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ABSTRACT

Recently, various graph-based methods have be proposed for salient
object detection. These algorithms represent image points and their
similarity as nodes and edges in a graph. Although the edge structure
and weighting are the heart of these methods, the graph construction
has not been studied in detail. In this paper, we exploit image pri-
ors, including spatial priors, color priors, and a central bias prior, to
construct the graph. We connect nodes which are spatially close in
the image, nodes which have similar color features, and the boundary
nodes along the borders of the image, while weighting edges accord-
ing to both their color similarity and spatial proximity. Moreover, we
propose a new sine spatial distance instead of the commonly-used
Euclidean spatial distance, which better captures the central bias in
scenes. Extensive experiments show that our method outperforms
thirteen state-of-the-art methods on four different image databases.

Index Terms— Graph construction, Spatial prior, Color prior,
Central bias prior, Salient object detection

1. INTRODUCTION

Since Itti et al. [1] implemented the first computational model of vi-
sual saliency, various methods have been proposed to detect salient
objects in images. Graph-based algorithms, such as [2], [3], and [4],
assume that nearby points with similar features are likely to have
similar saliency values and model the image as a graph in which
image regions are nodes and edges represent the similarity between
regions. By propagating labels through the graph, these algorithm-
s attempt to detect foreground objects while suppressing the back-
ground. Although the graph is the heart of this type of algorithm,
the specifics of its construction have not been studied in much de-
tail. In this paper, we exploit image priors to construct the graph for
salient object detection, giving a performance boost over previous
graph-based methods for salient object detection.

Previous methods, including [2], [3], and [4], use a spatial prior
to construct the graph, so each node is connected to its neighbors in
the image. This reflects the fact that spatially-neighboring pixels are
likely to share similar saliency values. However, if the salient fore-
ground object has a complex shape or pattern, or there are multiple
objects, this approach may not uniformly highlight the whole fore-
ground (see Figure 1 (B), which shows the result of [2]). Some other
methods, such as [5], include a color prior, which assumes that im-
age regions with similar colors are likely to belong to the same class
(foreground or background). This can work well to detect all the
salient objects which have similar colors, but when the background
color is similar to the foreground, the color prior may promote false
alarms. Moreover, when the foreground object is composed of re-
gions with different colors, only part of the object will be detected
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(A) Original image ~ (B) Spatial prior ~ (C) Color prior (D) Central bias prior ~ (E) Our result ~ (F) Ground truth

Fig. 1. Salient object detection results. (A) is the original image.
(B), (C), and (D) are the results obtained when only the spatial prior,
color prior, or central bias prior is considered. (E) is our result which
uses all three priors. (F) is the ground truth.

(see Figure 1 (C), which shows the result of [5]). In addition to spa-
tial and color priors, many models exploit the central bias in free
scene viewing [6] and the related fact that photographers tend to
frame the object of interest in the center of an image [7]. Hence,
many saliency algorithms [7, 8] include an assumption that saliency
is higher in the center of an image (Figure 1 (D)), which is beneficial
when the foreground objects are near the image center but can cause
false alarms when they are not.

Spatial priors, color priors, and the central bias prior all play im-
portant roles in detection of visually-salient objects, but they each
have some drawbacks. Therefore, it is important to consider all pri-
ors and weight them appropriately. In this paper, we exploit all three
priors to construct a suitable graph for salient object detection. We
define the nodes of the graph to be the superpixels of the image. We
connect nodes which are spatially close or have similar color fea-
tures, as well as the boundary nodes along the borders of the image.
Edges are weighted by both color and spatial proximity. Moreover,
we propose a new sine spatial distance in place of the commonly-
used Euclidean spatial distance, which exploits the central bias in
natural images. A representative result from our method is shown
in Figure 1(E). Compared to previous methods, our approach better
captures the ground-truth salient object regions while suppressing
the background (Figure 1(F)). We test our algorithm on four salien-
cy databases and show that our method outperforms thirteen state-
of-the-art models. The rest of this paper is organized as follows:
The foundation of the graph-based manifold ranking algorithm is in-
troduced in Section 2. Section 3 presents our prior-based graph for
saliency detection. Section 4 describes our testing procedure and
gives the comparison results.

2. GRAPH-BASED MANIFOLD RANKING

Given V = {V(1),...,V(q),...,V(n)}, the first q points are the
queries and the remaining points are to be ranked based on their



similarities to the queries [9]. @ is defined such that if V(i) is a
query Q(i) = 1, and otherwise Q(i) = 0. Let W : V x V =
R denote the weighted adjacency matrix for a graph in which the
weight of each edge is defined as the similarity of the connected
points. Let £ : V = R denote a ranking function which assigns
a ranking value F'(¢) to each point V(). The normalized ranking
value indicates the likelihood that a point belongs to the label class
(foreground or background).

The manifold ranking algorithm is as follows. Step 1: Connect
pairs of points. Step 2: Construct the graph with the weighted adja-
cent matrix W defined by the similarity of V() and V'(j) if there is
an edge linking them. Otherwise, W (ij) = 0. Step 3: Normalize
Wby P = (D7'W)T, in which D is a diagonal matrix with the
(3,1) element equal to the sum of the i-th row of W. Step 4: Iterate
Fiy1 = aPF;+(1—a)Q until convergence, where « is a parameter
in [0,1) which specifies the relative contribution of the scores from
neighbors and the initial score. The limit of the ranking function can
be computed directly without iterating [9].

F*=(D—-aW) 'Q. (1)

Intuitively, this means that all points spread their ranking scores
to their neighbors via the weighted adjacency matrix until a global
stable state is achieved. The final ranking score corresponds to the
saliency of a point.

The labeled queries () can be either positive (foreground) or neg-
ative (background). In this paper, we employ both positive and neg-
ative queries as in [2]. We first use each of the four image borders
separately as negative queries to get four conspicuity maps and then
multiply them to get a temporary saliency map. We segment the tem-
porary saliency map into “foreground” and “background” using the
mean map value as a threshold, and then use the foreground regions
as positive queries to compute the final saliency map.

The weighted adjacency matrix W is critical in determining how
labels propagate through the graph. In the following sections, we
describe how we calculate this matrix using image priors for salient
object detection.

3. PROPOSED PRIOR-BASED GRAPH

In our approach, we first over-segment the image into homogeneous
superpixels using the SLIC algorithm [10] and define these super-
pixels to be the nodes of a graph. The color and spatial features of
a superpixel are defined as its mean in the CIELab color space and
image coordinates respectively. Both the color and spatial features
are normalized to be in [0, 1]. As described in Section 2, each node
spreads its ranking score to its neighbors along the edges of the graph
based on the edge weights. So, a well-constructed graph should con-
nect nodes which are likely to share the same label, and weight these
edges based on the similarity between two connected nodes. The
following sections explain how we choose these edges and set their
weights in the graph.

3.1. Spatial prior

Regions of the image which are spatially nearby are likely to belong
to the same class. Therefore, we connect each node to its spatial
neighbors (superpixels which share a boundary) and to its neighbors’
neighbors (superpixels which share a boundary with any of the first
set of neighbors). These edges are weighted by the color distance
between the nodes.
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Fig. 2. (A) An illustration of our prior-based graph. Image super-
pixels (red outlines) are the nodes of the graph. A given node (red)
is connected to nearby nodes according to the spatial prior (green),
and to similarly-colored nodes according to the color prior (blue).
In addition, nodes on the image border are connected according to
the central bias prior (yellow). (B) An evaluation on the MSRA-B
database which shows the effect of omitting one or more priors from
the model.

In this formula, D, (%, j) denotes the color distance between the
nodes ¢ and j, which is defined as the Euclidean distance between
the color features. o is a constant which controls the strength of the
weight.

3.2. Color prior

Image regions with similar colors are likely to share the same label,
and this prior can help to detect multiple foreground objects in an
image. Therefore, we also connect the nodes which are neighbors in
color space. However, this can produce false alarms when part of the
background has a similar color to the foreground object. Therefore,
we modify the edge weights (Formula 2) to include both the color
distance and the spatial distance.
Wi, j) = exp(——Dc(z’J)Q;Ds(z’j)) 3)
Ds(i, 7) denotes the spatial distance of the nodes 4 and j. The s-
tandard way to compute the spatial distance is the Euclidean distance
on the image plane. This graph works well when the background is
simple and smooth. However, when the background pattern is more
complex, this graph may not fully suppress the background regions.
To further improve the performance, we exploit another image prior,
the central bias.

3.3. Central bias prior

Pixels near the center of an image are more likely to belong to a
salient object than pixels on the image borders, which are likely to
be background [6, 7]. As in [2], we add edges to fully connect all of
the nodes on the boundary of the image, to reflect the fact that they
are likely to share the “background” label. Furthermore, we notice
that there is a drawback to using the Euclidean distance to compute
spatial distances, namely that the Euclidean distance is largest be-
tween the opposite edges of the image (eg, the left and right borders
of the image), which means there is a strong tendency for the image
borders to be assigned opposite labels. In fact, the image borders
are likely to have the same label (‘“background’), while points in the
center of the image have the opposite label (“foreground”). To solve
this problem, we propose a new sine spatial distance.
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Fig. 3. The quantitative comparison of different methods on MSRA-B, MSRA-1000, CSSD and iCoseg databases. Our method gives the best

performance on all four databases.

Da(i,j) = /(sin(r - [&s — 2;0))? + (sin(7 - [y: — 550))* 4
xz; and y; denote the horizontal and vertical coordinates of a
point i, which have been normalized to be in [0, 1]. sin(7 - |x; — ;)
computes the sine spatial distance between two nodes ¢ and j along
the horizontal axis, while sin( - |y; — y;|) is the distance along the
vertical axis. From this formula, it’s clear that nodes which have a
small Euclidean spatial distance also have a small sine spatial dis-
tance. Also, this sine measure means that nodes at the left and right
borders of the image are considered spatially close, which reflects
the fact that image borders are likely to share the same label.

The summary of our prior-based graph is as follows: Each node
is connected to its spatial and color space neighbors. Furthermore,
all border nodes are connected to each other as in [2]. Edge weights
are based on both color distance and the sine spatial distance be-
tween connected nodes. An illustration of our graph construction is
shown in Figure 2 (A).

4. EXPERIMENTAL COMPARISONS

We compare our method with thirteen state-of-the-art saliency de-
tection methods: IT [1], GB [11], LC [12], SR [13], SUN [14], FT
[5], CB [15], HC [16], RC [16], RARE [17], GR [2], AM [3] and HS
[18] on the MSRA-B, MSRA-1000, CSSD and iCoseg databases.
Experimental Setup: The number of superpixels in each image is
set to 200 for all experiments. There are two parameters to set in
our algorithm: « in Formula 1, which balances the contributions of
the original ranking score and the scores from neighboring nodes,
and o in Formula 3, which determines the strength of the weight
between connected nodes. These parameters are empirically chosen
to be v = 0.99 and o> = 0.1 on the CSSD database and used for all
experiments.

Evaluation Metrics: We evaluate the algorithms using precision-
recall curves. Precision indicates the percentage of detected salient
pixels that are correct and recall is the percentage of salient pixels
which are successfully detected. The precision-recall curves are cal-
culated by binarizing the saliency map at each threshold in the range
[0:1:255] and computing the precision and recall at each threshold.
Quantitative Comparison: We first examine our proposed method
in detail to understand the roles of the three different priors. We
compare saliency detection results using various subsets of priors on
the MSRA-B database; the results are shown in Figure 2 (B). It can
be seen that our method requires all three prior for best performance,
which demonstrates that each of the priors contributes to salient ob-
ject detection.

Next, we compare our method to thirteen state-of-the-art salien-
cy detection methods on four databases with ground-truth salient
object annotations: the 5000-image MSRA-B database, the 1000-
image MSRA-1000 database (a subset of the MSRA-B), the 200-
image Complex Scene Saliency Database (CSSD), and the 643-
image iCoseg database. The CSSD was chosen because it con-
tains complex foreground and background patterns, and the iCoseg
database was chosen because many images include multiple fore-
ground objects. The performance of various salient object detection
algorithms on these databases is shown in Figure 3. Our method
outperforms thirteen state-of-the-art methods on all four databases.
Visual Comparison: A visual comparison of the various algorithms
can be seen in Figure 4. Representative images have been chosen to
highlight the differences between algorithms. The first row shows
an image with a complex foreground object: our method highlights
the building fairly uniformly, while most methods only detect part of
it. The second row shows an image with a complex background. In
this case, our method highlights the foreground object well while
suppressing the background. GR and AM, which are also graph
based methods, only highlight part of the salient object and incor-
rectly suppress object pixels which are near the border of the image.
Our method works better here because our graph includes edges be-
tween similarly-colored regions, which can help to highlight the w-
hole salient object. The third row shows an image with a complex
foreground and background. Our result is more consistent with the
ground truth than the other methods, which tend to highlight only
part of the object or include false alarms from the background.

Despite the central bias prior, our method still performs well
when the salient object is off- center, as in the fourth and fifth ex-
ample images. In the fourth row, where the color difference between
the foreground and the background is large, LC, FT, CB, HC and
HS also perform well. However they are likely to fail when the col-
or difference between the foreground and background is small, as
in the fifth row. The last row shows an image with multiple salient
objects. Our method can detect all the salient objects while the other
graph-based methods, GR and AM, only detect a subset of the ob-
jects. In short, the saliency maps generated by our method are more
consistent with the ground truth annotation.

5. CONCLUSION

In this paper we have described an improved prior-based graph for
salient object detection. To construct the graph, we exploit prior
knowledge about natural images, including spatial priors, color pri-
ors, and a central bias prior. Moreover, we propose a new sine spa-
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Fig. 4. Comparison of different salient object detection methods. The first column is the original image, the second is the ground truth, and
the remaining columns are results of the evaluated algorithms. Our method is the first column of results.

tial distance which exploits the central bias in images. Experimental
comparisons demonstrate that our method outperforms state-of-the-
art salient object detection methods on a variety of images.
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