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Abstract 

Scenes, like objects, are visual entities that can be 
categorized into functional and semantic groups. One of the 
core concepts of human categorization is the idea that 
category membership is graded: some exemplars are more 
typical than others. Here, we obtain human typicality 
rankings for more than 120,000 images from 706 scene 
categories through an online rating task on Amazon 
Mechanical Turk. We use these rankings to identify the 
most typical examples of each scene category. Using 
computational models of scene classification based on 
global image features, we find that images which are rated 
as more typical examples of their category are more likely 
to be classified correctly. This indicates that the most typical 
scene examples contain the diagnostic visual features that 
are relevant for their categorization. Objectless, holistic 
representations of scenes might serve as a good basis for 
understanding how semantic categories are defined in term 
of perceptual representations. 
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Introduction 

Most theories of categorization and concepts agree that 
category membership is graded – some items are more 
typical examples of their category than others. For example, 
both sparrows and ostriches are birds, but a sparrow is 
generally regarded as a much more typical bird than an 
ostrich. The more typical examples of a category show 
many advantages in cognitive tasks. For example, typical 
examples are more readily named than atypical examples 
when people are asked to list examples of a category (eg., 
furniture) and response times are faster for typical examples 
when people are asked to verify category membership (eg., 
“a chair is a piece of furniture”) (Rosch, 1975). 

According to Prototype Theory, concepts are represented 
by their most typical examples (Rosch, 1971). These 

prototypes are an average or central tendency of all category 
members. People do not need to actually encounter the 
prototypical example of a category in order to form a 
concept of that category; instead, they extract the prototype 
through experience with the variation that exists within the 
category (Posner & Keele, 1968). 

Environmental scenes, like objects, are visual entities that 
can be organized in functional and semantic groups.  Like 
other conceptual categories, scenes contain more and less 
typical exemplars. Tversky and Hemenway (1983) 
identified some typical examples of indoor and outdoor 
scene categories, but the total number of scene categories 
used in their studies was very small. Here, we extend the 
idea of scene typicality to a very large database containing 
over 700 scene categories. The goal of the current study is 
two-fold: first, to determine the prototypical exemplars that 
best represent each visual scene category; and second, to 
evaluate the performances of state-of-the-art global features 
algorithms at classifying different types of exemplars. 

Method 

Dataset 

Stimuli were taken from the SUN Database, a collection of 
130,519 images organized into 899 categories (see Xiao, 
Hays, Ehinger, Oliva & Torralba, 2010).  This database was 
constructed by first identifying all of the words in a 
dictionary corresponding to types of places, scenes, or 
environments (see Biederman, 1987, for a similar procedure 
with objects). Our definition of a scene or place type was 
any concrete common noun which could reasonably 
complete the phrase, “I am in a place,” or “Let’s go to the 
place.” We included terms which referred to specific 
subtypes of scenes or sub-areas of scenes. However, we 
excluded specific places (like MIT or New York), terms 
which did not evoke a clear visual identity (like workplace 
or territory), spaces which were too small for a human body 



to navigate within (such as a desktop), and scenes with 
mature content. We included views of the interiors of 
vehicles (airplane cabin), but not exterior views of vehicles. 
We included specific types of buildings (skyscraper, house), 
because, although these can be seen as objects, they are 
known to activate scene-processing-related areas in the 
human brain (Epstein & Kanwisher, 1998). This procedure 
yielded an initial set of about 2400 scene words, and after 
combining synonyms and separating scenes with different 
visual identities (such as indoor and outdoor views), we 
obtained a list of about 899 unique semantic categories of 
scenes and places. For each of these categories, we collected 
a large set of images online, resulting in a database of about 
130,000 images. 

Note that there are different ways to define and categorize 
“scenes,” which would generate a slightly different or more 
complete database than the one used here. For example, one 
might decide that different views of the same place qualify 
as different scenes, or one might choose to subdivide scenes 
based on spatial layout or surface features (e.g., forests with 
or without snow). However, this work represents the first 
attempt at estimating typicality on a dataset that is extensive 
enough to cover most of the plausible scene categories used 
to refer to places and scenes in discourse. 

Stimuli 

For the typicality experiment, we used the 706 scene 
categories from this database that contained at least 22 
exemplars. Category size ranged from 22 images in the 
smallest categories to 2360 in the largest. A total of 124,901 
images were used in the experiment. 

 
Participants 
935 people participated in the experiment through 
Amazon’s Mechanical Turk, an online service where 
workers are paid to complete short computational tasks 
(HITs) for small amounts of money. All workers were 
located in the United States and had a good performance 
record with the service (at least 100 HITs completed with an 
acceptance rate of 95% or better). Workers were paid $0.03 
per trial. 

Procedure 

Participants were told that the goal of the experiment was to 
select illustrations for a dictionary. Each trial consisted of 
three parts. 

First, participants were given the name of a scene 
category from the database, a short definition of the scene 
category, and four images. Workers were asked to select 
which of the four images matched the name and definition 
(one of the four images was drawn from the target category 
and the other three were randomly selected from other 
categories). The purpose of this task was to ensure that 
participants read the category name and definition before 
proceeding to the rating task. 

Next, participants were shown 20 images in a 4 x 5 array. 
These images were drawn randomly from the target 

category, and did not include the image which had served as 
the target in the previous task. Images were shown at a size 
of 100 x 100 pixels, but holding the mouse over any image 
caused a larger 300 x 300 pixel version of that image to 
appear. An example of this display is shown in Figure 1.  
Workers were asked to select, by clicking with the mouse, 
three images that best illustrated the scene category. 

In the third part of the task, workers were shown the same 
20 images (but with their array positions shuffled) and were 
asked to select the three worst examples of the target scene 
category. 

Design 

On each trial, the set of 20 images was drawn randomly 
from the set of images in the target category. These random 
draws were such that each image appeared at least 12 times, 
and no more than 15 times over the course of the 
experiment. This resulted in 77,331 experimental trials. 
Each trial was completed by a single participant. 
Participants could complete as many trials as they wished; 
the mean number of trials completed per participant was 
82.7 trials (median 7 trials). 

Results 

Participants’ performance was judged on two measures: 
their performance on the 4AFC task, and whether they 
selected different images as the best and worst examples on 
a single trial.  In general, participants performed well on the 
4AFC task, with an average correct response rate of 97% 
(s.d. 0.13%).  Most of the incorrect responses occurred on 
trials where one of the randomly-drawn foil images came 
from a category similar to the target category (for example, 
a cathedral might be the foil image for the category 
“basilica”).  Participants were also reliably able to select 
different images as the best and worst examples of their 
category: participants marked an image as both best and 
worst on only 2% of trials (s. d. 0.10%); the likelihood of 
reselecting an image by chance is 40%.  However, there 
were a few participants who reselected images at about 
chance rates, which suggests that they were selecting images 
at random with no regard for the task.  We identified 19  

Figure 1: The display seen by participants in the typicality 
rating task. In the experiment, images were shown in color. 



Figure 2: The five images rated most typical by participants, from the ten largest categories in 
the database. 



participants who reselected the same images as both best 
and worst on at least 25% of trials (2% of total participants).  
Together these participants had submitted 872 trials (1.13% 
of trials), which were dropped from further analysis. 

A “typicality score” was obtained for each image in the 
dataset.  The typicality score was calculated as the number 
of times the image had been selected as the best example of 
its category, minus a fraction1 of the number of times it was 
selected as the worst example, divided by the number of 
times the image appeared throughout the experiment.  
(Taking a fraction of the worst votes allows the number of 
“best” votes to be used as a tie-breaker for images that 
performed similarly.)  A typicality score near 1 means an 
image is extremely typical (it was selected as the best 
example of its category nearly every time it appeared in the 
experiment), and a typicality score near -1 means an image 
is extremely atypical (it was nearly always selected as a 
worst example). 

Examples of the most typical images from various 
categories are shown in Figure 2. 

Comparison to chance 

Even if participants selected “best” and “worst” examples at 
random, some images in each category would emerge as 
highly typical (or atypical) due to chance. It is important to 
check that the most typical images in this experiment are 
rated higher than would be expected if participants were 
simply responding randomly.  

To check this, we ran a set of 100 simulations in which 
the images were rated randomly. Each image appeared in 
the simulation the same number of times it appeared in the 
actual experiment. On each appearance, the image had a 
15% chance of being voted a “best” example, a 15% chance 
of being voted a “worst” example, and a 70% chance of 
receiving no vote. The simulation assumed that participants 
never selected the same image as both “best” and “worst” in 
a single trial, which was not actually true in the experiment. 
This means that the simulation actually overestimates the 
typicality scores that could be produced by random 
responses. 

As shown in Figure 3, the typicality scores obtained by 
the most typical images in the experiment are much higher 
than the maximum scores that would be expected if 
participants were rating images randomly. More than half of 
the categories (401 out of 706) have a most typical image 
that is at least 3 standard deviations higher than the average 
“most typical image” from the simulation. This indicates 
that participants were selecting these images according to a 
strategy (such as selecting images that best matched their 
internal prototype for the scene category) and not just 
selecting images at random. 

                                                           
1 This fraction was arbitrarily set to 0.9, but any value in the 

range 0.500 to 0.999 gives essentially the same results: changing 
this value changes the range of possible scores, but doesn’t 
significantly change the rank order of scores within a category 
(90% of images move by less than 5 percentile points). 

However, there are some categories where the most 
typical image scores no higher than would be expected from 
chance (46 categories have most typical image that is within 
a standard deviation of the average best score from the 
simulation). It’s not clear why participants gave chance-like 
performance in these categories: although some of these 
categories are very unusual (e.g., rectory, cloister), many of 
them are familiar everyday categories like closet, desert 
road, or factory. This may reflect the distribution of 
exemplars we were able to obtain for these categories in the 
initial image search: it’s possible that the images we 
collected for these categories were fairly homogeneous, 
with no particularly good or bad exemplars. 

Typicality and models of scene classification 

Do more typical exemplars of a scene category contain more 
of the visual features relevant to scene classification? To 
investigate this question, we classified scenes using the “all 
global features” classifier described in Xiao, et al. (2010). In 
computer vision, global features represent a class of 
algorithms that encode the spatial layout of textures in the 
image, without representing object information. 
 
Global Features 

As in Xiao et al. (2010), the all-feature kernel combines 
several representations that have been shown to be reliable 
for scene classification tasks. The GIST descriptor computes 
the output energy of 24 filters (8 orientations at 4 different 
scales) averaged on a 4x4 grid (Oliva & Torralba 2001). The 
Dense SIFT features (Lazebnik, et al., 2006) builds a 
coarse-to-fine spatial histogram pyramid of quantized 

Figure 3: A comparison of the typicality scores obtained by 
the best image in each category in the expeirment to the 
typicality scores obtained in a simulation where images 

were rated randomly. 



orientation histograms of image magnitude and orientation 
values on local patches. The HOG features (Dalal & Triggs, 
2005; Felzenszwalb, et al., 2010) count occurrences of 
gradient orientation and use overlapping local contrast for 
normalization to improve invariance to changes in 
illumination or shadowing. While SIFT is known to be very 
good at finding repeated image content, the self-similarity 
descriptor (SSIM) (Shechtman & Irani, 2007) relates images 
using their internal layout of local self-similarities. Unlike 
GIST, SIFT, and HOG, which are all gradient-based 
approaches (measuring the density of the features), SSIM 
may provide a distinct, complementary measure of scene 
layout. Additionally, the “all-features” kernel includes 
histograms for specific geometric classes as determined by 
Hoiem et al. (2005), which represent aspects of a scene’s 
spatial layout. 

The “all global features” classifier is built from the large 
set of classifiers based on these state-of-the-art features. It 
covers a range of features which are likely to be important 
in scene recognition, including color histograms, 
representations of texture and scene regions (e.g., ground vs. 
sky), and information about edges and line orientations. 

Classification procedure 

Classifiers were trained with one-versus-all support vector 
machines as in Xiao et al (2010). In order to have enough 
exemplars for training and testing, the following simulations 
used the 397 categories that contain at least 100 exemplars. 
From each category, 50 images were selected at random to 
serve as the training set, and another 50 images were 
randomly selected to serve as the test set. Since the training 
and testing sets were chosen by random selection, they 
contained a range of more and less typical exemplars. 

Xiao et al. (2010) found that the average performance of 
the “all global features” classifier on this 397-scene dataset 

is 38% (chance performance is 0.25%). What are the 
performances as a function of scene typicality? Figure 4 
shows that classification of individual images varies with 
their typicality score: the most typical images were 
classified correctly about 50% of the time, and the least 
typical images were classified correctly only 23% of the 
time. Images were divided into four groups corresponding 
to the four quartiles of the distribution of typicality scores 
across the database. These groups contained 5020, 4287, 
5655, and 4908 images (groups are listed in order from 
fourth quartile -- lowest typicality – to first quartile). A one-
way ANOVA comparing these quartile groups shows a 
significant effect of image typicality quartile on 
classification accuracy (F(3,19846) = 278, p < .001); 
Bonferroni-corrected post-hoc tests show that the 
differences between each quartile are significant. 

Image typicality is also related to the confidence of the 
SVM classifier. The confidence reflects how well the 
classifier believes the image matches its assigned category – 
scores near 1 indicate that the classifier is very confident 
that the image belongs in the category and scores near -1 
indicate that the classifier does not believe the image 
belongs in the category. (Due to the difficulty of the one-
versus-all classification task, confidence was low across all 
classifications, and even correctly-classified images had 
average confidence scores below zero.) Figure 5 shows the 
SVM confidence as a function of image typicality for 
correctly- and incorrectly-classified images. Confidence 
increases with increasing typicality, but this pattern is 
stronger in correctly-sorted images. A 4 x 2 ANOVA gives 
significant main effects of image typicality (F(3,19842) = 
79.8, p < .001) and correct vs. incorrect classification 
(F(1,19842) = 6006, p < .001) and a significant interaction 
between these factors (F(3,19842) = 43.5, p < .001). 

Figure 4: Performance of the SVM classifier as a function of 
image typicality. Images are sorted according to their 

typicality score from least typical (4th quartile) to most 
typical (1st quartile). 

Figure 5: Confidence of the SVM classifier as a function of 
image typicality. Images are sorted according to their 

typicality score from least typical (4th quartile) to most 
typical (1st quartile). 



 Conclusion 

Intelligent systems, artificial and biological, face the 
problem of how to organize complex stimulus 
representations. One framework for classifying scenes 
involves identifying visually informative features within a 
category. Previous attempts to characterize the categorical 
representation of environmental scenes have capitalized on 
uncovering a manageable set of dimensions, features, or 
objects with which to represent environments (Oliva & 
Torralba, 2001; Renninger & Malik, 2004; Fei-Fei & 
Perona, 2005; Lazebnik et al., 2006; Vogel & Schiele, 2007; 
Greene & Oliva, 2009; Ross & Oliva, 2010). 

An alternate framework for classifying visual scenes 
appeals to their conceptual nature. Scenes, like individual 
objects, are associated with specific functions and 
behaviors, and have a categorical structure (Tversky & 
Hemenway, 1983). Here, we show that people have a 
representation of a typical or “best” exemplar for a wide 
range of scene categories. This elaborates on the scene 
prototype work of Tversky and Hemenway, and extends 
prototype research from the domains of objects, faces, and 
abstract patterns to scenes. 

Furthermore, we show that scenes which people rate as 
more typical examples of their category are more likely to 
be correctly classified by computer vision algorithms based 
on global image features. Although we cannot claim that the 
features used in these algorithms are the same features 
which humans would use to perform the same classification 
task, this nevertheless indicates that more typical examples 
of a scene category contain more of the diagnostic visual 
features that are relevant for scene categorization. 

Finally, this study is the first to show that reliable 
prototypes can be identified for a very large dataset of 
environmental scene categories, by both human observers 
and state of the art vision algorithms.  One of the important 
distinctions between objects and scenes is that the 
categorical boundaries between scenes are less well defined 
than the boundaries between objects.  Natural scenes in 
particular often lie on the boundary between two or more 
categories, like forest/mountain or river/lake (Vogel & 
Schiele, 2004), suggesting that typicality might be a 
particularly important concept for future progress in the 
field of human and computational scene understanding.  
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