IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 23, NO. 5, MAY 2015 819
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Abstract—This paper presents a novel approach to design
obfuscated circuits for digital signal processing (DSP) applica-
tions using high-level transformations, a key-based obfuscating
finite-state machine (FSM), and a reconfigurator. The goal is to
design DSP circuits that are harder to reverse engineer. High-
level transformations of iterative data-flow graphs have been
exploited for area-speed-power tradeoffs. This is the first attempt
to develop a design flow to apply high-level transformations that
not only meet these tradeoffs but also simultaneously obfuscate
the architectures both structurally and functionally. Several
modes of operations are introduced for obfuscation where the
outputs are meaningful from a signal processing point of view,
but are functionally incorrect. Examples of such modes include a
third-order digital filter that can also implement a sixth-order or
ninth-order filter in a time-multiplexed manner. The latter two
modes are meaningful but represent functionally incorrect modes.
Multiple meaningful modes can be exploited to reconfigure
the filter order for different applications. Other modes may
correspond to nonmeaningful modes. A correct key input to
an FSM activates a reconfigurator. The configure data controls
various modes of the circuit operation. Functional obfuscation is
accomplished by requiring use of the correct initialization key,
and configure data. Wrong initialization key fails to enable the
reconfigurator, and a wrong configure data activates either a
meaningful but nonfunctional or nonmeaningful mode. Prob-
ability of activating the correct mode is significantly reduced
leading to an obfuscated DSP circuit. Structural obfuscation
is also achieved by the proposed methodology via high-level
transformations. Experimental results show that the overhead
of the proposed methodology is small, while a strong obfuscation
is attained. For example, the area overhead for a (3/)th-order
IIR filter benchmark is only 17.7% with a 128-bit configuration
key, where 1 < I < 8, i.e., the order of this filter should be a
multiple of 3, and can vary from 3 to 24.

Index Terms—Digital signal processing (DSP), functional
obfuscation, hardware security, high-level transformations,
intellectual property (IP) protection, obfuscation, reconfigurable
design, structural obfuscation.

I. INTRODUCTION

IGITAL signal processing (DSP) plays a critical role

in numerous applications, such as video compression,
portable systems/computers, multimedia, wired and wireless
communications, speech processing, and biomedical signal
processing. However, as electronic devices become increas-
ingly interconnected and pervasive in people’s lives, security,
trustworthy computing, and privacy protection have emerged
as important challenges for the next decade. It is estimated
that as much as 10% of all high-tech products sold globally
are counterfeit which leads to a conservative estimate of
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$100 billion of revenue loss [1]. Therefore, DSP system
designers have to pay more attention to the security perspective
of DSP circuits, since the adversary can easily learn the
functionality using massive attacking methods.

The problem of hardware security is a serious concern that
has led to a lot of work on hardware prevention of piracy
and intellectual property (IP), which can be broadly classified
into two main categories: 1) authentication-based approach
and 2) obfuscation-based approach. The authentication-
based approaches include physical unclonable functions
(PUFs)-based authentication [2], digital watermarking [3]-[6],
key-locking scheme [7], [8], and hardware metering [9]. The
focus of this paper is on obfuscation, which is a technique
that transforms an application or a design into one that is
functionally equivalent to the original but is significantly
more difficult to reverse engineer. Some hardware protection
methods are achieved by altering the human readability of the
hardware description language (HDL) code, or by encrypting
the source code based on cryptographic techniques [10].
Recently, a number of hardware obfuscation schemes have
been proposed that modify the finite-state machine (FSM)
representations to obfuscate the circuits [11]-[13].

However, to the best of our knowledge, no obfuscation-
based IP protection approach has been proposed specifi-
cally for DSP circuits in the literature. This paper, for the
first time, presents design of obfuscated DSP circuits via
high-level transformations that are harder to reverse engineer.
From this standpoint of view, a DSP circuit is more secure,
if it is harder for the adversary to discover its functional-
ity even if the adversary can physically tamper the device.
In other words, a high level of security is achieved if the
functionality of a DSP circuit is designed to be hidden from the
adversary.

The key contribution of this paper is a novel approach to
design obfuscated DSP circuits by high-level transformations
during the design stage. The DSP circuits are obfuscated by
introducing an FSM whose state is controlled by a key. The
FSM enables a reconfigurator that configures the functionality
mode of the DSP circuit. High-level transformations lead
to many equivalent circuits and all these create ambiguity
in the structural level. High-level transformations also allow
design of circuits using same datapath but different control
circuits. Different variation modes can be inserted into the
DSP circuits for obfuscation. While some modes generate
outputs that are functionally incorrect, these may represent
correct outputs under different situations, since the output is
meaningful from a signal processing point of view. Other
modes would lead to nonmeaningful outputs. The initialization
key and the configure data must be known for the circuit to
work properly. Consequently, the proposed design method-
ology leads to a DSP circuit that is both structurally and
functionally obfuscated.
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Furthermore, the approach presented in this paper will
prevent piracy from overproduction and mask theft, because
the manufacturer would not have access to either the
initialization key or the configure data. These keys could
be programmed by another honest vendor after the chips have
been fabricated or provided to the customers by the designer.
Therefore, overproduced chips without the correct keys cannot
function properly. This paper is an expanded version of [14].

The rest of this paper is organized as follows. In Section II,
we present how the high-level transformation techniques can
be used to hide the functionalities of DSP circuits, and make
observations based on examples which lead to the work in the
subsequent sections. Section III presents a detailed implemen-
tation of a secure switch, which can be used for obfuscation.
In Section IV, a case study is presented to demonstrate the idea
of generating variation modes simultaneously with performing
high-level transformations during design stage. In Section V,
we describe the complete design flow of the proposed DSP
circuit obfuscation methodology. Section VI addresses the
evaluations of the security aspects. We illustrate the effec-
tiveness of the proposed design methodology by experimental
results and analysis in Section VII. In Section VIII, we com-
pare the proposed obfuscation approach with other existing
methods. Finally, Section IX presents remarks, conclusions,
and future directions.

II. HIDING FUNCTIONALITY BY HIGH-LEVEL
TRANSFORMATIONS

High-level transformations [15] have been known for a
long time and have been used in a wide range of applica-
tions, such as pipelining [16], interleaving [16], folding [17],
unfolding [18], and look-ahead transformations (e.g., quan-
tizer loops [19], multiplexer loops [20], [21], relaxed look-
ahead [22], annihilation reordering look-ahead [23]), and have
been used in synthesis of DSP systems [24]. These techniques
can be applied at the algorithm or the architecture level to
achieve a tradeoff among different metrics of performance,
such as area, speed, and power [25]. However, the use of
high-level transformations from a security perspective has
not been studied before. High-level transformations alter the
structure of a DSP circuit, while maintaining the original
functionality. These transformations may lead to architectures
whose functionalities are not obvious. Take an extreme case,
for example, many filters can be folded into one multiply-
accumulator (MAC), but their functionalities are not the same.
In other words, one MAC with proper switches can implement
many different digital filters. Therefore, we can conclude that
high-level transformations naturally provide a means to obfus-
cate DSP circuits both structurally and functionally. Structural
obfuscation and functional obfuscation are defined as follows.

1) Structural Obfuscation: Any algorithm can be imple-
mented by a family of architectures by using high-level
transformations. These architectures enable structural
obfuscation where the functionalities of the algorithms
can be hidden. This can be considered as a passive model
from attacker’s perspective.

2) Functional Obfuscation: This is realized by encrypting
the normal functionality of a DSP circuit with one or
more sets of keys. The DSP circuit cannot function
correctly without the keys. This corresponds to an active
model from attacker’s perspective.
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Fig. 1. Third-order IIR filter.

Folding is such an example of high-level transformation,
which could be utilized to achieve design obfuscation. The
folding transformation generates folded variants based on the
folding set, which is the reverse of the unfolding transfor-
mation [18]. The choice of folding set is critical to the
performance of the folded structure, since an appropriate
choice of folding order can lead to an architecture with lower
area and power. Folding sets can be designed intuitively to
meet the performance requirements or can be obtained from
a high-level synthesis system [24]. The details and other
examples (e.g., interleaving) of how to hide the functionalities
of DSP circuits by high-level transformations are described
in [26] and [27]. We can observe that: 1) circuits with different
functionalities can have a similar structure, and circuits with
the same functionality may have very different structures;
2) structural obfuscation can be achieved by high-level trans-
formations; and 3) if the switch instances are invisible to the
adversary, then the DSP systems will be harder to reverse
engineer, since the functionality of a DSP circuit is not obvious
due to obfuscation achieved by high-level transformations.
As a result, the adversary who only has knowledge of the struc-
tural information but lacks knowledge of the switch instances
cannot easily discover the functionality of a DSP circuit.

As an example, we consider a third-order IIR digital
filter given by transfer function H(z) = (1+maz '+
m3z=2)/(1 —moz~% —m1z~3), as shown in Fig. 1. The coef-
ficients m; correspond to the multiplication M;. We assume
the availability of one 1-stage pipelined adder and one 3-stage
pipelined multiplier. The filter is folded with folding factor
N = 4 using the following folding sets:

M = {My, My, M>, M3}
A = {Ag, A1, Az, A3},

Folding sets represent the order of operations executed by
the same hardware. For a folded system to be realizable, the
folding equations, Dr(U 5 V) = Nw(e) — Py + v — u,
must be greater or equal to O for all the edges in the diagram,
where N is the folding factor, w(e) is the number of delays
from U to V, Py represents the pipelining level of hardware
functional unit for operation type U, and u and v represent
the folding orders of U and V, respectively. Retiming and
pipelining can be used to satisfy this property (or it can
be determined that the folding sets are not feasible), as a
preprocessing step prior to folding. The folded architecture is
shown in Fig. 2. Fig. 3 presents the structure that the switch
instances are designed to be invisible. Null operations are
incorporated into the switches.

We consider the implementation of another third-order
IR filter given by transfer function H(z) = (1 + maz ™'+
m3z=2)/(1 —m1z~3) as shown in Fig. 4. In order to achieve
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Fig. 2. Folded structure of the third-order IIR filter in Fig. 1. The switch
instance i corresponds to clock cycle 4/ 4 i.
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Fig. 4. Another third-order IIR filter.

obfuscation, an architecture can be designed to be configurable
as a third-order IIR filter shown in either Fig. 1 or 4. These
two modes are considered as meaningful modes.

In fact, a folded architecture of Fig. 4 using the following
folding sets can be obtained by assigning different switch
instances to the structure in Fig. 3, which is shown in Fig. 5

M = {0, M, M2, M3}
A = {0, A, Az, A3}.

The folding factor is 4, while there are only three multipliers
and three adders in the DSP circuit. Therefore, if we consider
the functionality of Fig. 4 as the desired mode, one computa-
tion cycle is wasted every four cycles. The latency will also
be increased. Note that we could use clock gating techniques
to reduce the power for the null operation cycles.

However, we can extend the periodicity of the switches to
overcome the hardware underutilization. For instance, we can
fold the third-order IIR filter in Fig. 4 by folding factor 3 with
the folding sets

M = (M3, My, M3}
A ={Az, Ay, Az},
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Fig. 5. Folded structure of the third-order IIR filter in Fig. 4. The switch
instance i corresponds to clock cycle 4/ 4 i.
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Fig. 6. Another folded structure of the third-order IIR filter in Fig. 4. The

switch instance i corresponds to clock cycle 3/ +i.

Fig. 7.
third-order IIR filter shown in either Fig. 1 or 4.

Obfuscated structure, which can be configurable as a

The folded structure is shown in Fig. 6. We can accommo-
date the two meaningful modes with no increase in latency for
the second mode by extending the periodicity of the switches
to the least common multiple of the folding factors of the
two modes [i.e., lem(3, 4) = 12]. Similar extensions of switch
periods have been considered in design of digit-serial DSP
architectures [28]. For example, switch instance 4/ + i can
be rewritten as 12/ +1i, 12l +4 + i, and 12/ + 8 + i, for i
ranging from O to 3, in Fig. 2; while switch instance 3/ + i
can be rewritten as 12/ +1i, 12l +3 + i, 12l + 6 + i, and
121 + 9 + i, for i ranging from O to 2, in Fig. 6. As a result,
for each meaningful mode as the desired mode, the latency
remains the same as the original folded structure. This is
achieved by increasing the complexity of the switch and the
expense of hardware overhead associated with this step. The
final obfuscated architecture for these two meaningful modes
is shown in Fig. 7. The switch instances are obfuscated and
the two correct configurations of the switches correspond to
two meaningful modes.
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Fig. 9. Complete reconfigurable switch design.

III. OBFUSCATED DESIGN VIA HIGH-LEVEL
TRANSFORMATIONS

A. Secure Switch Design

From Section II, it can be seen that the DSP circuits can
be obfuscated via high-level transformations by appropriately
designing the switches in a secure manner. The switches
generated by high-level transformations are periodic N-to-1
switches. These switches can be implemented as multiplex-
ers, whose control signals are obtained from ring counters
(as shown in Fig. 8). Thus, the security of the switch relies
upon design of the ring counters such that the outputs of the
ring counters can be obfuscated.

A ring counter is often modeled as an FSM. An FSM is
usually defined by a 6-tuple (I, O, S, Sp, F, G), where S is a
finite set of internal states, / and O represent the inputs and
outputs of the FSM, respectively, F' is the next-state function,
G is the output function, and Sy is the initial state. However,
unlike general FSMs, the FSM of a ring counter is input-
independent, such that it always transits to the next state based
on the current state. As a result, the control signal of the
switches (i.e., output of the FSM) will be periodic.

B. Reconfigurable Switch Design

Indeed, existing works have demonstrated that functional
obfuscation can be achieved by embedding a well-hidden FSM
(i.e., obfuscating FSM) in the circuit to control the functional-
ity based on a key [12], [13], [29]. In order to achieve design
obfuscation by using high-level transformations, we propose
a reconfigurable switch design. The detailed implementation
is shown in Fig. 9, where SR represents the state registers
that store the information of the current state. We employ the
idea of hardware design obfuscation as an activation sequence

initialization key configure data
configuration key| ——"  (L)-bit *—— |/ (K)-bit ~—|
o | [ [ ][] e [ ]]

Fig. 10. Configuration key containing an initialization key and a configure
data.

TABLE I
SWITCH CONFIGURATIONS

Mode Configure Data
1 datay, datas
2 datas

M data{QK_l}, data{QK}

required before configuration by inserting an obfuscating FSM.
The FSM enables a reconfigurator that controls the func-
tionality mode of the DSP circuit by configuring the output
function G, next-state function F, and the initial state Sp.
In our design, the configuration key must be known for the
circuit to work properly, which consists of two parts: an L-bit
initialization key and a K-bit configure data, as shown
in Fig. 10. The initialization key is used as the input of
the obfuscating FSM, while the configure data are applied to
the reconfigurator to control the operation of the switches.
As the configuration of the switch is only enabled after
receiving a correct initialization key, hostile attempts of the
configure data cannot be processed by the reconfigurator as the
reconfigurator is not activated. Note that other secure switch
designs, whose detailed switch instances are hidden to the
adversary, can also be adopted in the framework.

The number of possible variations of ring counters is
limited by the length of the configure data, K. We can create
M variation modes of the original circuits that have different
functionalities, while logoM should be less than or equal
to the length of configure data, K. Different configure data
can be mapped into the same mode. An example of the
mapping between the configure data and the associated modes
is illustrated in Table I. Note that this only involves simple
combinational logic synthesis.

IV. GENERATION OF VARIATION MODES
A. Security Perspective of Variation Modes

The cost for an adversary to find the correct key of an
obfuscated DSP circuit by adopting the proposed architecture
is not only dependent on the length of the configuration key
(L + K), but also on the number of required input-vectors
for learning the functionality of each variation mode (note
that in this paper, the inputs represent the original inputs of
the DSP circuits, while the key represents the data to control
the switches). For a certain variation mode, the adversary
attempts to attack the DSP circuit by generating input-vectors
until the functionality could be discovered. The most intuitive
way to mask the desired functionality is to modify the switch
instances arbitrarily. However, the functionality of the resulting
structure may not be meaningful from a signal processing
point of view, which would be easier for the adversary to
distinguish whether the circuit is operating correctly. The
numbers of required input-vectors for these nonmeaningful
variation modes would be less than the numbers of required
input-vectors for meaningful variation modes. If one mode
of a DSP circuit is obfuscated to output a large portion of



LAO AND PARHI: OBFUSCATING DSP CIRCUITS VIA HIGH-LEVEL TRANSFORMATIONS 823

invalid values, the adversary can figure out this mode is
nonmeaningful with a relatively small number of input-vectors.

The challenge of this problem is how to generate meaningful
variation modes from a signal processing point of view such
that the DSP circuit can also be operated in a reconfigurable
manner. Most often, we perform a high-level transformation
based on the design requirements and constraints by taking
an existing design and generating the resulting design during
high-level synthesis stage. We may continue to add variation
modes into the design, as discussed in Section II. Some of
the variation modes may correspond to meaningful modes
(e.g., different order filters or filters of same order with differ-
ent coefficients), which can be exploited for different applica-
tions, while others correspond to nonmeaningful modes.

Design of obfuscated DSP circuits requires extra efforts
during the design phase. In fact, variations of the algorithm
(e.g., different folding sets) can also be utilized to produce sev-
eral obfuscated versions. Therefore, it is possible to generate
meaningful variation modes simultaneously with the high-level
transformation during design stage instead of modifying the
switch instances after performing high-level transformations.
As a result, the variations of the structures are indeed obtained
from the variations of the selected algorithm. Furthermore, the
secure switches can also be designed systematically based on
the variations of algorithms. Using this approach, the extra
design efforts can be reduced, while reconfigurable design with
a number of different meaningful modes is ensured.

Note that meaningful modes are not mandatory for the
proposed obfuscated design. While meaningful modes achieve
higher security, obfuscation only with nonmeaningful modes
could also attain considerable protection of the DSP circuit
against reverse engineering.

B. Case Study: Hierarchical Contiguous Folding Algorithm

The variation modes are generated based on the selected
transformation algorithm, which are different for various high-
level transformations. It is difficult to cover a very large
number of existing high-level transformations in this paper. We
just present an example in this paper to demonstrate how to
generate variation modes. The proposed design methodology
can also be extended to other high-level transformations.

Hierarchical folding approach is a novel folding technique
that combines folding of M cascaded stages to one hard-
ware block, and folding of N operations inside each section
to a hardware functional unit, as shown in Fig. 11. Two
hierarchical folding algorithms are presented in [26], which
include hierarchical interleaved folding (HIF) and hierarchical
contiguous folding (HCF). In this paper, we only address HCF,
while it is also applicable to HIF. The HCF transformation
executes all operations of one section before starting execution
of operations of next section. The reader is referred to [26]
for further details.

The folding sets are described as follows:

0 0 0 1 1 1
(X0, X7, Xy 1 X0 X 1o s Xy g e
M—1 M—1 M—1
D ¢ COLID ¢ A

The operation ij , i.e., the ith operation of jth block, will
be executed at time Nj + i. The operations in a later section
will be executed only after all the operations from the pre-
vious section are completed. The algorithm is described in
Algorithm 1.

un) - Alg” - Alg' - Alg®

- Alg™ - y(n)

(a) Unfolded structure

u(n) . Alg H Dr  Same structure as M-
- w interleaved, replace each

delay by M delays of Algi

(b) Folding

Fig. 11. (a) DSP data-flow graph containing M cascaded stages. Block Algi
represents ith stage of the cascade. (b) Folded architecture where M stages
are folded to same hardware. Df represents the number of folded delays.

Algorithm 1 Hierarchical Contiguous
Algorithm 1

Folding (HCF)

1) Fold Alg® by factor N M, with the folding set
{Xo, X1,--Xn-1,0,0,...0}, where the number of null
operations corresponds to (NM — N).

2) Replace each switch s by s,s+N,s+2N,...s+(M—1)N.

3) Compute Dp(Alg? 5 Algith), for j =0,1,2..M —2,
and use these folded edges to replace the external inputs.

Algorithm 2 Design Obfuscation Algorithm based on the
HCF Algorithm 2

1) Fold Alg® by factor NM, with the folding set
{Xo, X1,.- Xn-1,0,0,...0}, where the number of null
operations corresponds to (NM — N).

2) Replace each switch s by s,s+ N,s+2N,...s+({—1)N,
and set switch instances from [N to M N — 1 to null
operations.

3) Compute Dp(Alg? = Algith), for j = 0,1,2..1 — 2,
and use these folded edges to replace the external inputs.

We propose an algorithm for obfuscation that generates
variation modes by varying the number of sections in the
cascade structure based on the HCF algorithm. For example,
if the number of sections for a DSP system is /, then the
algorithm can be described as shown in Algorithm 2. (the
total number of operations is still NM, where M > ).

If | = M, Algorithm 2 reduces to the HCF algorithm.
From Algorithm 2, we can generate M meaningful modes
correspond to [ = 1,2,..., M. Furthermore, the reconfig-
urator can also be designed based on the variations of the
HCF algorithm, which is a simple 2X-to-M combinational
logic design problem. Note that this algorithm can be easily
extended to other types of DSP systems where the subcircuits
are not directly connected.

V. DESIGN FLOW OF THE PROPOSED DSP CIRCUIT
OBFUSCATION APPROACH

A. Design Methodology

In this section, we propose a novel DSP hardware protection
methodology through obfuscation by hiding functionality via
high-level transformations. This approach helps the designer
to protect the DSP design against piracy. The detailed design
flow is described below.
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Fig. 12. Relationship between the obfuscated design and the original design.

Step 1: DSP Algorithm: This step generates the DSP
algorithm based on the DSP application.

Step 2: High-Level Transformation Selection: Based on
the specific application, appropriate high-level transformation
should be chosen according to the performance requirement
(e.g., area, speed, power, or energy).

Step 3: Obfuscation via High-Level Transformation:
Selected high-level transformations are applied simultaneously
with obfuscation where variation modes, and different config-
urations of the switch instances are designed.

Step 4: Secure Switch Design: The secure switch is designed
based on the variations of high-level transformations. Note that
different configure data could be mapped into the same mode,
which only involves simple combinational logic synthesis.

Step 5: Two-Level FSM Generation: The reconfigurator and
the obfuscating FSM are incorporated into the DSP design as
shown in Fig. 9. The configuration key is generated at this
step.

Step 6: Design Specification: This step includes the HDL
and netlist generation and synthesis of the DSP system.

After these design steps, designer sends the obfuscated
design to the foundry that manufactures the DSP circuit. By
using the proposed design methodology, the manufacturer will
not gain access to the desired functionality or the configuration
key. Unauthorized copies of the obfuscated DSP circuits would
provide little information to the adversary. The relationship
between the obfuscated design and the original design via
high-level transformation is shown in Fig. 12. The only dif-
ference between the obfuscated design and the original design
via high-level transformation is the control of the DSP circuit.
The main datapath is unaltered. As a result, the critical path
would not increase for the obfuscated design. Furthermore,
the proposed design methodology does not require significant
changes to established verification and testing flows. In fact,
the obfuscated DSP circuit with the correct key behaves just
like the original circuit.

B. Architecture of the Obfuscated DSP Circuits

The complete system of the proposed obfuscated DSP
circuit is shown in Fig. 13. The reconfigurator will be enabled
only by the correct initialization key. Only the correct con-
figure data leads to the desired design. A wrong config-
ure data activates an obfuscated mode (either a meaningful
or nonmeaningful). The obfuscating FSM and a portion of

DSP
Algorithm/
Application

Initialization Configure
key data

l .
Yes = Desired Design
Correct?

0o
Correct? _ \ Meaningful
Réfi‘y Enter b| Obfuscated
NQ,/”Attempt\s\YCS Denial of [es "’Alarm*a\m —
™" Exceeds Use . Modes "~ |(Non-Meaningful
Threshold “Exceeds Obfuscated
T Ne Threshold Designs

Obfuscated Designs
Obtained by High-
ILevel Transformations|

Fig. 13. Architecture of the proposed obfuscated DSP circuit.

nonmeaningful variation modes (i.e., we denote as alarm
modes) can both be utilized for security check purpose. For
example, some undesired modes in Table I can be designed
as alarm modes by adding another output signal to the com-
binational logic. We can improve the security by mapping a
larger number of configure data to this alarm mode, while
keeping the portion of functional configure data to be relatively
small. If the circuit continuously receives wrong initialization
key or configure data whose number exceeds the predefined
threshold, the adversary is prevented from further attempts of
the configuration key by a denial of use block.

VI. SECURITY AND RESILIENCY AGAINST ATTACKS
A. Attacks and Countermeasures

The goal of the proposed methodology is to ensure the
designer’s IP would not be stolen against reverse engineering.
Generally speaking, a hacker trying to determine the function-
ality of a DSP circuit can resort to either of the following ways:
1) structural analysis of the netlist to identify and isolate the
original design from the obfuscated design or 2) simulation-
based reverse engineering to determine functionality of the
design.

Our proposed obfuscation methodology protects the hard-
ware against the first type of attack (i.e., structural analysis)
from two perspectives: 1) structural obfuscation by high-level
transformation and 2) integration with obfuscation modes.
As presented in Section II, high-level transformations lead to
structural obfuscation at the HDL level or gate-level netlist.
Without knowing the correct configuration of the switches,
it is hard for the adversary to learn the functionality of
the original design. Furthermore, although the obfuscating
FSMs could be isolated, the obfuscation of configuration
switches cannot be separated from the original functionalities.
Since the obfuscation variation modes are integrated to the
reconfigurator in the synthesized DSP circuit, the adversary
cannot remove the design obfuscation achieved by high-level
transformations. In addition, meaningful variation modes also
create ambiguity when the adversary performs the structural
analysis attacks.

For a simulation-based approach where random key vectors
are sequentially applied to take the circuit to the correct mode,
the probability of discovering the configuration key sequence
is 1/254K for a circuit with a length-(L + K) configuration
key sequence. For example, the probability is only 5.4 x 10720
for a circuit with a length L = 32 initialization key sequence
and a length K = 32 configure data sequence.
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In addition, the cost of the simulation-based attack approach
is also dependent on the size of inputs. Various input patterns
need to be tested to determine the complete functionality
of a DSP circuit. In practice, most DSP circuits will have
considerable size of inputs and the length of configuration keys
can be made larger. Therefore, brute-force attack for learning
the key sequences and input/output patterns is computationally
infeasible.

B. Measure of Obfuscation Degree

1) Structural Obfuscation Degree: Manual attacks can be
performed by visual inspection and structural analysis. In these
types of manual attacks, the adversary has to analyze the RTL
or gate-level structure as well as the layouts. This is a weak
attack, as the adversary has very little chance of figuring out
the obfuscation scheme for large DSP circuits.

The obfuscation degree of the structural obfuscation is
dependent on the number of independent switches (Nj),
the period of switch instances after high-level transforma-
tions (P), and the number of connections for each independent
switch (Cp,). To estimate the obfuscation degree against these
manual attacks, we propose a metric called structural obfus-
cation degree (SOD)

N
soD = [](n +1D*
m=1

where the additional 1 corresponds to the null operation. Note
that a higher SOD value implies better obfuscation, as the
SOD value indicates the number of possible functionalities
generated by the combinations of these switches. A circuit
is more secure, if there is more ambiguity in the structure.
For example, the SOD value of the structure in Fig. 3 can be
calculated as 3% x 4* x 5% = 12960000 (excluding the output
switch), which is already very large.

For a small subcircuit with a small SOD value, it may
be feasible to figure out the original functionality from the
obfuscated design, as the number of combinations is small
and most of these combinations may result in nonmeaningful
functionalities. However, the structure of a DSP circuit after
high-level transformations usually has a larger SOD value
(as illustrated by the example earlier). Thus, it will be
extremely hard to distinguish the original functionality from
other possible functionalities of these DSP circuits.

2) Functional Obfuscation Degree: The proposed method-
ology also achieves functional obfuscation by encrypting the
correct functionality with a key sequence. The cost for an
adversary to discover the correct key is dependent on the
bit-length of the key (L + K), the number of meaningful
modes (Ny,), the number of nonmeaningful modes (N, ), and
the size of input bits (N7). To estimate the obfuscation degree
against simulation-based attacks, we propose a metric denoted
as functional obfuscation degree (FOD)

FOD = f(N;)2Y [N, + aN, + B2K — N,y — Ny

where f(N;) represents the input cost coefficient that is the
number of input vectors required for learning the function-
ality of the DSP circuit, which is proportional to Ny, and
a., P represent the cost coefficients of learning a new nonmean-
ingful variation mode and learning a previously known mode
compared with learning a new meaningful mode, respectively.
These coefficients are dependent on the particular applications.

initialization key configure data
user key \ L)-bit | (K)bit |
(L+K)-bit -Encoder L]

HEEEE L[]
Fig. 14.

Key encoding.

As discussed in Section IV-A, it can be expected that they
would follow the relation that 0 < f < a < 1. Future work
will be directed toward validating the values of a and f
through experimental results. The higher the FOD value,
more secure the obfuscated design. Note that in practice, the
computation cycles and the clock periods of the DSP circuits
would also affect the cost of simulation-based attacks.

C. Improving the Security by Key Encoding

In the proposed obfuscation scheme, the key consists of two
parts: 1) initialization key and 2) configure data. However,
in the scenario that the adversary has found a key that can
successfully pass the initialization but is still in an incorrect
configuration, the adversary will only try different configure
data while fixing the initialization key. This could weaken
the scheme. An encoder could be added to improve the
security of the system, as shown in Fig. 14. The encoder
could be a Hash function, a linear feedback shift register,
or a PUFE. By incorporating the encoder, the user key and the
configuration key are no longer bit-to-bit mapped.

In addition, if we use a PUF as the encoder, key collisions
could also be avoided in different chips. The PUFs can be used
to give unique user keys for different DSP circuits even though
they are all obfuscated with the same configuration key.

D. Security Properties

The main objective of this paper is to protect DSP circuits
against reverse engineering. The obfuscated DSP circuits will
only operate in the desired mode with a negligible probability
that others would be able to find. Thus, the correct function-
ality is hidden to the adversary even when the adversary can
access the DSP circuits. In addition, the proposed obfuscating
scheme also satisfies a set of following properties to ensure
security and resiliency against attacks.

1) Unobtrusiveness: The obfuscation is invisible to the
functional DSP circuits. Its presence would not interfere
with regular operation of the design.

2) Unambiguity: The probability of finding the correct key
for a DSP circuit is low by employing our proposed
obfuscation scheme. The chance for an adversary to
enter a DSP circuit into the correct mode by random
guessing is 1/254K | which will be negligible when the
bit-length of the key is long. Therefore, the correct key
is a strong proof of ownership.

3) Robustness: Since the obfuscation modes are generated
along with the high-level transformation design phase,
all the stages after this phase in the high-level synthesis
flow would contain the obfuscation. The embedded
obfuscation is extremely difficult to remove, since the
variation modes are integrated to the switches. In addi-
tion, we could combine PUFs to ensure that the keys of
different DSP circuit designers would not collide.

4) Universality: The proposed obfuscating methodology
can be used for all common DSP designs. In this
paper, we have only described a few examples of high-
level transformations for hardware obfuscation. How-
ever, other types of high-level transformations and other
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Fig. 15. Obfuscated design of the original 18th-order IIR filter.
transformation algorithms can also be used to achieve
hardware obfuscation.

VII. EVALUATION OF THE PROPOSED METHODOLOGY

A. Overhead Impact

Component overhead of the proposed obfuscation design
includes: 1) additional control logic of switches; 2) recon-
figurator; and 3) obfuscating FSM. These additional circuits
only affect the switches of an obfuscated DSP circuit, while
the main datapath stays the same as the original design, as
shown in Fig. 12. In this paper, we present the area overhead
results of the proposed obfuscating methodology for two DSP
benchmark circuits: (3/)th-order IIR filter and (12/)-tap FIR
filter. All circuits were synthesized using Synopsys Design
Compiler with optimization parameters set for minimum area
and mapped to a 65-nm standard cell library. We employ the
design obfuscation algorithm based on the HCF algorithm to
obfuscate the circuits. In our experiments, the (3/)th-order IIR
filter is folded to 1 multiplier and 1 adder, while the (12/)-tap
FIR filter is folded to three MACs.

We take the (3/)th-order IIR filter benchmark as an example
to illustrate the obfuscated design approach. Here, one section
of the (3/)th-order IIR filter is a third-order IIR filter as shown
in Fig. 1. We assume the desired functionality is an 18th-order
IIR filter realized as a cascade of six third-order IIR filters.
In our experiment, the proposed design obfuscation algo-
rithm based on the HCF algorithm is applied to the original
18th-order IIR filter to obfuscate this DSP circuit. In order
to generate eight meaningful variation modes, the para-
meters M = 8 and N = 4 are used to the structure
with six sections of third-order IIR filter (i.e., the original
18th-order IIR filter) and two additional sections of null oper-
ations. The switch instances of this folded design are periodic
with period 32. The eight meaningful modes correspond to
(3D)th-order IIR filter where [ = 1,2,...,8, respectively.
Eight nonmeaningful variation modes are also incorporated.
Each secure switch is controlled by the reconfigurator inde-
pendently. Fig. 15 shows an example of the switch connected
to the input of the multiplier in the obfuscated design. This
switch has five possible input paths, as the null operations
are also integrated to the switches. Based on the algorithm,
the control signals of this switch within one period for the
intended mode should be

(G,1,4,2, 3,1,4,2, 3,1,4,2, 3,1,4,2,
3,1,4,2, 3,1,4,2, 0,0,0,0, 0,0,0,0).

For other generated meaningful variation modes whose
functionalities are (3/)th-order IIR filters, the control signals

TABLE II
SWITCH CONFIGURATIONS EXAMPLE

Mode | Configure Data Functionality
1 0000 3rd-order IIR filter
2 0001 6th-order IIR filter
3 0010 9th-order IIR filter
4 0011 12th-order IIR filter
5 0100 15th-order IIR filter
6 0101 18th-order IIR filter
7 0110 21st-order IIR filter
8 0111 24th-order IIR filter
9 1000 non-meaningful
10 1001 non-meaningful
11 1010 non-meaningful
12 1011 non-meaningful
13 1100 non-meaningful
14 1101 non-meaningful
15 1110 non-meaningful
16 1111 non-meaningful
TABLE III

OVERHEAD (%) OF THE (3/)th-ORDER IIR FILTER BENCHMARK

L K 4 8 16 32 64
4 3.8 4.0 4.3 4.8 5.9
8 49 5.0 54 5.9 6.9
16 6.6 6.7 7.0 7.6 8.7
32 9.7 9.8 | 102 | 10.8 | 11.9
64 154 | 157 | 16.0 | 16.6 | 17.7

should be periodic with a length-32 sequence that consists of
[ (3,4,1,2) in the beginning and 8 — I (0, 0, 0, 0) in the end.

In our experiment, eight nonmeaningful variation modes are
also incorporated. As a result, the bit-length of the configure
data is at least four, since the number of variation modes
N,y + N, should be less than 2K For instance, a simple design
example of the reconfigurator with configure data K = 4 is
presented in Table II. Note that multiple configure data can be
mapped to the same mode, if we increase K.

An obfuscating FSM is also added into the secure switch
design to provide the second-level protection of the obfuscated
DSP circuit. The number of the states of the obfuscating FSM
should be less than or equal to 2©, where L is the length of
initialization key.

1) Area Overhead: We present the area overhead for the
two DSP circuit benchmarks as shown in Tables III and IV,
respectively. Note that the overhead percentages presented in
Tables IIT and IV are computed based on the folded designs
instead of the original circuits. The results include average
area overheads over a number of different implementations.
For certain lengths of initialization key and configure data,
the patterns of the state transition graph in the design of
obfuscating FSM and the input-output mappings in the design
of reconfigurator would also affect the design overhead of the
proposed obfuscated DSP circuit.

It can be seen from Tables III and IV that the overall
overhead is about 17.7% for the (3/)th-order IIR filter with
a 128-bit (64 + 64) configuration key, while the overhead is
only about 7.1% for the (12/)-tap FIR filter also with a 128-bit
configuration key. However, a strong obfuscation is achieved,
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TABLE IV
OVERHEAD (%) OF THE (121)-TAP FIR FILTER BENCHMARK

K 4 8 16 | 32 | 64
4 16 | 1.7 | 1.8 | 19 | 2.1
8 20|21 |22 (24|25
16 28 2930|3235
32 4.1 | 42 | 43 | 44 | 47
64 66 | 67|68 |69 |71

as the chance for an adversary to enter the DSP circuit into the
desired mode is only 1/25+K = 1/2128 = 2.94 x 1073°. Note
that these two DSP circuit benchmarks are both small circuits.
In practice, as the DSP circuits are more complex, the overhead
percentage would be even smaller under the assumption that
we want to create a certain degree of obfuscation (i.e., maintain
an approximately same number of switches to obfuscate, even
though there are more switches).

In addition, when we compare the effects between L and K,
it can be seen that the overhead increases more significantly
with the increase of L. For the (3/)th-order IIR filter example,
the overhead is 3.8% when L = 4 and K = 4. If we fix K =4,
the overhead is 15.4% when L = 64, which is increased
by 305%. However, if we fix L = 4, the overhead is only
increased by 55% when K = 64. Thus, in order to achieve
lower overhead, we should employ a longer configure data in
designing obfuscated DSP circuits when the total length of the
configuration key is bounded. Indeed, this is another advantage
of our proposed methodology, as obfuscating DSP circuits
through secure switches incur smaller overhead, compared
with the methods only based on obfuscating FSMs.

2) Timing Overhead: As the main datapath in the obfus-
cated design stays unaltered as the original design via high-
level transformations, the critical path will not be increased.
The obfuscating FSM and the reconfigurator can be pipelined
such that the critical path is only dependent on the main
datapath.

There can be a degradation of the performance with respect
to latency if null operations are inserted into the obfuscated
design. However, obfuscation does not require introduction of
null operations. The parameters of an obfuscated design should
be selected based on the application requirements and con-
straints. In addition, at the expense of the control complexity,
the latency of the obfuscated design can be guaranteed to be
the same as the original design by expanding the periodicity
of the switches as discussed in Section II.

3) Power and Energy Overhead: We present the power
consumptions for different meaningful modes of the
(3D)th-order IIR filter benchmark in Fig. 16.

When comparing the obfuscated design to the original
folded design without these additional circuits (i.e., folded
design of the 18th-order IIR filter), the power is only slightly
increased by 1.1%. As a result, if we compare the obfuscated
design running in the desired mode and the folded design, the
power overhead is 3.9%. In addition, if an obfuscated DSP
circuit is designed with no increase of latency as presented in
Section II, the energy overhead will also be small.

4) Number of Meaningful Modes: As we pointed out above,
the number of modes is bounded by 2X. In addition, if we
apply the design obfuscation algorithm based on the HCF
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Fig. 16. Normalized power consumption for different meaningful modes (%)
of the (3/)th-order IIR filter benchmark (normalized to the power consumption
when considering [ is a variable).
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Fig. 17. Normalized area and power cost for different numbers of meaningful
modes.

algorithm, the number of meaningful modes is also limited
by the selected number of sections of the DSP circuits. For
instance, we could only implement at most eight meaningful
modes by choosing the parameter M = 8 in the (3/)th-
order IIR filter benchmark example. In general, the maximum
number of meaningful modes is dependent on the number of
subcircuits and the number of inserted null sections.

Therefore, in order to increase the number of meaningful
modes, we need to add more null sections. We still use the
18th-order IIR filter as an example. If we fold the 18th-order
IIR filter directly without any null section, we could only
implement six meaningful variation modes in the obfuscated
design, i.e., third-order, sixth-order, ninth-order, twelfth-order,
fifteenth-order, and eighteenth-order IIR filter. If we want
to further increase the number of meaningful modes, we
have to insert null operations into the original circuit, but at
the price of additional power consumption and computation
cycles. Consequently, the area and power of the folded design
will also increase. Note that the length of configure data K
should be always greater than or equal to log, (N,, + N,). In
our experiments, we set K = 16 to ensure all the possible
meaningful modes can be realized. The measurements of the
area and power for the (3/)th-order IIR filter benchmark are
shown in Fig. 17.

From Fig. 17, it can be seen that area and power do
not increase very significantly with the increase of the num-
ber of meaningful modes (e.g., for the obfuscated circuit
with 32 meaningful modes, the area and the power area
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Fig. 18. Normalized area and power cost for different numbers of nonmean-
ingful modes.

are increased by 48% and 19%, respectively, compared with
the example with six meaningful modes). Therefore, in the
proposed methodology, we can increase the number of mean-
ingful modes to improve the security while maintaining
relatively low power and area overheads.

5) Number of Nonmeaningful Modes: As discussed previ-
ously, if the number of meaningful modes increases to a value
that the total number of modes is greater than 2K we need
to increase the length of configure data as well to realize
all the possible meaningful variation modes. In this scenario,
however, there is another feasible solution that is to reduce the
number of nonmeaningful modes, if we want to maintain the
same length of configure data.

We present the experimental results of the normalized area
and power for different numbers of nonmeaningful modes
in Fig. 18. All of the results are based on the (3/)th-order IIR
filter benchmark with eight meaningful modes and K = 16.

Furthermore, since the latency is not affected by the obfus-
cating FSM and the reconfigurator, the performance of energy
has the same trends as the power with the increase in number
of variation modes and key length.

B. Discussion

Note that all the experimental results presented previously
are only based on the design obfuscation algorithm based
on the HCF algorithm for the two particular benchmarks.
These results are just aimed to provide an example of the
performance for the proposed methodology. Null operations
are inserted in this example. However, as discussed in Section
I, the obfuscated circuit can also be designed to maintain the
same latency as the original structure obtained by performing
certain high-level transformation based on the application
requirements and constraints. In this case, the overheads of
timing, power, and energy would be minimal, which is suitable
for the application where diminished runtime performance is
not acceptable.

The actual performance of an obfuscated DSP circuit may
vary significantly according to multiple design parameters,
which include the target DSP algorithm/application, the spe-
cific variation of the algorithm, the relation between the
desired mode and the obfuscated design, the number of
modified switches, the key length, the numbers of meaningful
and nonmeaningful modes, and so forth. In the design of
obfuscated DSP circuits, the designer should carefully select
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these parameters according to the specific application require-
ments and constraints.

C. Overhead Reduction

State register sharing is one possible approach to reduce the
area consumption by managing the relation among different
switches in a subcircuit. For example, as shown in Fig. 19, four
flip-flops can be used to implement six four-state ring counters,
in contrast to 12 flip-flops if no sharing of state registers is
exploited. The saving could be significant for a large circuit.
In Fig. 19, the registers marked in bold represent the active
state registers for corresponding ring counters.

Furthermore, exploiting the relation among the state regis-
ters is more effective than managing the output function or
the next-state function to control the relations among different
switches in a subcircuit. However, note that by using these
design optimization techniques, the SOD will be degraded,
as the number of independent switches (Ny) is decreased.

VIII. COMPARISON WITH EXISTING
OBFUSCATION METHODS

As this paper is the first attempt to develop a methodology to
obfuscate DSP circuits by utilizing high-level transformations,
it is hard to compare with other existing obfuscation methods
which are general to a wide variety of designs. Therefore,
we have introduced two metrics to analyze the security, which
are discussed in Section VI.

Most of the hardware obfuscation techniques in this paper
can also be applied to DSP circuits. However, the use of
high-level transformations from a security perspective has not
been incorporated into any of these prior hardware obfusca-
tion techniques. In addition, other circuit locking techniques
only achieve protection at one-level (i.e., encrypt the normal
functionality by a key), while our proposed methodology
provides a two-level protection (i.e., structural obfuscation and
functional obfuscation). The main advantage of the proposed
methodology is the generation of meaningful variation modes
from a signal processing point of view, since the meaningful
modes create ambiguity to the adversary such that it is
hard for the adversary to distinguish the desired functionality
from other variation modes. Other existing methods, such as
[6], [7], are not specific to DSP circuits, which would not
be able to ensure meaningful variation modes from a signal
processing point of view. In addition, meaningful variation
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modes enable our proposed design methodology to be adapt-
able to reconfigurable applications.

Finally, when considering the metrics of the design perfor-
mance, our proposed methodology is also superior. While our
proposed approach only alters the logic of switches, most of
the existing methods are based on explicit FSM modifications
(e.g., the technique proposed in [13]), which are not scalable
since the construction of the FSM is not practical for even
moderate-sized circuits, not to mention that the number of
added obfuscation states can be relatively large as compared
with the original FSM. In our proposed methodology, area
consumption is slightly increased due to the increased cost of
the control logic for the obfuscated switches.

IX. CONCLUSION

This paper presents a novel low-overhead solution to
design DSP circuits that are obfuscated both structurally and
functionally by utilizing high-level transformation techniques.
It is shown that verifying the equivalence of DSP circuits
by employing high-level transformations will be harder if
some switches can be designed in such a way that are
difficult to trace. A secure reconfigurable switch design is
incorporated into the proposed design scheme to improve
the security. A complete design flow is presented. In the
proposed obfuscation methodology, the variation modes and
the additional obfuscating circuits could also be designed sys-
tematically based on the high-level transformations. Compared
with other existing obfuscation methods, another advantage of
the proposed methodology is the generation of meaningful
variation modes from a signal processing point of view,
since the meaningful modes create ambiguity to the adversary
such that it is hard for the adversary to distinguish the
correct functionality from other variation modes. Experimental
results have demonstrated the effectiveness of the proposed
methodology.

This paper, for the first time, considers the security perspec-
tive of high-level transformations. Future work will explore the
algorithmic aspect of different high-level transformations for
design obfuscation. Ongoing work includes the validation of
the security performances of meaningful modes and nonmean-
ingful modes. We are also interested in addressing the attack
methods of DSP circuits. We intend to exploit the security per-
spective of the proposed methodology by performing various
attacks to the obfuscated DSP circuits. Future work will be
directed toward developing a complete design flow which can
generate the target structure and obfuscation variation modes
automatically based on the specific application performance
requirement. The ultimate goal is to develop an electronic
design automation synthesis tool which can incorporate large
number of design obfuscation algorithms based on high-level
transformations for DSP system design.
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