

Use of local image information in depth edge classification by humans and neural networks

Krista A. Ehinger¹, Wendy J. Adams², Erich W. Graf², James H. Elder¹

¹Centre for Vision Research, York University ²University of Southampton

[1] Adams, W.J., Elder, J.H., Graf, E.W., Leyland, J., Lugtigheid, A.J., & Muryy, A. (2016). The Southampton-York Natural Scenes (SYNS) dataset: Statistics of surface attitude. *Scientific Reports*, 6, 35805. [2] Elder, J. H., & Zucker, S. W. (1998). Local scale control for edge detection and blur estimation. *IEEE Transactions on*

Pattern Analysis and Machine Intelligence, 20, 699–716. [3] Sebastian, S. & Geisler, W. S. (2018). Decision-variable correlation. Journal of Vision, 18(4): 3

This research was supported by NSERC Discovery and ORF-RE grants to J.H.E. K.A.E. is funded by a Vision: Science to Applications (VISTA) Award.

- "non-depth" (keypress response)
- Binocular presentation

Southampton-York Natural Scenes (SYNS) database [1]: Spherical high dynamic range (HDR) imagery and LiDAR range data from 60 randomly-sampled outdoor locations.

Introduction

Results: Depth edge classification Luminance and color cues for edge depth classification

Stimuli

References

Distinguishing edges caused by a change in depth from other types of edges and establishing figure-ground are important problems in early vision. We compare the performance of humans and a convolutional neural network (CNN) on this task.

> **a** Green Which side is closer?

Conclusions

- DVC between human responses and
- **-B** other human observers' responses
- **-** CNN responses
- Slope of human-CNN DVC over patch size is significantly different from 0 in Exp. $1(t(7) = 2.65, p = 0.03)$ and Exp. 2 $(t(5) = 3.09, p = 0.03)$.
- Slope of human-human agreement is not significantly different from 0 (Exp. 1: t(7) = 1.43, p = 0.20; Exp. 2: t(5) = 0.68 , $p = 0.53$).

We project images over a uniform sampling of the view sphere and use a multiscale edge detector [2] to find luminance edges in each view. To identify "depth" and "non-depth" edges, we characterize the 3D surface at the edge:

• Identify two LiDAR samples about 0.14° to either side of the edge.

Observers were shown a small square color image patch centred at each edge (width = $8-32$ px = $0.6-2.4^{\circ}$) and asked to classify the edge as a "depth" or "nondepth" edge. **Experiment 2**

• Observers can accurately discriminate depth from non-depth edges using only a 0.6° window around the edge, but figure-ground discrimination requires a wider view around the edge.

ƔUse an adaptive multiscale surface fitting method [1] to estimate local planar approximations to the surfaces at these two points and identify the set of LiDAR samples which are inliers on each plane.

- Mark edges as "non-depth" if surfaces are coplanar (inlier samples from one plane are inliers on the other) or form a
- crease (planes intersect between the two view vectors). Otherwise, mark edges as "depth."
- Measure the depth change across depth edges, defined as the difference in the distances to the two surfaces

• Human and CNN judgements are highly correlated and rely in part on luminance and color contrast cues.

• But human-human correlation is much higher than human-CNN correlation: there are important determinants of human judgements that the CNN model does not capture.

- Edges on very small/complex surfaces (e.g. foliage) excluded
- Ground truth labels verified by two raters
- Depth and figure-ground classification
- (slider response) • Monocular presentation

Within the same experiment, slopes are not significantly different from each other (Exp. 1: $t(7) = 2.02$, $p = 0.08$; Exp. 2: $t(5) = 1.72$, $p = 0.15$.

Non-depth Depth

Red

Method

Accuracy

Human accuracy increases with patch size (65-70%) but is well below CNNperformance (81-85%) in Exp. 1. Human performance was higher in Exp. 2 and comparable to the CNN.

Human observers show a bias towards labeling edges as "non-depth": misses are more commonthan false alarms.The CNNs show a smallerbias in the same direction.

Results: Figure-ground classification

Human-model agreement

Decision variable correlation (DVC) [3] was used to measure agreement between human observers and the CNN. DVC uses a signal detection framework to model the similarity between two observers in a 2AFC task. Correlation between human observers and CNN is above chance but lower than human-human agreement.

increases with patch size from 53-84% correct.

Accuracy is only slightly higher for edges labeled "depth" with high confidence (confidence score in the upper half of the distribution of scores from this observer).

Observers show a bias towards labeling the darker side of the edge as "figure," although this is not a reliable cue (the lighter side is figure in 51% of edges).

Southampton

Local cues

Edge features

Response of a Gaussian derivative filter centered at and aligned with the edge.

Patch features

Response of an isotropic Gaussian filter centered at the edge.

Decision variable correlations between the log likelihood ratio of local edge cues and "depth" responses in Experiment 2 show that both human and CNN responses are most associated with contrast cues.

We examine the discriminativepower of two kinds of local luminance and color cues:Accuracy

Performance of a maximum likelihood classifier using a single local cue

We varied the Gaussian scale constant σ to identify the optimal scale for depth edge discrimination. Contrast cues are the best individual local cues to depth. Performance is highest when contrast is measured in a small region (σ = 0.2°).

We compared human edge depth classification to the performance of a CNN trained on 200,000 edge patches from 40 scenes not used in the behavioral experiment.

