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Abstract—The detection of mine-like objects (MLOs) in sidescan
sonar (SSS) imagery continues to be a challenging task. In prac-
tice, subject matter experts tediously analyze images searching for
MLOs. In the literature, there are many attempts at automated
target recognition (ATR) to detect theMLOs. This paper focuses on
the classifiers that use computer vision and machine learning ap-
proaches. These techniques require large amounts of data, which is
often prohibitive. For this reason, the use of synthetic and semisyn-
thetic data sets for training and testing is commonplace. This paper
shows how a simple semisynthetic data creation scheme can be
used to pretest these data-hungry training algorithms to determine
what features are of value. The paper provides real-world testing
and training data sets in addition to the semisynthetic training and
testing data sets. The paper considers the Haar-like and local bi-
nary pattern (LBP) features with boosting, showing improvements
in performance with real classifiers over semisynthetic classifiers
and improvements in performance as semisynthetic data set size
increases.

Index Terms—Haar-like feature, local binary pattern (LBP),
mine-like object (MLO), object detection, sidescan sonar (SSS),
synthetic.

I. INTRODUCTION

P ROCESSING of sidescan sonar (SSS) data has been a
highly active field for decades, and specifically the task

of detecting mine-like objects (MLOs) is very prominent.
Traditionally, this was a manual process involving some post-
processing to enhance the sonar image before a skilled operator
tediously reviewed each image. Over the years, the process
has shifted from this manual detection toward automatic target
recognition (ATR).
Most of the early ATR research focuses on the shadows

and highlights created through the obstruction of sound by
any object protruding from the seafloor [1]–[3]. In much of
the research, a model of the target is the basis for the feature,
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as with the matched filter approach introduced by Dobeck et
al. [4]. This algorithm uses matched filters for various range
regions and convolves the filter with the image to detect regions
of interest. Some algorithms utilize machine-learning-type
techniques for classification such as neural networks [5]–[7],
-nearest neighbor [6]–[8], and eigen-analysis [9].
The fusion of algorithms has also been considered in the re-

search in various ways. One method processes high-frequency
and low-frequency sonar images individually and then fuses the
classification, either using the matched filter [8] or a wavelet
decomposition [5] as the feature extraction method. Other fu-
sion efforts combine coregistered sensor data as input to a clas-
sifier [10] or combine the output of known classifiers to deter-
mine a fused confidence [11]. One effort uses simple shadow
attribute features with basic summing fusion of algorithms as
well as the nonlinear Volterra feature with log-likelihood ratio
test (LLRT)-based fusion rules [12].
The recent advances in autonomous underwater vehicles

(AUVs) and sonar capabilities have caused an influx of more
advanced computer vision features and machine learning
techniques. Some researchers have moved away from the
model-based approach and have started using local descriptors
without target knowledge, such as the Haar-like feature [13].
More state-of-the-art machine learning approaches are being
considered, such as boosting [13] and support vector machines
(SVMs) [14].
The machine learning techniques of boosting and SVMs re-

quire a large training data set to learn the optimized combination
of features. Creating a large data set can be difficult, time con-
suming, and expensive, which is why it is common to generate
synthetic or semisynthetic data sets for training and testing [13],
[15]–[17].
The goal of this paper is to consider the detection capabil-

ities when using such synthetic data sets for training as com-
pared to training on real-world examples. For this experiment,
we use a very popular and simple training algorithm, which uses
AdaBoost to select features and creates an optimized cascade
of features for classifying windows as MLO or non-MLO [18].
This training algorithm requires a large amount of positive and
negative training examples to allow the machine learning ele-
ment to properly select the best features for the cascade. We run
two versions of this experiment, one with the Haar-like feature
and another with the local binary pattern (LBP) feature.
The three main contributions of this paper are as follows:
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Fig. 1. Examples of the inert mines that are placed on the seafloor for various
mine-related exercises.

TABLE I
DATA SET METRICS

• evaluating the use of semisynthetic data sets for classifier
generation in lieu of real-world data sets, specifically for
classifying MLOs in SSS;

• quantifying the relative improvement when training on
real-world data instead of semisynthetic;

• providing the data sets used in this research to the academic
community. The real-world training and testing data sets
are of particular significance.1

This paper is organized as follows. Section II describes each
of the training and testing sets and the mechanisms for pro-
ducing or collecting the data. Then, we explain in detail the
training algorithm and the two features used for this experiment
in Section III. Next, Section IV presents and explains the results
from the experiments. Section V discusses the implications of
the experimental results and describes the caveats on the find-
ings. We finish with a conclusion in Section VI.

II. TRAINING AND TESTING DATA SETS

There are some common traits of all of the data in this paper,
which are kept static to reduce the number of variables in the
trials. All of the data sets use SSS data captured via REMUS
AUVs equipped with two 900-kHz Marine Sonic sensors. The
sonar images produced by this sensor are 1024 1000 pixels,
as are all the images used in this paper. The vehicles are run
in the same locations at a goal altitude of 4 m to collect 30-m
slant-range data. The data collected for all data sets are limited to
this scope; however, the framework we describe could be used
to consider data collected under broader parameters. The actual
mines included in the data are the type 1 and type 2mines shown
in Fig. 1. Note that there are other MLOs present, which are not
necessarily designated mine shapes. Table I shows the metrics
of the six different data sets for training and testing.
The Space and Naval Warfare Systems Center Pacific

(SSC–PAC), San Diego, CA, USA, collected all of the data.
There are ten different type 1 mines and seven different type 2
mines in the various fields used for collection. We present the

1http://kastner.ucsd.edu/datasets/barngrover/

differences in the creation of the semisynthetic data set versus
the real-world data set in Sections II-A–II-C.

A. Semisynthetic Training Data Sets

The most prominent problem with research on automatic
target recognition in SSS is the lack of labeled data sets.
Therefore, to train using machine learning algorithms requiring
thousands of examples, it is common to create a synthetic or
semisynthetic data set. In this section, we describe our tech-
nique, which attempts to maximize variability with a limited
number of positive mine examples.
First, we collect positive examples of mine images from real-

world SSS data. Our pool of positive examples includes 50 im-
ages containing type 1 mines and 50 images containing type 2
mines. These 100 images make up the data set we refer to in
Table I as Synth Source, which is used as a baseline for com-
parison to our semisynthetic data sets. Then, we label the mine
highlight and shadow individually by choosing points to repre-
sent a polygon around each. A trained operator, who is also an
author on this paper, labels the positive targets manually. Next,
we collect negative examples from real-world SSS data. These
are images from the same environment that do not contain a
mine. We have 1000 such negative images for semisynthetic
data set creation.
The semisynthetic data set creation algorithm processes each

negative image as a destination image by adding a single mine
as well as three patches of background. Fig. 2 graphically shows
the process. For each negative sonar image, one of the 100 pos-
itive mine images is selected at random and the polygons of
the highlight and shadow are used to copy only the relevant
pixels. The side of the negative sonar image on which to place
the mine pixels is chosen at random. If the mine is placed on
the opposite side of the negative image as compared to the side
of positive mine image from which it came, then it is mirrored
on the across-track axis to maintain the shadow’s proper orien-
tation. Finally, the along-track location for the mine is chosen
at random, with the across-track range preserved because of its
correlation to the size of the shadow. After all of the random-
ized parameters are set, the mine can be placed by copying the
pixels within the labeled polygons of the positive mine image
to the negative image.
In addition, we attempt to account for the potential artifacts

introduced through this process by adding randomized nonmine
pixels from the positive mine image to the negative, or desti-
nation, image. The logic is that any artifacts from the polygon
copying process, such as mismatched average pixel intensity
or polygon placement on a surface return, are present in these
negative portions of our final image as well as in the positive
regions. The learning, therefore, does not occur based on any
copying artifacts alone. There are potential drawbacks to this
which we leave to the discussion in Section V.We extract pixels
from random locations in the positive sonar image and place
them in the same location of the destination image. The same
polygon shapes are used for this background pixel extraction as
were used for the positive target pixel extraction to better mimic
any artifacts created from the pixel extraction and placement
process. We add three of the negative regions to have more neg-
ative than positive examples of any artifacts. The three small
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Fig. 2. The synthetic image creation algorithm. 1. Label the 100 positive examples. 2. Collect the 1000 negative examples. 3. For each negative image, choose a
positive example and capture only the positive pixels. 4. Choose the side of the negative image and a -location for placement. 5. Copy over the positive pixels.
6. Choose a random location in the positive image and capture negative pixels. 7. Copy the negative pixels to a random location.

rectangles in the “negative image” of Fig. 2 are the randomly
placed negative pixels.
There are some flaws to this paradigm for creating a semisyn-

thetic data set. For one, there is a small number of example pos-
itives that must represent a larger sample. The only change for
a given mine is the side of the image and the -location, which
is not a lot of variety. The background in close proximity to the
mine is another change between semisynthetic images. How-
ever, one flaw is the difference in average intensity from image
to image. For example, if the positive sonar image is darker on
average, then the positive mine stands out even more. In addi-
tion, the negative pixels also stand out as darker than the back-
ground. The example in Fig. 2 shows this intensity problem be-
cause of the darker background locations of the positive image,
which are copied over to the lighter background of the negative
image.
Generating one semisynthetic image takes approximately

0.5 s, allowing for very large data set creation in a reasonable
amount of time. All of the negative images are processed to
create a semisynthetic training data set of 1000 images, which
is referred to as Synth in Table I. The randomization creates a
data set of 480 type 1 mines and 520 type 2 mines. One of the
benefits of semisynthetic data sets is the ability to create large
numbers of training images. Therefore, we also process each of
the negative images five times to create a semisynthetic data set
of 5000 images, which is referred to as Synth Large in Table I.
This larger data set contains 2531 type 1 mines and 2469 type
2 mines. Because of the multiple tiers of randomization in the
process, we are able to create a much larger data set of positive
training examples that contain real-world mines in real-world
backgrounds.

B. Real-World Training Data Set

The ideal training set for creating a classifier for a particular
problem is a real-world training set. In some cases, this is not a
difficult endeavor, but in many cases, such as with SSS, the data
collection process is expensive and time consuming. The collec-
tion of such a large training data set was a huge undertaking in
collaboration with SSC–PAC over the span of a year. This set

of images is different from the 100 images used to create the
semisynthetic data set.
The data collection effort involves various missions in dif-

ferent inert mine fields of San Diego Bay. For a certain mission,
the REMUS AUV was programmed to run a reacquire-and-in-
vestigate (R&I)-type mission, which is a starlike pattern, over
a specific geodetic location. Normally, the R&I mission is de-
signed to collect 5–10-m range data, but in this case, it was al-
tered to collect 30-m range data. This type of mission allows us
to maximize the number of looks at each mine.
Each mission produces multiple hundreds of SSS images,

which must be processed to find the specific mine. Then, the
mine is labeled with a polygon for the highlight and a polygon
for the shadow. This entire labeling process was performed by
a trained operator, who is also an author on this paper, over the
course of many months.
The result is a collection of labeled positive images, of which

half are designated training and half are designated testing. The
real-world training data set used for this experiment contains
975 SSS images, including 426 type 1 and 549 type 2.

C. Testing Data Sets

The real-world testing data set is the primary testing data set
for this experiment. It comes from the same collection as de-
scribed in Section II-B, but it is a completely separate set from
the training. It is also different from the 100 images used to
create the semisynthetic data set. The real-world testing data set
contains 920 SSS images, including 401 type 1 and 519 type 2
as well as 348 other MLOs present in the field.
In addition to the real-world test, we have a semisynthetic

testing data set for evaluating another interesting aspect of this
experiment. The same algorithm is used to create this testing set
as was used to create the two semisynthetic training data sets.
This means that the same 100 positive images and 1000 negative
background images were used. The only difference is the ran-
domization inherent in the algorithm. The semisynthetic testing
data set contains 1000 SSS images, including 486 type 1 and
514 type 2 as well as 76 other MLOs present in the base neg-
ative images. The synthetic source and the two semisynthetic
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Fig. 3. Basic group of Haar-like features in the OpenCV library includes these
five variations, which we use in this experiment. The sum of the pixels in the
white rectangle is subtracted from the sum of the pixels in the black rectangle
to calculate the Haar-like feature value.

classifiers are tested on the real and semisynthetic testing data
sets to analyze the capability of the semisynthetic training.

III. BOOSTED CASCADE FEATURE SELECTION

To quantify the benefits of a semisynthetic training set com-
pared to a real-world training set, we must utilize a training
algorithm that traditionally requires a large amount of labeled
data. We have chosen to use the technique proposed by Viola
and Jones [18], which utilizes AdaBoost as a feature selection
mechanism to form a cascade of weak learners in stages. Specif-
ically, we have implemented a version of this algorithm under
the OpenCV library.
The first step of the algorithm is creating a pool of features

for selection purposes. Like the Viola–Jones paper, we use the
Haar-like feature in the pool of features for one of our exper-
iment algorithms. The Haar-like feature is based on the Haar
wavelet, which does not use intensity directly like the original
Haar basis functions [19]. Fig. 3 shows visualizations of the five
types of Haar-like features included in our feature pool.
This feature captures the difference in pixel intensity

between designated rectangles in a given location of the con-
sidered window. The feature extraction subtracts the sum of
the pixels in the white rectangles from the sum of the pixels
in the black rectangles, thereby representing the gradient with
a single float value. The actual feature calculation is based on
a combination of the size of the rectangles and the location of
the upper left corner of the feature in the window. The pool
of features includes every combination of rectangle and every
location of feature possible in the designated window. For
the fixed window in this paper, the result is a pool containing
2 543 145 Haar-like features.
The LBP feature is another local-type descriptor common to

computer vision, which we use for our other experiment al-
gorithm. The LBP feature considers a neighborhood around a
center focus pixel and thresholds each pixel intensity compared
to the focus pixel, producing a binary representation [20]. Orig-
inally, the neighborhood was a 3 3 region, but it has been ex-
tended to include multiple sizes [21]. The notation repre-
sents a given LBP feature, where is the number of sampling
points equally spaced on the circle and is the radius of the
circle. Fig. 4(a) shows visualizations of a few possible circular
neighborhoods.
This feature captures the texture for a region of the considered

window. The feature extraction thresholds each of the pixel lo-
cations, represented by the black dots, against the focus pixel,
represented by the white dot. Then, the resulting binary numbers
are concatenated into a string by traveling the circumference of

Fig. 4. Visualizations of the two extensions of LBP. (a) Circular (8, 1), (12,
1.5), (16, 2), and (24, 3) neighborhoods for LBP calculation. The white dot is
the focus pixel and the black dots are neighborhood pattern pixels. (b) A 3
3 multiscale block LBP. The white square of nine pixels is the focus block and
the gray squares are the neighborhood pattern blocks.

the circle. Finally, the binary pattern is converted to its decimal
form, thereby representing the texture with a single integer.
The LBP feature was extended again to use multiscale blocks

instead of individual pixels to obtain a more macroscopic repre-
sentation of a local region [22]. In this version, the comparison
between pixels and the focus pixel is replaced by average pixel
intensity of blocks compared with average pixel intensity of a
focus block, as visualized in Fig. 4(b). We use this multiscale
block LBP feature of the OpenCV library for our second algo-
rithm. The pool of features includes every combination of focus
block location and size in the prescribed window. For the fixed
window in this paper, the result is a pool containing 138 645
LBP features.
We use a fixed window due to the nature of the sonar images,

specifically that a target of a certain size will produce a shadow
of varying size based on the altitude of the vehicle and the range
to target. This means that differences in the sizes of targets are
primarily in the across-track plane and that the shadow part of
the target is the only part changing.We are able to choose a fixed
window because of the limited scope of the data, as described in
Section II. An alternative to the fixed window is to use scaling,
which is complicated since only the shadow scales and primarily
in the across-track plane.
The window size is chosen based on the statistics of the mines

labeled in the entire real-world training data set collected by
SSC–PAC. We could have used the largest dimensions from the
data or even the geometric maximum dimensions based on the
known size of the two mines and the altitude of the vehicle for
this data set. This would produce a larger window, which in turn
means more features to consider. Since we are focusing on the
transition area between mine highlight and the mine shadow,
due to the unknown end of the shadow based on varying length,
we do not need a window that includes all possible lengths of
target. Therefore, we have chosen to use a standard deviation
from the mean to make sure to cover the width of the highlight
and a large portion of all shadows. The formulas used to calcu-
late the width and height of the window are, respectively

(1)

(2)

The average width of the mines, including highlight and
shadow, across the entire data library is 42 pixels. The standard
deviation of the width is 11 pixels. We also include a margin
of two pixels on each side of the mine. The average height
of the mines is 19 pixels, while the standard deviation of the

height is two pixels. The same margin is used again for
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Fig. 5. These positive MLO examples have varying shadow lengths, but an
approximately consistent highlight location within the window.

the height. The outcome of the statistics analysis is a 79 29
pixel window.
The preprocessing of the training data set before AdaBoost

optimization involves the creation of positive and negative data
files based on the labeled location of the MLOs. Since both fea-
tures include the location within the window, the positive ex-
amples must be aligned such that the highlight portion of the
MLO is in the same location in the window. We alter all pos-
itive examples to appear as if on the left-hand side of the SSS
image. We also right justify and vertically center the MLO in
the window with at least a two-pixel buffer. Fig. 5 shows three
examples of positive MLOs aligned in approximately the same
location of the window.
The negative, or background, image that is provided during

preprocessing includes the half of the image that does not con-
tain the MLO. The optimization algorithm utilizes various win-
dows from the background image for training purposes.
In each stage of training, the AdaBoost feature selection

process iteratively chooses the next feature, or weak classifier
in the jargon of boosting, that best separates the positives
from the negatives. The boosting continues to select additional
features until the stage is able to achieve certain thresholds for
hit rate and false alarm rate. The hit rate is the number of targets
correctly classified as positive out of the total number of posi-
tive windows considered. The false alarm rate is the number of
targets incorrectly classified as positive out of the total number
of negative windows considered. In our experimentation, the
minimum hit rate is 0.995 and the maximum false alarm rate is
0.5. The boosting terminates when the designated number of
stages is met or when the entire classifier passes the acceptance
ratio.
The optimized classifier consists of a series of stages, each

containing features of interest. When the classifier is used to
process an image via the OpenCV library, a sliding window ap-
proach considers all possible windows of the prescribed fixed
window size with an across-track step of one pixel and an along-
track step of two pixels. Each stage of the classifier must be
passed to label a window as positive. Due to the fine granularity
of the sliding window, there are often multiple positive windows
in a cluster. There is a minimum neighbors threshold that re-
quires a specific number of windows in a positive cluster for an
actual positive labeling. For instance, if the minimum neighbors
is set to five, then a cluster of five or more positive windows re-
sults in one positive label, while four or fewer positive windows
results in a negative label.

IV. EXPERIMENTAL RESULTS

We train on four data sets using two different algorithms for
this experiment. The first classifier we refer to as real since
it was trained on the real-world SSS imagery data set. The
second classifier we refer to as synth since it was trained on a

Fig. 6. Visualization of the first stage for each of the four Haar-like cascade
classifiers. Each window shows the Haar-like feature overlaid on an example
positiveMLOwindow. Thewhite and black rectangles represent the regions that
are compared to calculate the feature value: (a) real; (b) synth; (c) synth_large;
and (d) synth_source.

semisynthetic data set. The synth_large classifier was trained on
a semisynthetic data set five times larger than the real and synth
classifiers. Finally, the synth_source data set contains the 100
positive examples, which are the source for the semisynthetic
data set creation algorithm. The two algorithms described in
Section III use the boosted cascade with the Haar-like feature
and LBP feature, respectively.
The first algorithm we train on our four data sets uses a pool

of Haar-like features. The real Haar classifier contains seven
stages and a total of 34 Haar-like features. The synthHaar classi-
fier has eight stages with a total of 49 Haar-like features and the
synth_large Haar classifier also contains eight stages, including
a total of 73 Haar-like features. The synth_source Haar classi-
fier has only four stages with a total of seven Haar-like features.
Visualizations of the first stage for each of the four Haar classi-
fiers are shown in Fig. 6. Each window in the figure shows one
Haar-like feature from the pool of features presented in Fig. 3
overlaid on an example mine window. The choice of white or
black rectangles does not necessarily correlate to the highlight
or shadow in the window, since the feature can be negative or
positive to represent the difference in intensity.
The second algorithm in this experiment uses the LBP feature

in the pool for boosting. The real LBP classifier has 12 stages
with a total of 97 LBP features. There are 13 stages for both the
synth and synth_large LBP classifiers with 136 and 188 LBP
features per classifier, respectively. The synth_source LBP clas-
sifier has 12 stages with only 44 LBP features. Visualizations
of the first stage for each of these four classifiers are shown in
Fig. 7. Like the Haar classifiers, each image is a selected LBP
feature overlaid on the same example mine window. The white
rectangle represents the focus block and the darker rectangles
on the perimeter are the comparison blocks.
The efficiency of the algorithms is an important metric to

understand for any image processing experiments. The training
and processing for these experiments was performed on a
1.7-GHz Intel Core i5 processor with 4-GB 1333-MHz DDR3
RAM. Table II shows the time taken to train in hours and the
processing time of one full sonar image in seconds for both
Haar and LBP classifiers. Obviously the type of image will
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Fig. 7. Visualization of the first stage for each of the four LBP cascade clas-
sifiers. Each window shows the LBP feature overlaid on an example positive
MLO window. The white rectangles represent the location of the focus block
and the black rectangles represent the eight perimeter comparison blocks: (a)
real; (b) synth; (c) synth_large; and (d) synth_source.

TABLE II
CLASSIFIER EFFICIENCIES

determine how long it takes to process based on how many
stages are passed for various windows of consideration.
To understand the performance of the various classifiers, we

provide in Fig. 8 the receiver operating characteristic (ROC)
curve for each of the eight classifiers when applied to our real
testing data set. Fig. 8(a) shows the curves for the Haar-like clas-
sifiers while Fig. 8(b) shows the curves for the LBP classifiers.
The vertical is the true positive rate (TPR) as with most ROC
curves, but on the horizontal, we consider false positives per
image (FPPI), which is more telling than the false positive rate
(FPR) for a sliding window classifier. An FPPI of one means
that, on average, we have one false positive per processed sonar
image, which is 1024 1000 pixels in these data sets. The min-
imum neighbors threshold for clustering positive windows is
the variable changed from zero to 20 to create the points on the
curve. This means that the actual points on the curves will not
have round TPR or FPPI values, but rather have the particular
TPR and FPPI for the certain minimum neighbors threshold.
Both figures have example points, shown as black circles, for

comparison to the other curves. The triangle points on both fig-
ures show the change in FPPI necessary to achieve the same
example TPR on other synthetic classifier curves. The square
points show the reduction in TPR necessary to maintain the
same FPPI on other synthetic classifier curves.
The secondary experiment considered in this paper is how

the synthetic classifiers perform on a semisynthetic testing data
set compared to on the real testing data set. Fig. 9 shows the
ROC curves for both Haar in Fig. 9(a) and LBP in Fig. 9(b). The
lighter curves show the performance of the semisynthetic clas-
sifiers on the real testing data set, which are the same curves as

Fig. 8. ROC curve for the four classifiers when processing the real testing data
set. The vertical axis is TPR and the horizontal axis is FPPI: (a) Haar classifiers;
and (b) LBP classifiers.

shown in Fig. 8, while the darker curves show the performance
on the semisynthetic testing data set.

V. DISCUSSION

Let us start with the visualizations of the first stage for each
of the four Haar classifier cascades. As expected, the training
selects features that emphasize the contrast between highlight
and shadow, highlight and background, as well as shadow and
background. Many of the features chosen in these cascades are
common between the classifiers. Specifically, the first two fea-
tures of stage 0 are the same feature type in nearly the same
location with nearly the same size parameters. The exception is
the first feature of stage 0 for the synth_source cascade, which
is the same as the second feature for all four cascades.
The first stage for each of the four LBP classifier cascades

also emphasizes the highlights and shadows compared to the
neighborhoods around them. The feature choices are not as con-
sistent as in the first stage of the Haar cascades, but the second
feature in all four is very consistent with a focus block right on
the highlight of the example target. This same type of LBP fea-
ture is common throughout the stages.
The similarities of the early stages bolster the claim that the

semisynthetic-based classifiers can be used as a proof of con-
cept for the boosted cascade of both Haar-like and LBP fea-
tures. While the early stages do drastically reduce the number
of windows considered from a given image, the later stages
do the fine-tuned analysis to determine the MLO classification.
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Fig. 9. ROC curve for the synth, synth_large, and synth_source classifiers ap-
plied to the real and semisynthetic testing data sets. The vertical axis is TPR and
the horizontal axis is FPPI: (a) Haar classifiers; and (b) LBP classifiers.

It makes sense that the obvious differences between an MLO
and a non-MLO captured in the early stages would be common
among multiple classifiers, while the later stages would have
more prominent differences.
The number of features needed to complete the classifier

training is interesting. In general, more similarities between
the negative and positive examples or more variation within
the examples causes a larger feature count in the classifier. For
these classifiers, there is an increase in feature count with the
size of the training data set, not because of the increased data
set size directly, but more likely because the additional data
provide more variation of positive examples. Also, there is an
increase from the real to synthetic classifiers, which implies
that the negative and positive examples are more similar and
harder to classify in the synthetic training set. This could be
caused by some element of the synthetic creation process, such
as a high variation within the negative background images used
or complications with copying negative pixels to avoid artifact
bias.
Analyzing the stages and features of each of the classifiers is

one way to grasp the benefit of using semisynthetic versus real
training data sets. Another more telling avenue is to consider the
performance on a real testing data set.
The ROC curves in Fig. 8 show a couple of important facts.

First, as expected, the real classifier outperforms the synth and
synth_large classifiers for both Haar and LBP classifiers. This is

expected because the semisynthetic data merely mimics the real
data. It is important to note that the improvement with the real
classifiers is only between 4% and 6% over the synthetic classi-
fiers, suggesting the classifiers trained on the semisynthetic data
sets provide a reasonable estimation of the resulting capability
of the real classifier.
Furthermore, the synth_large classifier slightly outperforms

the synth classifier. This means that a nominal improvement can
be gained from the increase in semisynthetic training images.
However, the synth_large classifier takes substantially longer to
train, as shown in Table II, when compared to the synth classifier
for both Haar and LBP. The additional time to train only results
in a minor improvement of TPR, just over 3%, for the LBP and
an even smaller improvement, less than 2%, for Haar. This is
not a large return in accuracy based on the time cost, though
the training is a onetime step that might be warranted for the
improved capability in some circumstances.
Fig. 9 shows that the performance of the semisynthetic clas-

sifiers on the semisynthetic testing data set is nearly the same
as the performance on the real testing data set for both Haar
and LBP. For the Haar classifiers there is only about 1% differ-
ence in TPR between the real and synthetic test sets for synth
and synth_large. There is a bit more separation in performance
using the LBP feature, with about 3% difference in TPR. The
similarity of performance for the synthetic classifiers on both
testing data sets is important because it means that training and
testing on semisynthetic data can appropriately estimate how
these classifiers perform on a real testing data set.
The exception is the synth_source classifier, which performs

much worse on the semisynthetic testing data set. This is a
result of a specific bottom type containing sand ripples, which
is present in the synthetic data but is less prevalent in the
real testing data. This sand ripple bottom type is not in the
synth_source training set, causing a large number of false
positives when tested on the synthetic data compared to the real
data. The synth classifier does not have the same problem when
tested on the synthetic data because it is trained on images
including the sand ripple bottom.
To verify that the sand ripples are causing the large number

of false positives, we test on a subset of the synthetic testing
set with some images removed. We remove 16 images with
prominent sand ripple regions from the synthetic testing set and
process this new testing set. There is a strong improvement just
from removing a small number of sand ripple bottom images.
This exception emphasizes the need to have large compre-

hensive data sets for training when using such machine learning
algorithms as boosting. The small number of training images
is part of the problem, but this just highlights the poor perfor-
mance resulting from a disproportionate variety in the training
data compared to the testing data.
The major takeaway from these experimental results is that

semisynthetic training and testing in the absence of real data
can provide expectations for the performance when trained and
tested on real data. Furthermore, it can lead toward decisions
on the viability of one feature over another. For instance, we
could correctly estimate from the semisynthetic classifiers on
semisynthetic testing data that the Haar classifier is better for
this data set than the LBP without needing the real data.
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There are a few potential shortcomings of this research, and
one example is the data labeling process. We use one trained
operator to label all of the positive MLOs for synthetic data set
creation as well as for the real training and testing data sets.
This is a manageable approach for a small experiment, but an
intraoperator and interoperator study would be an interesting
experiment in the future.
The semisynthetic data set creation process has some short-

comings. There are only 50 unique mine examples of each mine
type used to create the two different sizes of synthetic training
data sets. This is a result of available data at the time, not a
chosen parameter. For a given mine type, there is a limited
amount of variation between observations when the data are
captured at a constant altitude and frequency. Our 50 obser-
vations per mine type does not cover all of the variations, but
given the size of the mine at this range, it covers a large amount
of variation. We acknowledge that it would be worthwhile to
create synthetic data sets with the larger number of unique pos-
itives now available.
Another problem with the semisynthetic data set creation

process is that the copying of background pixels to the syn-
thetic target image may create MLOs based on differences in
average pixel intensity between images. One could consider
normalizing the images so that they are similar in average pixel
intensity to avoid this problem. Also, it would be interesting
to remove from the creation process the step of copying the
background pixels and then compare the results. This may
improve the classifier, but it will be hard to quantify if this is a
result of a copying artifact in the synthetic data versus removal
of problem negative polygons.
There are limitations to this experiment based on the limited

training algorithms considered and the singular semisynthetic
data creation scheme. It would be interesting to consider more
training algorithms and other synthetic and semisynthetic data
in future experiments to more broadly quantify the use of auto-
mated data in the absence of real data.

VI. CONCLUSION

The experiments considered in this paper show the benefit
of using a semisynthetic data set for the training and testing of
data hungry machine learning algorithms, such as the boosted
cascade using either the Haar-like feature or the LBP feature,
when a real data set is not available. The experimental results
show that semisynthetic classifiers perform within 1% and 3%
for Haar and LBP, respectively, when tested on semisynthetic
data versus real data. The results also show that the semisyn-
thetic classifiers perform only 4%–6% worse than the real clas-
sifiers when tested on real data. Combined, the results from the
two experiments mean that only using semisynthetic data for
training and testing when real data are not available can provide
insight into the capability of an algorithm.
Despite the limited scope of the experimentation in this paper,

the results provide a foundation for comparison between syn-
thetic and real training in terms of SSS imagery and mine-like
object classification. In the context of this paper, it is clear that

there is a benefit in using semisynthetic data sets for training in
the absence of available real-world data.
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