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1 Logarithmic transformations of variables

Considering the simple bivariate linear model Yi = α + βX i + εi ,
1 there are four possible com-

binations of transformations involving logarithms: the linear case with no transformations, the
linear-log model, the log-linear model2, and the log-log model.

X
Y X logX

Y linear linear-log
Ŷi = α+ βX i Ŷi = α+ β logX i

logY log-linear log-log
logŶi = α+ βX i logŶi = α+ β logX i

Table 1: Four varieties of logarithmic transformations

Remember that we are using natural logarithms, where the base is e ≈ 2.71828. Logarithms may
have other bases, for instance the decimal logarithm of base 10. (The base 10 logarithm is used in
the definition of the Richter scale, for instance, measuring the intensity of earthquakes as Richter
= log(intensity). This is why an earthquake of magnitude 9 is 100 times more powerful than an
earthquake of magnitude 7: because 109/107 = 102 and log10(102) = 2.)

Some properties of logarithms and exponential functions that you may find useful include:

1. log(e) = 1

2. log(1) = 0

3. log(x r) = r log(x)

4. logeA = A

∗With valuable input and edits from Jouni Kuha.
1The bivariate case is used here for simplicity only, as the results generalize directly to models involving more than

one X variable, although we would need to add the caveat that all other variables are held constant.
2Note that the term “log-linear model” is also used in other contexts, to refer to some types of models for other kinds

of response variables Y . These are different from the log-linear models discussed here.
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5. elogA = A

6. log(AB) = logA+ logB

7. log(A/B) = logA− logB

8. eAB =
�

eA
�B

9. eA+B = eAeB

10. eA−B = eA/eB

2 Why use logarithmic transformations of variables

Logarithmically transforming variables in a regression model is a very common way to handle sit-
uations where a non-linear relationship exists between the independent and dependent variables.3

Using the logarithm of one or more variables instead of the un-logged form makes the effective
relationship non-linear, while still preserving the linear model.

Logarithmic transformations are also a convenient means of transforming a highly skewed variable
into one that is more approximately normal. (In fact, there is a distribution called the log-normal
distribution defined as a distribution whose logarithm is normally distributed – but whose untrans-
formed scale is skewed.)

For instance, if we plot the histogram of expenses (from the MI452 course pack example), we see a
significant right skew in this data, meaning the mass of cases are bunched at lower values:
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If we plot the histogram of the logarithm of expenses, however, we see a distribution that looks
much more like a normal distribution:

3The other transformation we have learned is the quadratic form involving adding the term X 2 to the model. This
produces curvature that unlike the logarithmic transformation that can reverse the direction of the relationship, some-
thing that the logarithmic transformation cannot do. The logarithmic transformation is what as known as a monotone
transformation: it preserves the ordering between x and f (x).

2



2 4 6 8

0
20

40
60

80
10
0

Log(Expenses)

3 Interpreting coefficients in logarithmically models with logarithmic
transformations

3.1 Linear model: Yi = α+ βX i + εi

Recall that in the linear regression model, logYi = α+ βX i + εi , the coefficient β gives us directly
the change in Y for a one-unit change in X . No additional interpretation is required beyond the
estimate β̂ of the coefficient itself.

This literal interpretation will still hold when variables have been logarithmically transformed, but
it usually makes sense to interpret the changes not in log-units but rather in percentage changes.

Each logarithmically transformed model is discussed in turn below.

3.2 Linear-log model: Yi = α+ β logX i + εi

In the linear-log model, the literal interpretation of the estimated coefficient β̂ is that a one-unit
increase in logX will produce an expected increase in Y of β̂ units. To see what this means in terms
of changes in X , we can use the result that

log X + 1= log X + log e = log(eX )

which is obtained using properties 1 and 6 of logarithms and exponential functions listed on page
1. In other words, adding 1 to log X means multiplying X itself by e ≈ 2.72.

A proportional change like this can be converted to a percentage change by subtracting 1 and
multiplying by 100. So another way of stating “multiplying X by 2.72” is to say that X increases by
172% (since 100× (2.72− 1) = 172).

So in terms of a change in X (unlogged):
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• β̂ is the expected change in Y when X is multiplied by e.

• β̂ is the expected change in Y when X increases by 172%

• For other percentage changes in X we can use the following result: The expected change in
Y associated with a p% increase in X can be calculated as β̂ · log([100 + p]/100). So to
work out the expected change associated with a 10% increase in X , therefore, multiply β̂ by
log(110/100) = log(1.1) = .095. In other words, 0.095β̂ is the expected change in Y when
X is multiplied by 1.1, i.e. increases by 10%.

• For small p, approximately log([100+ p]/100) ≈ p/100. For p = 1, this means that β̂/100
can be interpreted approximately as the expected increase in Y from a 1% increase in X

3.3 Log-linear model: logYi = α+ βX i + εi

In the log-linear model, the literal interpretation of the estimated coefficient β̂ is that a one-unit
increase in X will produce an expected increase in log Y of β̂ units. In terms of Y itself, this means
that the expected value of Y is multiplied by eβ̂ . So in terms of effects of changes in X on Y
(unlogged):

• Each 1-unit increase in X multiplies the expected value of Y by eβ̂ .

• To compute the effects on Y of another change in X than an increase of one unit, call this
change c, we need to include c in the exponent. The effect of a c-unit increase in X is to
multiply the expected value of Y by ecβ̂ . So the effect for a 5-unit increase in X would be e5β̂ .

• For small values of β̂ , approximately eβ̂ ≈ 1+β̂ . We can use this for the following approxima-
tion for a quick interpretation of the coefficients: 100 · β̂ is the expected percentage change
in Y for a unit increase in X . For instance for β̂ = .06, e.06 ≈ 1.06, so a 1-unit change in X
corresponds to (approximately) an expected increase in Y of 6%.

3.4 Log-log model: logYi = α+ β logX i + εi

In instances where both the dependent variable and independent variable(s) are log-transformed
variables, the interpretation is a combination of the linear-log and log-linear cases above. In other
words, the interpretation is given as an expected percentage change in Y when X increases by some
percentage. Such relationships, where both Y and X are log-transformed, are commonly referred
to as elastic in econometrics, and the coefficient of log X is referred to as an elasticity.

So in terms of effects of changes in X on Y (both unlogged):

• multiplying X by e will multiply expected value of Y by eβ̂

• To get the proportional change in Y associated with a p percent increase in X , calculate
a = log([100+ p]/100) and take eaβ̂
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4 Examples

Linear-log. Consider the regression of % urban population (1995) on per capita GNP:
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Some examples

! Let's consider the relationship between the percentage
urban and per capita GNP:

! This doesn't look too good.  Let's try transforming the per
capita GNP by logging it:

The distribution of per capita GDP is badly skewed, creating a non-linear relationship between X
and Y . To control the skew and counter problems in heteroskedasticity, we transform GNP/capita
by taking its logarithm. This produces the following plot:
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Some examples

! Let's consider the relationship between the percentage
urban and per capita GNP:

! This doesn't look too good.  Let's try transforming the per
capita GNP by logging it:

and the regression with the following results:
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! That looked pretty good.  Now let's quantify the association
between percentage urban and the logged per capita
income:

. regress urb95 lPcGDP95                                                       
  Source |       SS       df       MS                  Number of obs =     132 
---------+------------------------------               F(  1,   130) =  158.73 
   Model |  38856.2103     1  38856.2103               Prob > F      =  0.0000 
Residual |  31822.7215   130  244.790165               R-squared     =  0.5498 
---------+------------------------------               Adj R-squared =  0.5463 
   Total |  70678.9318   131  539.533831               Root MSE      =  15.646 
------------------------------------------------------------------------------ 
   urb95 |      Coef.   Std. Err.       t     P>|t|       [95% Conf. Interval] 
---------+-------------------------------------------------------------------- 
lPcGDP95 |   10.43004   .8278521     12.599   0.000       8.792235    12.06785 
   _cons |  -24.42095   6.295892     -3.879   0.000      -36.87662   -11.96528 
------------------------------------------------------------------------------ 

! The implication of this coefficient is that multiplying 
capita income by e, roughly 2.71828, 'increases' the
percentage urban by 10.43 percentage points.

! Increasing per capita income by 10% 'increases' the
percentage urban by 10.43*0.09531 = 0.994 percentage
points.

To interpret the coefficient of 10.43004 on the log of the GNP/capita variable, we can make the
following statements:

Directly from the coefficient: An increase of 1 in the log of GNP/capita will increase Y by 10.43004.
(This is not extremely interesting, however, since few people are sure how to interpret the
natural logarithms of GDP/capita.)

Multiplicative changes in e: Multiplying GNP/cap by e will increase Y by 10.43004.

A 1% increase in X : A 1% increase in GNP/cap will increase Y by 10.43004/100= .1043

A 10% increase in X : A 10% increase in GNP/cap will increase Y by 10.43004 ∗ log(1.10) =
10.43004 ∗ .09531≈ 0.994.

Log-linear. What if we reverse X and Y from the above example, so that we regress the log of
GNP/capita on the %urban? In this case, the logarithmically transformed variable is the Y variable.
This leads to the following plot (which is just the transpose of the previous one — this is only an
example!):
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What about the situation where the dependent variable is
logged?

! We could just as easily have considered the 'effect' on
logged per capita income of increasing urbanization:

                                                                               
. regress lPcGDP95 urb95
  Source |       SS       df       MS                  Number of obs =     132 
---------+------------------------------               F(  1,   130) =  158.73 
   Model |  196.362646     1  196.362646               Prob > F      =  0.0000 
Residual |  160.818406   130  1.23706466               R-squared     =  0.5498 
---------+------------------------------               Adj R-squared =  0.5463 
   Total |  357.181052   131  2.72657291               Root MSE      =  1.1122 
------------------------------------------------------------------------------ 
lPcGDP95 |      Coef.   Std. Err.       t     P>|t|       [95% Conf. Interval] 
---------+-------------------------------------------------------------------- 
   urb95 |    .052709   .0041836     12.599   0.000       .0444322    .0609857 
   _cons |   4.630287   .2420303     19.131   0.000       4.151459    5.109115 
------------------------------------------------------------------------------ 

! Every one point increase in the percentage urban multiplies
per capita income by e  = 1.054.  In other words, it0.052709

increases per capita income by 5.4%.
                             
       

with the following regression results:
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! Every one point increase in the percentage urban multiplies
per capita income by e  = 1.054.  In other words, it0.052709

increases per capita income by 5.4%.
                             
       

To interpret the coefficient of .052709 on the urb95 variable, we can make the following state-
ments:

Directly from the coefficient, transformed Y : Each one unit increase urb95 in increases lPcGDP95
by .052709. (Once again, this is not particularly useful as we still have trouble thinking in
terms of the natural logarithm of GDP/capita.)

Directly from the coefficient, untransformed Y : Each one unit increase of urb95 increases the
untransformed GDP/capita by a multiple of e0.52709 = 1.054 – or a 5.4% increase. (This is
very close to the 5.3% increase that we get using our quick approximate rule described above
for interpreting the .053 as yielding a 5.3% increase for a one-unit change in X .)

Log-log. Here we consider a regression of the logarithm of the infant mortality rate on the log of
GDP/capita. The plot and the regression results look like this:
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! Let's look at infant mortality and per capita income:

. regress lIMR lPcGDP95                                                        
  Source |       SS       df       MS                  Number of obs =     194 
---------+------------------------------               F(  1,   192) =  404.52 
   Model |  131.035233     1  131.035233               Prob > F      =  0.0000 
Residual |  62.1945021   192  .323929698               R-squared     =  0.6781 
---------+------------------------------               Adj R-squared =  0.6765 
   Total |  193.229735   193  1.00119034               Root MSE      =  .56915 
------------------------------------------------------------------------------ 
    lIMR |      Coef.   Std. Err.       t     P>|t|       [95% Conf. Interval] 
---------+-------------------------------------------------------------------- 
lPcGDP95 |  -.4984531   .0247831    -20.113   0.000      -.5473352    -.449571 
   _cons |   7.088676   .1908519     37.142   0.000        6.71224    7.465111 
------------------------------------------------------------------------------ 

                                                            
! Thus multiplying per capita income by 2.718 multiplies the

infant mortality rate by e  = 0.607-0.4984531

! A 10% increase in per capita income multiplies the infant
mortality rate e  = 0.954.-0.4984531*ln(1.1)

! In other words, a 10% increase in per capita income
reduces the infant mortality rate by 4.6%.
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! Thus multiplying per capita income by 2.718 multiplies the

infant mortality rate by e  = 0.607-0.4984531

! A 10% increase in per capita income multiplies the infant
mortality rate e  = 0.954.-0.4984531*ln(1.1)

! In other words, a 10% increase in per capita income
reduces the infant mortality rate by 4.6%.

To interpret the coefficient of -.4984531 on the lPcGDP95 variable, we can make the following
statements:

7



Directly from the coefficient, transformed Y : Each one unit increase lPcGDP95 in increases lIMR
by -.4984531. (Since we cannot think directly in natural log units, then once again, this is
not particularly useful.)

Multiplicative changes in both X and Y : Multiplying X (GNP/cap) by e ≈ 2.72 multiplies Y by
e−.4984531 = 0.607, i.e. reduces the expected IMR by about 39.3%.

A 1% increase in X : A 1% increase in GNP/cap multiplies IMR by e−.4984531∗log(1.01) = .0.9950525.
So a 1% increase in GNP/cap reduces IMR by 0.5%.

A 10% increase in X : A 10% increase in GNP/cap multiplies IMR by e−.4984531∗log(1.1) ≈ .954. So
a 10% increase in GNP/cap reduces IMR by 4.6%.
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