which is inspired
by the Hierarchical Open-Loop Optimistic Planning algorithm
(HOLOP) [41]. It uses a method called Open Loop Expec-
timax (OLE) with uses nodes containing a reward function
that can store the empirical average reward obtained from
simulations that exited in the node and the maximum of reward
functions values from the nodes children.

The second place in 2014, created by Jerry Lee, is called
JinJerry (1]). JinJerry is based on a MCTS with a selection
strategy similar to the one used in [42]. In every game cycle,
It creates a one-level tree with the current game state as the
root node and the one-action-ahead states of all actions as the
leaf nodes. After that, it needs to evaluate the immediate and
potential score of all the leaf nodes so that it can use a scoring
heuristic to evaluate the states. The action selection strategy
is to select the action with a safe state and a high score. If
the random actions lead to a state where the game is over, the
potential score is not considered. Finally, the potential score
will replace the immediate score if it has a higher score.

The champion algorithm for 2015 is YOLOBOT (YB)
created by Tobias Joppen, Nils Schroeder and Miriam Moneke.
It combines methods like breadth first search and MCTS to
analyze the current state and simulations of future states reach-
able through one-action-ahead. It also creates an observation
list of all the sprites reachable in the state and defines the most
interesting target based on a function that analyzes empirical
values from the observations.

There are also four sample controllers. Sample One Step
Look Ahead (SOS) uses an simple heuristic function to
evaluate the states reached within one move from the current
state and select the action with highest reward. The Genetic
Algorithm controller (GA) implements an online (rolling
horizon) genetic algorithm, where each individual represents
a sequence of actions and its fitness is evaluated using an
heuristic function. Small populations are evolved in each game
step and the move returned is the first action of the best
individual found.

The last two controllers, the sample MCTS (MCTS) and
OL-MCTS (OLMCTS), use a similar vanilla Monte Carlo Tree
Search implementation [5]. The sample MCTS is extended
with common enhancements such as using an Upper Con-
fidence Bound for trees selection and a random expansion.
The algorithm evaluates the states by giving a high reward
for a won game and a negative reward for a lost game. If
the final state is not reached, it uses the score achieved. OL-



MCTS player is a sample MCTS that uses an Open Loop
implementation, focusing more on information gained from
the current state of the game [4].

C. Non-Transitive nature

To evaluate the non-transitive nature of the controllers,
we played all the games using the procedures explained in
Section III-H. Table I shows the sum of victories that each
controller achieved for five levels in each game and Table II
shows the normalized average scores. The intensity of the cells
is proportional to the performance of the controller, where
higher and lower values are respectively presented in lighter
and darker cells. These results show that our portfolio is
composed of complimentary controllers that can excel in a
wide variety games.

D. Game Features

Features have a direct impact in the performance of our
classifier. Although the game in the GVGAI platform is
unknown to the controller, the state observation of the game
provides information about various elements, such as number
and type of NPCs, type of resources, dimensions of the map,
action set, and types and number of sprites. We analyzed the
classes available in the general state observation of all games
and defined 14 features that are presented in each of them and
we believe would represent different types of games. Table III
shows the features, the group they belong to, and a description
of each of them.

The first group is the resources available in the game. We be-
lieve that theses features provide important information about
changes in the rules of the game, such as when pacman eats
a pill and can eat enemies. The second group refers to Non-
Player Characters (NPCs) and it provides certain information
about the type of game, for example, if the agent has enemies
or it is alone (like in a puzzle game). Dimensions is used
to give an idea about the space the agent has in the game.
Although elements such as block size seems like an unusual
choice, Figure 2 shows that it provides useful information in
the decision tree model.

The Sprites groups provide information mainly about mov-
able things in the game and how it affects the agent. Portals,
similarly to resources, is a good indication of changes in
the game. For example, a game with portals can offer more
changes because new enemies Or resources can come out
of them. Finally, the actions group gives very important
information about what the user can do in the game, such
as move up or down and attack enemies.

E. Data collection

For feature extraction, we analyzed different games in their
start (game tick = 0) and after a period of time (game tick >
0). Except for number of NPCs, all of our features are static,
i.e. they remain the same during gameplay. We then created a
collector bot that saves the features at the initial state of each
level in each game.

In our approach, the labels are the best controllers for each
level of the games. In order to compare the these controllers,

we ran the experiments described in Section III-H. Using
the features extracted and the average performance of the
controllers, we created a dataset composed of 205 instances
(41 games times 5 levels) with 14 features and 205 labels (best
controller for each instance).

E Classification

Using the dataset from the data collection, we utilize
multiclass supervised learning to create a model for algorithm
selection using methods implemented in the Weka machine
learning software [43]. Similar to previous work in the field
[44], [45], we choose algorithms that could achieve good accu-
racy, such as Support Vector Machines (SVM, using libSVM
implementation [46]) and Multi-Layer Perceptrons (MLP),
and methods that could also report an understandable strategy
for the classification, like Decision trees (J48 implementation
in Weka) and logistic regression (LR), like in previous works.

Our labels for the classification are the ones obtained
during data collection described in section III-E. To prevent
overfitting due to the small size of our dataset, we perform
two types of cross validation. First we use a normal 10-
fold cross-validation (CV-1) where in each round the data
is shuffled and partitioned in training and test subsets. Then
validation results are averaged over the rounds. In the second
method (CV-2), to ensure that the model would be tested with
truly unseen data, we manually divided the dataset into 10
different subsets, where each test subset is composed of four
different games with five levels. We then perform the 10-fold
cross validation and in each round the model was trained in
37 games (37*5=185 levels/instances) and tested in 4 (4*20
levels/instances) completely unseen games.

G. Online playing

The hyper-agent works following a sequence of three steps:
feature collection, algorithm classification and algorithm selec-
tion (Figure 1). In feature collection, the hyper-agent uses the
state observation of the game to collect the selected features.
Then it normalizes them using the same filter as in the offline
training. This creates a dataset similar to the one used for
training the model. In algorithm classification, it uses the
trained model to predict the best controller to play the current
game. Finally in algorithm selection, it uses the output decision
and loads the best controller. This controller will play the rest
of the game, returning actions using its own defined strategy.

H. Experiments

To collect data and compare the proposed hyper-agent with
those submitted to the GVGAI competition, we use the same
software, scoring method and ranking criteria [4]. All the
levels for each game are played five times by the seven
controllers in our portfolio and by two variations of hyper-
agents. This represents a total of 1,025 game plays by each
controller/agent and an overall total of almost 10,000 game
plays. The experiments were performed locally using the
framework available on the competition website.

Three measures were applied to the experiments: victories,
score and time. Since it is more important to win the game



GI G2 G3 G+ G5 G671 G8 G G0
MCTS 25 23 il 2
OLMCTS | 25 23 16
GA 25 23 13 12
SOs 25 23 14 13
YB 25 25 11 24 22 21 21 13 25
ACTX 25 15 25 14 25 25
I 12 ow s 20 25 13
G2 G2 G4 G5 G2 G271 G28  G29 G0 G3l
MCTS 19
OLMCTS 14
GA 19
sos 18
YB 25 20 25 24 25 25 24
ACTX 22 13 25
i) 17

Gl11 G12 Gl13 Gl4 GI15 Gl6 G17 G18 G19 G20 G21
22 12 23
20 11 25
19 11 21
21 14 20
25 25 25 24 24 12 20
25 23 14 18 25
23 17
G32 G33 G34 G35 G36 G37 G38 G39 G40 G41 Total
14 17 25
19 25
15 16 25
14 13 25
23 14 25 654
25 22 18 25 453
25 25 25

TABLE I: Non-Transitivity for victories - Five levels for each game are played five times and we sum the win rate for each
agent. The intensity of the cells is proportional to the results and they indicate that different agents excel at different games,
showing the non-transitive behavior of our set of agents with regarding to victories.

G5 G6 G7 G8 G9

G10

Gll1 G13 Gl4 GI15 Gl6 G17 GI8

TABLE II: Non-Transitivity for scores - In the GVGAI framework, different games have different scores.

In order to

compare them, results are normalized so that the algorithm with the highest score receives 1, the lowest receives 0 and the
others are ranked between those values. Similar to the victories, algorithms also present non-transitive behavior for scores.

Group Feature Description
gameHasResources If there are resources in the game
Resources avatarHasResources If the avatar has resources
nTypeResourcesGame Number of types of resources
nTypeResourcesAvatar Resources that the controller has
NPC nNPC Number of NPCs in the game
nTypeNPC Number of types of NPCs
Dimensions Area ] The area of the game
blockSize The number of pixels of a block
Sprites nTypeImmovableSprites | Number of types of immovable Sprites
nTypeMovableSprites Number of types of movable Sprites
Portals hasPortals If the game has portals
nTypePortals Number of types of portals
Actions Move Vertically If the controller can move vertically
CanShoot If the controller can attack enemies

TABLE III: Selected features used to represent unknown
games.

than fail with a high score, the GVGAI competition weighs
the number of victories higher than the achieved score. The
time measure is used only as a second tie-breaker because
high score victories are weighted higher than fast wins.

IV. RESULTS

From the results presented in Table IV, we selected SVM
and J48 to be selection models for the hyper-agent. SVM
achieved the best accuracy in both validations and J48 was
the second best in the second validation, which is the most
important. Besides, it provides an understandable decision tree
(Figure 2) that justifies its selection strategy. Although MLP
had good results in the first validation, the second validation
shows that model overfits the dataset an its performance is

Hyper Agent

[ Feature Collection J

|

[ Algorithm Classification ]

l

[ Algorithm Selection ]

I I
I I
I I
i [ Game Playing ] i
I I
I,

Fig. 1: The framework with steps for online playing.

inferior to ZeroR algorithm that just selects the majority class
in the dataset.

A. Controller selection at start

With trained models from SVM and J48, we created two
variations of the hyper-agents, HA-SVM and HA-J48. They
both use the framework for online playing, but differ in the
model selected to perform algorithm classification.

To show that the hyper-agents significantly differ from the
other algorithms, we compare their distributions through a



Accuracy
Algorithms | CV-1 CV-2
SVM 0.7125 | 0.6373
MLP 0.6976 | 0.4801
J48 0.6878 | 0.5936
LR 0.6023 | 0.5201
ZeroR 0.5042 | 0.5042

TABLE IV: Classification accuracy for the machine learning
algorithms using normal cross-validation (CV-1) and
domain-aware cross-validation (CV-2).

0.25

ACT (27/33)

nTypeResourcesAvatar
0

| ACT (9/18) ‘ ‘ YB (13/20) |

Fig. 2: J48 decision tree using features with high information
gain. For each leaf, it shows the controller selected and the
number of correctly classified instances out of the total
instances reaching the leaf.

statistical test using the a Mann-Whitney-Wilcoxon (MWW)
approach [47]. Table V shows the p-values for victories and
scores for the hyper-agents and the competition controllers. If
the p-value is small (p<0.05), it is possible to reject the null
hypothesis, which in this case says that difference is due to
random sampling, and conclude instead that the populations
are indeed distinct. The victories and scores for HA-J48, and
victories for HA-SVM, are proven to be significantly differ-
ent from the others. However, although HA-SVM achieved
higher scores than YB, the null hypothesis cannot be entirely
discarded because the p-value between the two distributions is
0.08.

In Table VI we show general results for the controllers and
an illustration that visually shows the superior performance of
the hyper-agents in victories, scores and time, over standard
and competition algorithms. To compare the controllers in each
game, we sum the wins for each level as in Table I and average
the values for score and time, as in Table II. We consider that
a controller dominates a game if it wins more than 3 levels
of that game. In Table VII, the total results show that HA-

Victories YB ACT 1 Scores YB ACT 1]
HA-SVM 0.014 | 0.000 | 0.000 || HA-SVM | 0.084 | 0.000 | 0.000
HA-J48 0.035 0.000 | 0.000 || HA-J48 0.023 0.000 | 0.000

TABLE V: p-values from comparing the victories and scores
distributions for hyper and low agents using MWW test. If
p-value < 0.05, the null hypothesis can be discarded.

wins scores | time
HA-SVM | 721 | 095 1.00 10
HA-T48 709 | 1.00 0.89 o5 || e
YB 654 | 0.78 0.87 e
ACTX 453 | 051 0.72 06
1 327 | 043 0.62 0t
GA 262 | 0.09 | 0.0
MCTS 258 | 0.09 | 003 02
OLMCTS | 252 | 0.06 | 0.04 0
SOs 251 | 000 | 005 E L s g e g - 82

TABLE VI: Left - Overall results with total number of
victories and normalized values for score and time. Time is
inversely normalize so that values closer to 1 means faster

controllers. Right - Visual representation with all metrics
normalized.

SVM dominates 28 games and HA-J48 25, achieving first and
second place respectively. When not considering the hyper-
agents, YOLOBOT is the best in 21 games, adrienctx in 14
and JinJerry in 6. Standard algorithms performed well in some
levels, but none of them dominated any game.

V. DISCUSSION

The proposed algorithm selection approach uses features to
predict the best algorithm for an unseen game. We selected
features that were available in the framework and exposed to
the controller through the APL

As in many machine learning problems, having good fea-
tures with high information gain plays an important role in the
performance of the classifiers. To better understand our agent,
we used a J48 algorithm to see the decisions that the agent
makes based on the features available. As expected, features
like CanShoot and MoveVertically are present in the selection
but with less importance than we anticipated. Since they have
good information to differentiate types of games (for humans
at least), we thought they would appear in the first or second
level of the tree.

With regard to the controllers, the classifier focus on the
three “’safe”” high performance controllers, which suggests high
exploitation. The downside is that other controllers in our
portfolio are not being used. To balance the trade-off and
improve explorations, we increase the tree depth. Although
the new tree shows more different controllers being selected,
neither the accuracy of the model or the performance of the
agent is significantly improved, whereas the complexity of the
tree is.

We believe that is happens because if the model selects
one of the three high performance controllers, it has a good
chance to perform well even if it does not pick the best. On
the other hand, if it wrongly selects a “risk” low performance
controller, the likelihood of failing in the game is much higher.



Games YB | ACT | JJ || HA-SVM | HA-J48
aliens (G1) v v v
boulderdash (G2) v v v
butterflies (G3) v v
chase (G4) X

frogs (GS5) v v v
missilecommand (G6) X

portals (G7) v v v
sokoban (G8) X

survivezombies (G9) X

zelda (G10) X

camelrace (G11) v v v
digdug (G12) v v v
firestorms (G13) v v v
infection (G14) v v v
firecaster (G15) X

overload (G16) v v v
pacman (G17) v v v
seaquest (G18) v v
whackamole (G19) X

eggomania (G20) v v

bait (G21) v v v
boloadventures (G22) X

boulderchase (G23) X

brainman (G24) v v

catapults (G25) X

chipschallenge (G26) v v

escape (G27) v v v
jaws (G28) v v v
labyrinth (G29) v v v
lemmings (G30) v v v
modality (G31) v v v
painter (G32) v v v
plants (G33) v v v
plaqueattack (G34) v v v
realportals (G35) X

realsokoban (G36) v v v
roguelike (G37) v v v
solarfox (G38) v v v
surround (G39) X

thecitadel (G40) v v v
zenpuzzle (G41) v v
Total 21 14 6 28 25

TABLE VII: Each row is a game. In the left three columns,
the best agent is assigned with a check mark if it has been
selected by one of the hyper-agents, or with a X otherwise.
In the right two columns, the check mark indicates that
hyper-agent selected the best low-agent for the game.

This trade-off is important to improve the performance our
agent because the main advantage of algorithm selection is to
use of the strengths of different algorithms in the portfolio.
To achieve this, we need to improve the performance of the
classifier to select the low performance controllers with higher
accuracy.

By extracting and selecting better features, it is likely
that the performance of the classifiers could be increased
by improving the classification accuracy of the model. In
particular, it might be possible to define features based on
the first few time frames of game play, including observations
on the behavior of moving sprites, spawning sprites etc. It
could also be possible to define features that rely on longer
observations of the game, and which change during gameplay,

making it possible to dynamically switch between controllers.
The construction of features that are not dependent on the API
of the GVGALI software will also increase the generality of the
method. Another important is step is to incorporate a feature
selector system to automatically extract different features and
train the model more dynamically.

Another important step for this project is to increase the
number of games used. While we use cross-validation and
statistical significance testing to validate the superior perfor-
mance of the hyper-agents over its portfolio, having more
games would help us to improve the strategy and understand
the generality of our approach. That would also make it easier
to compare our method with other standard-of-art methods
in algorithm selection that uses larger datasets. One possible
solution for this, is to generate games to train and test on.
Initial attempts to generate games in the GVGAI framework
are promising, and it is at least possible to automatically
generate variations of existing ones [48].

VI. CONCLUSIONS

This paper has presented an algorithm selection approach
to general video game playing in the GVGAI framework.
Based on the observation that performance in this domain
is non-transitive, a hyper-agent based on several well-playing
controllers was constructed. A number of features available to
the controllers were extracted and classification models were
trained to predict the best controller on each game. These mod-
els were used in the hyper-agent to select the best controller
to play unknown games. Testing the hyper-agent on unseen
games showed that it significantly outperformed the winners
of the 2014 and 2015 competitions. These encouraging results
suggest that the use of hyper-heuristics and algorithm selection
have an important role in general video game playing and
related tasks and there are many possibilities for improvement.

For future work, we intent to develop the feature selection
step, improve the size of the dataset potentially generating
more games automatically and we want to continue exploring
the application of hyper-heuristics in general video game
playing. We believe that methods with online learning can
perform well in this type of problem due to the many changes
that happen during game play. We also want to investigate
the use of heuristic generation in this the domain to not only
select, but also create high performance algorithms.
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