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Public summary

m This paper improves the Diebold-Yilmaz index model by time-varying parameter vector autoregressive (TVP-VAR)

model.

m This paper measures the static and dynamic spillovers between carbon trading markets, energy futures markets and en-

ergy stock markets.

m This paper describes the asymmetric connectedness structure between carbon markets.

m Compared with the Hubei pilot, Shenzhen pilot is more tightly connected to the energy markets, and the carbon markets

have more substantial impacts on the energy markets when the prices of emission allowances rise.
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Abstract: An intuitive portrayal of the correlation between the carbon and energy markets is essential for risk control and
green financial investment management. In this paper, we examine the asymmetric propagation of return spillovers
between carbon and energy markets at the sector level. To achieve that, we improve the Diebold-Yilmaz index by a time-
varying vector autoregressive (TVP-VAR) model. In a unified network, our daily dataset includes the closing prices of the
Hubei carbon market, Shenzhen carbon market, coal futures, and energy stock index. The findings reveal that both the
Hubei and Shenzhen pilots typically generate net information spillovers on energy futures. In connection with energy
stocks, the Hubei carbon market acts as a net receiver, while the Shenzhen carbon market is a net transmitter. Compared
with the Hubei pilot, the Shenzhen pilot is more tightly connected to the energy markets. Furthermore, the spillovers of the
carbon markets exhibit significant asymmetry. In most cases, they have more substantial impacts on the energy markets
when the prices of emission allowances rise. The direction and magnitude of asymmetric spillovers across markets vary

over time and can be influenced by certain economic or political events.
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1 Introduction

With rapid economic growth and excessive energy consump-
tion, large amounts of greenhouse gas emissions have caused
climate and ecological anomalies in recent years. It has be-
come a global consensus to take active measures to address
climate change. At the 75th session of the United Nations
General Assembly, China announced that it would strive to
reach peak carbon emissions by 2030 and achieve carbon
neutrality by 2060. The low carbon transformation of high en-
ergy consumption and carbon emission industries plays a
pivotal role in achieving the "double carbon" target, which re-
quires a large amount of financial support and is far from suf-
ficient to rely on government subsidies alone. Both the car-
bon emission allowance trading markets (carbon market for
short) and energy markets are playing an important role in the
process, which can generate more investment demand and op-
portunities. Energy is the cornerstone of corporate production
activities and economic development, and the financial mar-
kets associated with it have a strong influence on the overall
system. The use of fossil energy and the application of new
energy sources are closely related to the growth and reduc-
tion of total carbon emissions. The carbon market has be-
come a globally recognized and effective tool for emission re-
duction!. Since 2013, China has established nine regional pi-
lot carbon markets and launched a national unified carbon

market in the power generation sector on July 21. The carbon
market has the financial attribute of optimizing resource al-
location. The information it releases may affect corporate de-
cision-making and investor judgment, accelerating capital
flows and thus creating linkages with other markets. At the
same time, China is vigorously reforming the traditional fossil
energy industry and developing new energy industries to op-
timize the energy consumption structure to reduce carbon
emissions, further strengthening the linkage and risk conta-
gion between the carbon and energy markets. An in-depth
analysis of the spillover characteristics between China's car-
bon and energy markets is of great practical significance to
further promote the rational formation of the intrinsic price
transmission mechanism between the two markets and pre-
vent the drastic price fluctuations of products in each market.
Moreover, in the current economic situation, a "black swan"
type event will considerably impact the regional and global
economy. Extreme risk may be transmitted among multiple
markets, so it is crucial to study the correlation between dif-
ferent markets to reduce the negative impact of such events
on the stable development and investment returns of each
market.

1.1 Brief overview of the literature

The correlation between carbon markets and energy markets
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has received much attention from scholars at home and
abroad. The research findings vary according to different re-
search subjects and approaches. Conver et al.(2007) found
that energy prices have a significant impact on carbon prices
in the EU based on dummy variables and multiple regres-
sions”. Cao Guangxi et al.(2015) found that the Granger
causality between the EU carbon market and oil price is not
significant”!, Balcilar et al.(2016) found significant dynamic
risk spillovers from the coal market to the EU ETS based on
the MS-DCC-GARCH model™. Uddin (2018) combined C-
Vine Copula and CoVaR models to find that energy price
volatility has a profound impact on EU carbon prices and that
carbon assets can provide risk diversification effects for other
commodities”™. With the construction and development of
China's regional carbon market, domestic scholars have suc-
cessively conducted research on it. Guo Wenjun (2015) used
the multiple dimensions Lasso method to find that Shenzhen
carbon market is most influenced by the Euro exchange rate,
followed by domestic oil price!. Studies by Tao Chunhua
(2015) and Zhu Dongshan et al.(2016) both concluded that
domestic carbon prices have no significant impact on new en-
ergy stock prices™. Cui Jie et al.(2018) demonstrated a coin-
tegration relationship between the Beijing carbon market and
the fossil energy market”. Wei Qi and Jin Zhuoran (2018)
found a positive correlation between fossil energy and the
Beijing carbon market based on linear regression analysis!'”.
Zou Shaohui et al.(2020) used MSVAR model to reveal the
dynamic evolution pattern of the nonlinear relationship
among energy futures, energy stocks and Shenzhen carbon
market. It was found that there is a regional switching effect
of prices and a stronger persistence of nonstationary market
states among markets!" . Liu Jianhe et al.(2020) used the DCC-
GARCH model to find that the correlation between the Hubei
carbon market and coal market is more persistent and that
there is a significant asymmetric spillover effect between
them". Xu Yingying (2021) used GAS Copula-CoVaR and
found that compared to the Hubei carbon market, the Shen-
zhen carbon market is more affected by energy market uncer-
tainty!”!. Wang Xu et al.(2021) constructed Copula-GARCH
and DCC-GARCH models to reveal that the Shenzhen car-
bon market and the new energy market are dynamically de-
pendent and that dynamic dependence increases when the
market information is favorable!". Zhao Lingdi et al.(2021)
used the Diebold-Yilmaz index model to study the two-way
spillover effects between carbon and energy markets. They
found that there are time-varying characteristics and regional
differences in the spillover effect!”. Zhang Shaobin et al.
(2022) used the ARMA-GARCH-vine Copula model to ana-
lyze the multidimensional correlation between the Guang-
dong carbon price and several factors from the perspective of
the international carbon market, energy price, and China’s
economic situation. The results showed that the crude oil mar-
ket plays a major role in the vine structure and that the car-
bon market is not strongly correlated with other markets'*.
Yao Yi et al.(2022) explored the dynamic evolution of in-
formation spillovers using the connected network and rolling
window method. They found low information spillovers
among the carbon, energy, and stock markets in China. The
carbon market is the information transmitter, and the coal
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market is the largest information receiver in the network 7.
Wang Xiping et al. (2022) use the spillover index model and
complex network analysis to capture the intensity and direc-
tion of risk spillover between the Beijing carbon market and
various stock segment markets. The results show that the car-
bon market is a net receiver of risk from the stock market and
is most influenced by new energy stocks"". In summary, the
correlation between energy and carbon markets has been
widely recognized. However, a uniform conclusion has yet to
be reached regarding spillover direction, time-varying charac-
teristics, degree of contribution, and regional differences.

In terms of research methods, there are four main categor-
ies. The first category is linear correlation measures, includ-
ing the Granger causality test, linear regression, and simple
vector autoregression. The model is too simple to portray the
complex nonlinear correlations between markets. The second
category is multivariate generalized autoregressive condition-
al heteroskedasticity models, such as BEKK-GARCH, DCC-
GARCH, and MS-DCC-GARCH models. This method can
better fit the motor’s spike and thick tail characteristics.
However, it can only prove the existence of spillovers
between markets rather than the extent and direction of
spillovers. The third category is the copula model, which por-
trays nonlinear correlation structure and tail dependence. It is
often combined with CoVaR methods to measure risk
spillovers between markets. However, the copula model still
cannot identify the net spillover and receiver of information.
The excessive focus on tail information may ignore the mar-
ket’s overall performance. The fourth category is the Diebold-
Yilmaz spillover index method. The method is able to cap-
ture both the direction and intensity of spillovers between
markets. Therefore, we choose it to analyze the connected-
ness of carbon and energy markets.

The marginal contributions of this paper are as follows:
first, when using the Diebold-Yilmaz index approach, the lit-
erature uses the rolling window method to measure time-
varying spillovers between carbon markets and other markets.
The window width can impact the analysis results and cause
the loss of valuable observations. In this paper, the TVP-VAR
model avoids the problems associated with the choice of win-
dow width and can make fuller use of the sample data inform-
ation. Second, this paper measures the spillover effects
between the carbon and energy markets in both positive and
negative return series to capture the asymmetry of the connec-
tedness in the opposite price movement direction. Third, con-
sidering the importance of coal in China’s energy consump-
tion structure and the development of new energy industries
in recent years, this paper focuses on coal futures, coal stocks,
and new energy stocks. The variable network includes China’
s two most representative regional carbon markets, i.e., the
Hubei and Shenzhen pilots. We put all of them into a unified
framework for comparative analysis. This paper is organized
as follows: Section 1 presents the research background and
literature review. Second 2 introduces the correlation mechan-
ism and the Diebold-Yilmaz connectedness measures im-
proved by the TVP-VAR model. Section 3 presents the em-
pirical analysis results based on the sample data. Section 4
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shows the discussion of the analysis conclusions and sugges-
tions from the perspective of government and investors.

2 Mechanism and Model

2.1 Mechanism analysis

Based on market equilibrium theory, both the price of carbon
emission allowances and the price of energy depend on the
supply and demand in the market"”. Emission control com-
panies play an essential role in the correlation between the
carbon and energy markets. Enterprises emit large amounts of
greenhouse gases in their production processes. When the
government intensifies its efforts to control emissions, it will
reduce the setting and free distribution of carbon quotas, mak-
ing it difficult for enterprises to reduce their greenhouse gas
emissions in the short term. This change in the carbon market
will cause changes in the spot or futures prices of energy. In
consideration of cost control and development, emission con-
trol enterprises have two options: the first is to buy carbon al-
lowances at a high price, and the second is to seek new en-
ergy technologies and equipment to reduce carbon emissions.
Suppose the cost of purchasing carbon allowances is too high.
In that case, companies will choose the second option, and
emission control companies' demand for fossil energy will de-
cline. In turn, changes in the price of fossil and new energy
will influence the amount of fossil energy demanded by
firms. The variation in carbon emissions of the emission-con-
trolling companies will impact the carbon market by chan-
ging demand.

In addition, according to Hirschman's theory™”, changes in
private information from one market can trigger price vari-
ation in related markets, resulting in intermarket interactions
and linkages. While traditional energy companies profit from
the extraction and sale of fossil energy, new energy compan-
ies are mainly engaged in developing and selling new energy
technologies and equipment. On the one hand, carbon mar-
kets directly affect the revenue performance of both compan-
ies by influencing the demand for different energy products.
On the other hand, the price signals from the carbon market
may change investors’ expectations and investment decisions
regarding the development of energy companies, leading to
volatility in energy stock prices. In addition, considering exo-
genous factors, the prices of carbon emission allowances and
energy markets are also affected by the level of industrial de-
velopment, the degree of financial market development, cli-
mate change, and other factors”". In turn, their changes can
also affect macroeconomic developments®™. Thus, it is reas-
onable to assume that there is a significant link between the
carbon and energy markets.

2.2 TV-VAR

In the aftermath of the 2008 global financial crisis, measur-
ing the propagation of financial crises across economies and
markets has become a hot topic of academic research. In gen-
eral, crises are unpredictable, but the transmission mechan-
isms associated with financial risk share certain similarities.
In recent years, researchers have proposed a variety of meas-
ures to capture and characterize the transmission mechanisms
associated with such events. One notable empirical method is
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the spillover index method proposed by Diebold and Yilmaz
(DY index model)* . They proposed a framework for meas-
uring interdependence in a network of variables based on the
estimation of the forecast error variance decomposition de-
rived from a VAR model. These measures allow us to further
classify interdependence and provide granulated information,
considering the fact that results can be obtained for (i) aggreg-
ate, (ii) directional, and (iii) net interdependence. Specifically,
in terms of net interdependence, the approach is able to distin-
guish between net shock transmitters and net shock receivers,
which helps to better understand the underlying dynamics and
facilitate the formulation of policy implications. In their 2009
study, Diebold and Yilmaz investigated the interdependence
between variables of interest by using a Cholesky-type VAR
framework in which the order of the variables would affect
the results. Subsequently, in 2012, they used a generalized
VAR approach, where the order of the variables was irrelev-
ant. Finally, in the 2014 study, Diebold and Yilmaz emphas-
ized the concept of connectedness and provided a method to
measure it.

Based on the DY index model above, Antonakakis et al.
(2020) used a time-varying parametric vector auto-regressive
model (TVP-VAR) to capture possible changes in the under-
lying structure of the data in a more flexible and robust man-
ner”. Compared to the original DY index model, the model
has three main advantages: first, since the heteroskedasticity
process usually outperforms the homoskedasticity process,
the time-varying variance-covariance structure facilitates the
model to produce regression results that are more consistent
with economic reality. Second, since it does not involve
rolling window analysis, the model overcomes the selection
burden of rolling window sizes, which may lead to unstable
or flattened parameters, and avoids the loss of valuable obser-
vations. Third, since the model is estimated using the Kalman
filter, it is insensitive to outliers. Specifically, the TVP-
VAR(p) model is constructed as follows:

Y. = AIZT—] +€ € | Qr—l ~ N(0’21)7 (1)
vec(4) =vec(A, )+§ &1, ~N(O,E), 2
with
- A '
v Al
zl—l = : ,’ = : )
Vi A[)t

where y, and z, represent m X 1 and mp X 1 vectors, A, and A,
represent m X mp and m X m dimensional matrices, vec(4,) is
the vectorisation of A, which is an m?*p x 1 dimensional vec-
tor. ©Q,_, is the information set until 7—1. € and &, represent
mx 1 and m’p X 1 vector,respectively, whereas the time-vary-
ing variance-covariance matrices X, and =, are mxm and
m’pxm*p dimensional matrices. In our study, we set the
VAR estimation results of the first 60 days as the initializa-
tion of the Kalman filter.

Considering the numerical stability, we apply decay factors
in the Kalman filter algorithm. The choice of decay factors is
similar to the choice of priors in general, and depends on the
expected amount of time variation in the parameters. Al-
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though the estimation procedures allow the decay factors to
vary over time, we still keep them constant at fixed values be-
cause Koop and Korobilis (2013) found that the forecasting
performance added by time-varying decay factors may be
doubtful and increase the computation burden significantly®”.
Drawing on Adekoya et al. (2022)"", the benchmark values
for «, and «, were set at 0.99 and 0.99, respectively. In turn,

the Kalman filter can be calculated as follows:

vec(A)| 2 ~ N(vec(4,.).Z; )

ft—1

At\r—l = Az-w-l
€=y —Ay12
Y =X o+ (1—-k)€E
g = (1 _KII)E?—I\z—I

X o o=X'  +E

fi-1 t=1)-1

A ’
Ei\f—l = ZI_IZ,‘,,IZ,,I +Zf

Given the information at time t, A, X* and X, can be up-
dated as follows:

vec(A,) | z,, ~ N(vec(A,).X})

1t

K = Eﬁr—lzt/—lz;lrl—l
Arlr = A,‘,,l + KI (yr - Azlrflzrfl)
X, =I-K)xL,

e-rlf = yr - Arlrzrfl

Zm = KZEPII!*] +(1-k) f,’

|t e1|t

where K, denotes the Kalman gain, which explains how much
the parameters A, should be changed in any given state. To
determine the generalized impulse response functions (GIRF)
and generalized forecast error variance decompositions
(GFEVD), the TVP-VAR must be transformed to its vector
moving average (VMA) representation by the Wold repres-

entation theorem:

v.=Y B, B,=IMJ, j=01.. (3
j=0
with

1

A 0
Ml=( f ) - 4
Im(p—l) 0m(p—l)></u J ( )

0

where B, is an m X m dimensional matrix.

2.3 Connectedness measurement

The GIRFs (¥, (H)) measure the responses of all variables j
following a shock in variable i. We compute the differences
between an H-step-ahead forecast once where i is shocked
and once where i is not shocked. The difference can be attrib-

uted to the shock in variable i, which can be calculated by:

GIRFr (H, 6_/‘,n Qz—l) = E(yt+H | ej = 6j./91—l) - E(yr+J I Qt—l)

B, Xe;, 0, 5 —\/Z_
i = N &

VEi \Eu Q)
1

¥,.(H) =

¥, (H)=%,2B,Ze,
where e; is an m X 1 selection vector with unity in the j—th
position and zero otherwise. The GFEVD ¢, (H) measures
the pairwise directional connectedness from j to i and repres-
ents the influence variable j has on i with respect to its fore-
cast error variance share. It can be calculated as follows:

- I
¢u,t(H) ZT:] Z[[:[ \P?J)I
with =7 ¢, (H)=1 and X! @, (H)=m. These variance
shares are normalized so that each row sums up to 1, which
means that all variables explain 100% of i's forecast error
variance. The numerator represents the cumulative effect of a
shock in i and the denominator is the cumulative effect of all
the shocks. Based on GFEVD, the total connectedness index
(TCI) is constructed by

S b

> duH)
C,(H) = 10022 =100 ) (7)

3 ) "

i,j=1

(6)

C.(H) illustrates how a shock in one variable spills over to
others. In addition, Gabauer (2021) has shown that TCI can
be decomposed into the pairwise connectedness index (PCI)
which measures the interconnectedness between two variable
iand j ™

€ TP ®
¢.(H) + ¢.,(H) + ¢, (H) + ¢;.(H)

This index ranges between [0, 1], representing the degree
of bilateral interconnectedness across i and j. First, consider-
ing the case where i transmits its shock to all other variables,
we construct the index called fotal directional connectedness
to others and defined it as

3 Gty

Crrsaerss(H) = 100———. ©9)

Z D)

Second, we measure the directional connectedness variable
i receives from other variables, called total directional con-
nectedness from others as

S 6,00

Crvaeres H) = 100 —— (10)
> (H)
i=1
Third, the net total directional connectedness can be ob-
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tained by

Ci.r = Cl—mthﬂrs,r(H) - Ci<—nrharv,l (H) (1 1)

C,, > 0 means that variable i influences the network more
than the influences it receives from others. In contrast, C;, <0
means that i is driven by the network. Finally, we measure the
bidirectional relationships by computing the net pairwise dir-
ectional connectedness,

NPDC,.,,(H) = 100($,,,(H) - §,,,(H)). (12)

NPDC,,(H) >0 means that variable i dominates j and
NPDC,;(H) < 0 means that i is dominated by ;.

3 Results and Discussion

3.1 Data and preliminary analysis

Currently, nine regional carbon emission allowance trading
markets have been established in China. They have distinct-
ive mechanism and rule design, showing significant differ-
ences in trading volume and activity. Up to now, the Hubei
pilot has the largest volume and highest turnover, while the
Shenzhen pilot was established the earliest and has the
highest liquidity, and both markets have high maturity and
good representativeness. Therefore, we choose the Hubei and
Shenzhen carbon markets as the subjects of our study, which
are denoted by HBC and SZC, respectively. For the energy
futures market, the white paper "China's Energy Develop-
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ment in the New Era" released by the State Council in 2021
shows that coal accounts for up to 57.7% of total energy con-
sumption, and it remains the mainstay of China's current en-
ergy use. In addition, oil consumption is predominantly de-
pendent on imports, while natural gas prices are mainly con-
trolled by the government. Considering the financial attrib-
utes and price discovery function of the futures market, we
choose power coal futures and coke futures as energy market
representatives, denoted by JCF and ZCF, respectively.
Thermal coal is used in power generation and locomotive
propulsion, and coke is used in the coking and steel industry.
For the energy stock market, the Shenwan Coal Industry In-
dex (Code: 000820) and CSI New Energy Index (Code:
399808) are selected in this paper and represented by COI
and NEI, respectively. The CSI New Energy Index selects se-
curities of listed companies involved in renewable energy
production, application, storage and interactive equipment as
the sample to reflect the overall performance of the new en-
ergy industry. The sample interval is from July 1, 2014 to
June 30, 2021. The number of observation data for each vari-
able is 1706, and the formula for return series is:

r, = 1001n Lit

=1

(13)

Where P,, and P;,_, are the closing prices at time ¢ and 7 — 1.
Figure 1 shows the closing prices of each market during the
sample period. Energy futures and stock markets show simil-
ar trend changes, while the trajectories of the Hubei and

SIC
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Table 1. Descriptive statistics of the return series
HBC SzC ZCF JCF Col NEI
Mean 0.02 —0.11 0.03 0.05 0.04 0.05
Std.dev 2.95 33.99 1.57 2.14 2.16 2.05
Skewness —0.31 0.23 -1.21 —-1.03 —0.56 —-0.90
Kurtosis 4.53 20.73 13.95 8.97 4.17 3.87
J-B 1488.60 30633.00 14283.00 6040.40 1328.00 1301.00
(Prob.) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)
ADF —14.13 —-16.95 —11.63 -9.77 —12.69 -11.90
(Prob.) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

Shenzhen carbon markets are very distinct, indicating a strong
heterogeneity between them.

Table | reports the descriptive statistics of the return series.
The carbon market has higher volatility than the energy fu-
tures and stock markets, and the volatility of the Shenzhen
carbon market is much stronger than that of the Hubei carbon
market. The values of kurtosis and J-B statistic indicate that
all return series do not satisfy the normal distribution and are
characterized by sharp peaks and thick tails. The larger the
value of kurtosis is, the higher the frequency of extreme
events. The results of the ADF test prove that the return series
are all stable at the 1% significance level, so it is reasonable
to apply the TVP-VAR model.

In addition, to investigate the asymmetry of market connec-
tedness, we divide the return series into positive and negative
groups. The process is as follows:

S—{O’ ifr, <0
11, ifr, >0
rh,=8,r,
r;,:(l_sr)'ri.r

where r;, and r{, stand for the negative and positive return
series. The overall, negative and positive returns are analyzed
separately using TVP-VAR and Diebold-Yilmaz models.

3.2 Average connectedness measures

Based on the AIC, the lag order of the VAR model is fifth.
According to previous research results, we set the number of
periods for forecast variance decomposition to 107”. We first
analyze the average connectedness measures. From top to
bottom, Table 2 presents the results of overall, negative re-
turns, and positive returns connectedness calculations in or-
der. FROM denotes the sum of shocks to a market from other
markets. TO denotes the sum of spillover effects of a market
on other markets. The nondiagonal elements are the interac-
tions between the variables in the network, while the ele-
ments in the main diagonal correspond to idiosyncratic
shocks, i.e., own innovations. Taking the HBC as an example,
we note that the value on the main diagonal is 86.70, which
implies that 86.7% of the forecast error variance of the Hubei
carbon market returns can be attributed to own innovations.
In contrast, the remaining error is driven by changes in other
markets within the network. Notably, 4.05% and 4.22% of the
error variance comes from the futures and stock markets, re-
spectively. In turn, the total spillover index of the Hubei car-
bon market to others is 9.43, giving it a net spillover index of -
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3.87, indicating that it is a net information receiver in the
overall network. Similarly, we find that the Shenzhen carbon
market is less impacted by other markets than the Hubei car-
bon market, generates more spillover effects and is the largest
net information transmitter in the network. In addition, the re-
turns of energy futures and stock indices are more suscept-
ible to other markets than the carbon market, and the connec-
tedness between the two variables of the same market type is
more vital. According to the upper part of Table 3, the value
of the total connectedness index (TCI) is 26.46%, which
means that, on average, the interdependence of variables in
the network is not very substantial.

The middle and lower parts of Table 2 present the connec-
tedness measures of negative and positive returns, respect-
ively. Qualitatively, these findings are similar to the above
results in terms of the role played by each market (i.e., net-
work information transmitter and network receiver). Never-
theless, it should be noted that both the carbon and futures
markets are significantly more exposed to shocks from other
markets when based on positive returns. At the same time,
they create more significant spillover effects. In contrast,
stock indices are more closely connected to other variables
when prices decline. The above results suggest an asymmetry
of the connectedness between the different variables when the
market rises and falls. However, the average analysis is inher-
ently static, making it challenging to capture the evolution of
these measures over time. Considering that some economic or
political events occurred throughout the sample period, these
events may have led to positive or negative developments in
the factors affecting the variables. In this regard, we turn to
analyzing the dynamic connectedness measures.

3.3 Dynamic connectedness measures

3.3.1 Total connectedness

We first check the total dynamic connectedness. The results
are shown in Figure 2. Note that the black shaded area illus-
trates the evolution of the overall TCI considering both posit-
ive and negative returns. The red line represents the dynamic
TCI when only negative returns are considered. In contrast,
the blue line refers to the evolution of the TCI based on posit-
ive returns. We note that the total connectedness index fluctu-
ated between 17.82% and 62.90%, reaching its highest level
in August 2014. Since then, the TCI has fluctuated by approx-
imately 20-30%. Moreover, qualitatively, the results of the
three different dynamic connectedness measures are similar,
considering that they all exhibited substantial peaks and
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Table 2. Averaged connectedness results
ALL HBC SzC ZCF JCF COl NEI FROM
HBC 86.70 5.04 2.04 2.01 2.28 1.94 13.30
SzC 1.59 90.90 1.63 1.89 1.75 2.25 9.10
ZCF 2.06 4.60 73.45 12.73 5.20 1.95 26.55
JCF 2.33 3.33 12.74 69.77 8.80 3.02 30.23
Col 1.70 3.90 438 7.08 57.58 25.35 42.42
NEI 1.76 341 1.70 3.17 27.12 62.83 37.17
TO 9.43 20.28 22.51 26.89 45.15 34.51 158.77
NET -3.87 11.18 -4.04 -3.34 2.74 -2.66 -
NEGATIVE HBC SZC ZCF JCF COI NEI FROM
HBC 87.44 5.03 1.85 2.02 1.79 1.87 12.56
SzC 1.65 92.32 1.37 1.52 1.20 1.94 7.68
ZCF 2.20 4.61 76.52 11.06 3.81 1.81 23.48
JCF 2.62 5.45 11.01 72.24 5.89 2.79 27.76
CoI 1.23 4.29 3.32 4.97 57.17 29.02 42.83
NEI 1.27 4.61 2.04 2.51 29.92 59.65 40.35
TO 8.97 24.00 19.58 22.08 42.61 37.42 158.77
NET -3.87 16.32 -3.90 -5.68 -0.22 -2.93 -
POSITIVE HBC SzC ZCF JCF (e(0)1 NEI FROM
HBC 85.75 5.70 1.91 1.88 2.70 2.06 14.25
SzC 1.59 91.19 1.70 1.61 1.86 2.06 8.81
ZCF 2.57 8.52 71.35 11.47 4.59 1.50 28.65
JCF 2.05 6.49 11.43 70.13 7.01 2.90 29.87
Co1 2.31 4.06 4.81 6.41 64.77 17.63 35.23
NEI 1.82 5.30 1.60 2.69 18.54 70.06 29.94
TO 10.34 30.06 22.45 24.06 34.69 26.15 146.75
NET -3.91 21.25 -7.20 -5.81 -0.54 -3.80 -
Dynamic TCI Asymmetry of TCI
20
&0
50 10
40 0
30
=10
20

2015 2016 2017 2018 2019 2020 2021

Fig. 2. Dynamic total connectedness

troughs around similar time intervals. Nevertheless, quantitat-
ively, there is a clear difference between positive and negat-
ive returns. The right panel of Figure 2 exhibits the values of
the TCI based on negative returns minus the TCI based on

2015 20M6 2017 2018 2019 2020 2021

positive returns. The total connectedness of negative returns
dominated during the study period. Total connectedness was
dominated by positive returns for only 514 trading days, rep-
resenting only 30% of all trading days.
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Fig. 3. Dynamic net total directional connectedness
3.3.2 Netdirectional connectedness

The results of the dynamic net total directional connected-
ness (NET CI) for each market are shown in Figure 3. The
positive values in Figure 3 represent the net transmitters in the
system, while the negative values represent the net receivers.
The red line indicates the dynamic NET CI when only negat-
ive returns are considered, while the blue line refers to the
NET CI based on positive returns. All variables in the system
may shift between the two roles over time. Based on total re-
turns, the share of the Hubei carbon market as a net receiver
is 66.71% throughout the sample period, and its positive NET
CI values were small, indicating that the Hubei carbon mar-
ket gained more spillover effects from other markets during
the sample period. The proportion of the Shenzhen carbon
market as a net receiver is 42.37%. It is worth noting that the
Shenzhen carbon market became a net information transmit-
ter for the overall network from July 2014 to June 2016. Al-
though the net spillovers gradually declined after reaching a
peak in August 2014, they remained at a high level for some
time after that, which may be related to the “Approval on For-
eign Exchange Business related to Foreign Investors’ Parti-
cipation in Shenzhen Carbon Emissions Trading” issued by
the State Administration of Foreign Exchange on August 8,

300

200

100

-8

SIC

2015 206 2017 2018 2% 20200 2021

JCF

2015 218 2017 2@ 2ZME 20200 2021

MEI

2015 218 2017 2@ 2ZME 20200 2021

2014. This policy made the Shenzhen carbon market the first
carbon market in China to be directly opened to foreign in-
vestors, which facilitated the use of foreign funds to promote
the liquidity of the market and enhanced the freedom of trad-
ing. After March 24, 2016, the net spillovers of the Shenzhen
carbon market significantly diminished but remained stronger
than those of the Hubei carbon market. In most cases, coal fu-
tures played the role of a net information receiver. However,
from 2016-early to 2017, they persistently became net in-
formation transmitters in the network, which may be related
to the supply-side energy reform proposed by the state in
November 2015. This policy proposed a structural adjust-
ment for the entire coal industry starting in 2016, prompting
dramatic price fluctuations of coal industry products and
spillovers to other markets. After July 2015, the coal stock in-
dex continuously acted as a net transmitter, while the new en-
ergy stock market periodically switched between the two
roles over time.

Moreover, it is worth noting that the trajectory changes of
the red and blue curves for each market in Figure 3 demon-
strate significant variations, indicating the existence of asym-
metry in the net spillovers. Some variables even played op-
posite roles based on the negative and positive returns at the

DOI: 10.52396/JUSTC-2022-0144
JUSTC, 2023, 53(X):



Zzsrg "

Dong et al.

same time. When the NET CI is positive, its more consider-
able absolute value indicates a more substantial net spillover
from the variable. In contrast, its more considerable absolute
value indicates a more intense net shock from others to the
variable. Compared to negative returns, the Shenzhen carbon
market’s net spillovers based on positive returns were obvi-
ously more vital in most cases. In particular, from July 2014
to June 2016, the net shocks from the Shenzhen carbon mar-
ket to each variable were dominated by positive returns.

3.3.3 Pairwise connectedness

We now turn to net pairwise directional dynamic connected-
ness. In this part, we focus on the pairwise linkages between
carbon markets and other markets. Figure 4 illustrates the
time-varying connectedness between pairs of variables with-
in the network. Remember that the order in which each vari-
able appears in the panel titles is critical to correctly explain-
ing the results. For example, in the first panel titled "HBC-
ZCF," a negative value in the panel means that the thermal
coal futures transmit the return spillovers to the Hubei carbon
market, and the Hubei carbon market is the net receiver in the
same period. Figure 5 shows the time-varying PCI between
the two variables, which reflects the degree of correlation

HBC-ZCF
]
rl
2
0
-2
-4
5
2015 2018 27 2018 2015 2020 2021
HBC-JCF
]
4
2
0
-2
4
5
2015 2016 2017 208 2019 2020 2021
HBC-COI
2
2
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2015 2016 2017 28 2019 2020 2021
HBC-NEI
4
2
0
-2
-4

2015

2016 2017 2018 2019 2020 2021

Fig. 4. Dynamic net pairwise directional connectedness
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between the pairs. Table 3 records the means of NET CI and
PCI for the three return scenarios and the proportion of vari-
ables that act as net receivers.

Regarding the carbon and energy futures markets, the
former acted as a net information transmitter in most cases.
Energy futures have produced net spillovers on the carbon
markets for a period of time after the supply-side reform.
Compared to the Hubei carbon market, the Shenzhen carbon
market has more substantial net spillover effects on energy
futures. For the carbon and energy stock markets, the Hubei
carbon market usually acted as a net information receiver,
while the Shenzhen carbon market was a net information
transmitter. Similar to the results in the previous section, the
Shenzhen carbon market generated extremely high shocks to
both futures and stocks in August 2014. Similarly, the Hubei
carbon market played an information transmitter role in its re-
lationship with energy futures and stocks in the early stage of
establishment. When carbon markets acted as net transmitters,
they generally had more substantial net spillovers driven by
positive returns. According to Figure 6, the Shenzhen carbon
market has been more connected to either of the other mar-
kets than the Hubei carbon market. Moreover, after Septem-
ber 2020, the connectedness between carbon and other mar-

SIC-ICF
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Fig. 5. Dynamic pairwise connectedness
Table 3. means of pairwise PCLLNET CI and ratio of net receivers
H-ZCF S-ZCF H-JCF S-JCF H-COI S-COI1 H-NEI S-NEI
PCI 4.93 7.08 5.45 6.23 5.31 7.07 4.77 6.95
PCI(-) 4.74 6.62 5.66 791 4.02 6.75 4.15 8.03
PCI(+) 5.51 11.38 4.89 9.19 6.40 7.07 4.80 8.41
NET 0.01 2.97 0.32 1.44 —0.58 2.15 —0.18 1.17
NET(-) 0.35 3.24 0.60 3.93 —0.55 3.09 —0.60 2.68
NET(+) 0.66 6.82 0.16 4.88 -0.39 221 -0.23 3.24
Ratio 49.71 34.41 37.34 48.53 67.53 48.46 57.27 54.87
Ratio(-) 41.01 43.61 35.23 38.45 65.18 30.30 66.30 31.01
Ratio(+) 44.26 29.31 44.49 37.22 65.71 49.82 49.00 33.29

kets showed an upward trend, which may be related to the
proposed “Carbon Peak, Carbon Neutral” target. In addition,
the time-varying pairwise connectedness also shows signific-
ant asymmetry. It is worth noting that, except for "HBC-
JCF”, all pairs showed higher correlations based on the posit-
ive returns, indicating that the carbon markets may have high-
er synergies with other markets in the rising price state.

The differences between the Hubei and Shenzhen carbon
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markets in the connection network may be attributed to the
following characteristics of the two markets: in terms of the
threshold for the inclusion of enterprises, the inclusion criter-
ia of the Hubei carbon market are much higher than those of
Shenzhen, and the number of enterprises included in the
Shenzhen carbon market is more than twice the number of en-
terprises in the Hubei carbon market. In terms of the indus-
tries covered, all the enterprises in the Hubei carbon market
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are from secondary industry, while the enterprises in the
Shenzhen carbon market cover both secondary and tertiary in-
dustries. For the auction of carbon emission allowances, the
Hubei carbon market targets enterprises with a shortage of al-
lowances, while the Shenzhen carbon market targets in-
vestors. Although the Hubei carbon market has a larger trad-
ing volume, the Shenzhen carbon market has a larger number
and variety of participants and a more liberal and open trad-
ing environment. Of course, the regional disparities exhibited
by the carbon market may be related to many factors. In this
regard, this paper only makes preliminary inferences.

3.4 Robustness analysis

To verify the robustness of the above findings, we perform
three treatments. First, the spillover level of the Shenzhen car-
bon market from July to December 2014 is much higher than
in other periods, which may affect the comparative analysis
between the two carbon markets. In this paper, we also con-
duct a computational analysis based on the sample data from
2015. We found that the Shenzhen carbon market is still more
substantial than the Hubei carbon market in terms of the cor-
relation with other markets. Second, the decay coefficient of
the TVR-VAR model is reset, i.e.,k, = 0.96. Third, the num-
ber of periods in the forecast variance decomposition is re-
placed with 15 and 20. The model results show differences in
some details, but all the conclusions about both carbon mar-
kets remain unchanged.

4 Conclusions

This paper applied the TVP-VAR and Diebold-Yilmaz index
models to measure the asymmetric dynamic connectedness
and spillover effects between carbon and energy markets. The
analysis results show that the Hubei and Shenzhen carbon
markets significantly differ in their correlation with the en-
ergy markets. Specifically, we have obtained the following
conclusions. First, the volatility of carbon market returns is
greater than that of energy futures and stock indices. Second,
in the overall network system, the Hubei carbon market acts
as the net information receiver, and the Shenzhen carbon mar-
ket acts as the information transmitter in most cases. Third, in
the pairwise relationship, both carbon markets generate more
net spillover effects on energy futures. In the relationship
with stock indices, the Hubei carbon market is mainly a net
receiver, while the Shenzhen carbon market is a net transmit-
ter. Compared to the Hubei carbon market, Shenzhen is more
closely correlated with the energy markets. In addition, both
carbon markets show strong spillover effects in the early
stage of establishing or opening to foreign investors, but this
effect may gradually decline. Fourth, the connectedness
between the carbon and energy markets has significant asym-
metry, and the mutual impact between them is more substan-
tial in the case of a rising market. It is worth noting that exo-
genous events such as the supply-side reform of the coal in-
dustry and the proposed “carbon peaking and carbon neutral”
policy influence the connectedness between markets.

Based on the above findings, this paper proposes the fol-
lowing recommendations: government departments need to
strengthen the dynamic monitoring of car- bon and energy
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markets, detect the characteristics of market risk contagion
among industries in a timely manner and provide reasonable
policy guidance to reduce the negative impact of structural
tightness. The formation of an inherently stable price mechan-
ism between the Chinese carbon markets and energy markets
should be accelerated. While building the national unified
carbon market trading system, regional differences should be
taken into account and effectively coordinated to facilitate the
stable operation of the carbon trading system. Investors, when
involved in carbon and energy markets, should pay attention
to the asymmetrical intercorrelation of different markets and
fully consider the management of investment portfolios.
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