
Towards Understanding Successful Novice Example Use
in Blocks-Based Programming

Michelle Ichinco, Kyle J. Harms, Caitlin Kelleher
Dept. of Computer Science and Engineering

Washington University in St. Louis
St. Louis, MO, USA

{michelle.ichinco, harmsk, ckelleher}@wustl.edu

Abstract Blocks-based environments are frequently used in settings
where there is little or no access to teachers. Effective support for
examples in blocks-based environments may help novices learn in the
absence of human experts. However, existing research suggests that
novices can struggle to use examples effectively. We conducted a study
exploring the impacts of example-task similarity and annotation style
on children’s abilities to use examples in a blocks-based environment.
To gain understanding of where and why children struggle, we
examined the degree to which (1) children were able to map a task
to its corresponding example, and (2) their programming behavior
predicted task success. The results suggest that annotations improve
task performance to an extent and that mappings and programming
behavior can begin to explain the remaining problems novices have
using examples.

1. Introduction
Blocks-based programming environments, such as Scratch

[1], App Inventor [2], and Looking Glass [3] have been grow-
ing in popularity. In this paper, we start to explore how novices
use examples in a blocks-based programming environment.
Understanding example use in blocks-based environments is
important because effective example use can: (1) help to
provide learning support for novices who lack access to formal
classes and qualified teachers, and (2) be a useful skill as
programmers transition to more independent projects.

Blocks-based environments are often used by children with
very little programming experience. Due to a lack of qual-
ified computer science teachers [4], children commonly use
blocks-based environments for short classroom projects, extra-
curricular activities, or on their own. As a result, many blocks-
based programmers rely on the programming environments
and related online materials to provide learning opportunities.
Current systems support learning through tutorials [5], games
[6, 7], and intelligent tutoring [8]. However, in order to work
toward a programming goal, novices likely need more context-
specific information like they might find in example code that
is similar to their goal.

Studies have found that programmers of all experience
levels often use example code found online to accomplish

DOI reference number: 10.18293/VLSS2017-009

particular tasks [9–13]. The ability to use examples effectively
is an important skill for programmers to have, as it enables
the programmers to continue to gain new skills as technolo-
gies change. Unfortunately, inexperienced programmers often
struggle when attempting to reuse others’ code [14]. Due to
their difficulties understanding example code behavior, some
novices report referencing example code as a model rather than
adapting it and integrating it into their programs [12, 13]. Yet,
research on programming and examples has primarily focused
on selecting examples [15] or adapting them [16], rather than
the process of example use.

In this work, we ran a study exploring how novice program-
mers use examples. Our first goal was to compare annotation
styles and example-task similarities to understand how these
commonly used styles of examples affect performance. We
measured performance through task success and analogical
mappings. The idea of analogical mappings comes from prob-
lem solving, where an analogical mapping refers to a relation-
ship between corresponding parts of two problems. Often, that
relationship can help a learner to solve a problem by figuring
out how the solution of one problem relates to another problem
they are trying to solve [17, 18]. Likely, using an example to
solve a programming problem requires a mapping between
the two snippets of code. If analogical mappings between
example code and tasks indicate a likelihood to succeed,
systems could use that information to determine when and
how to provide support. In order to not affect the problem
solving process, we collected analogical mappings after users
completed tasks, which may not be able to indicate whether
analogical mappings can predict success during a task. Thus,
we hypothesized that novices’ mappings between tasks and
examples would correlate with task performance, which can
begin to indicate how analogical mappings in programming
relate to task success.

The example styles only had a small impact on both task
performance and analogical mappings, so we performed a
post-hoc analysis that looked at performance in terms of four
“stages” of programming task completion. In blocks-based
programming, programmers often need to (1) manipulate the
GUI, and then (2) locate, (3) insert, and (4) correctly apply
blocks in order to solve programming tasks. We used these

101

four stages to investigate two ways of understanding when
novices are having trouble using examples: correctness of
analogical mappings and programming behaviors. We hypoth-
esized that participants’ programming behaviors (i.e. manipu-
lating the interface, editing the code, or executing the program)
will have some predictive power, which we explore using
decision trees.

To investigate these hypotheses, we ran and analyzed a
study looking at novice programmers using examples in a
blocks-based programming environment. Researchers can use
the results of this study to inform the design of ways to
help novice programmers use examples in blocks-based pro-
gramming environments and educational systems for computer
science using examples. The goal of this study is to better un-
derstand novices’ example use in programming by answering
3 questions:

1. How does the interaction of annotations and example
similarity affect novice programmers’ performance on
tasks using examples?

2. To what degree does the ability to map an example and
target problem correlate with task success?

3. To what degree do programming behaviors predict task
success?

2. Related Work
We first discuss related work surrounding examples in

programming and in education. We then discuss how this
work relates to other ways for novice programmers to learn
independently in blocks-based programming environments.

2.1. Support for Programming with Examples
There is a broad range of work on programming with

examples. However, most of it focuses on support for select-
ing appropriate examples or adapting an example for a new
context, but does not look at the problems novices have in
trying to use examples.

Systems focused on assisting in example selection either
help programmers to find better examples or provide them
directly. Specialized search tools for programming enable
users to quickly perform keyword searches over API documen-
tation [19], open-source projects [20–22], and code snippets
presented on web pages [15, 21, 23]. Since keyword searches
can return a large number of irrelevant results, some systems
support specifying more constrained searches [24–28] or pro-
vide suggestions based on the programmer’s current context
[29]. Some programming environments provide access to ex-
amples by including a small set of pre-created examples [30–
37], integrating example search directly into the environment
[19, 20], enabling access to programs created by other users
[1, 38, 39], or using direct manipulation to generate example
code [29, 30, 33]. All of these systems aim to either make it
easier to select an analogous example for a certain problem
or attempt to suggest a useful example. Only one system that
we know of, the Idea Garden, actually frames example use

as analogical reasoning [40]. In the Idea Garden, analogy
is introduced as a strategy for overcoming barriers, but the
analogy was used mainly for selecting an example to use.

Programming systems currently support using examples, as
well as integrating example code. Systems have added anno-
tations as a way of supporting example use. Generally, these
annotations either provide general descriptions of the code as
a whole [15, 40] or provide specific information about certain
parts of the code [16, 30, 41]. Other systems support program-
mers in integrating example code into programs, essentially
removing the need for programmers to create mappings in
order to use an example to solve their problem. For instance,
Codelets provides a widget to allow easy modification of
example code [42], while WebCrystal allows users to select
which combination of features to integrate from an example
[16].

Work on programming with examples is mainly in textual
programming languages and focuses on selecting an example
or supporting example integration, rather than understanding
the issues novice programmers in blocks-based environments
have while using examples.

2.2. Learning From Examples
The idea of supporting example use in order to improve

independent learning opportunities is supported by two areas
of research: (1) educational systems that introduce examples,
and (2) theories of learning from examples. This study used
examples more like programmers would find on the web
because we wanted to simulate the experience of a novice
programmer learning programming outside of a classroom,
but the research on examples in education has inspired design
choices in this study.

A number of educational systems provide support for ex-
ample use [30, 43–45]. There are also systems [46, 47] that in-
tegrate examples into tutorial systems for programmers based
on Caroll’s theory on minimalist documentation [48, 49]. Sim-
ilarly, other systems also provide sets of annotated examples
to support learners, called ‘case libraries’ [50]. Case libraries
provide sets of examples that relate to a problem learners
are trying to solve [51]. This idea is supported by case-
based reasoning theory, which focuses on having students learn
through experiences and reflection [52]. The work on case
libraries for case-based reasoning is limited and does not ad-
dress programming examples. Furthermore, all of the examples
in these systems are designed to fit within educational systems,
rather than considering how novices can use examples to learn
independently. They also do not address different types of
example styles and how they affect novice programmer use.
One study [53] looked at novice programmer example use, but
only for one type of annotation style and mainly focused on
the participants’ descriptions of their difficulties, rather than
on data that could possibly predict success or failure. In the
discussion, we explore the relationship between the results in
the two studies.

Research on learning from examples, such as worked ex-
amples and cognitive load theory, are important to consider

102

in thinking about novice programmer example use. Worked
examples are a popular and well studied learning method
found to be more effective than problem solving in some cases
[54]. Worked examples are grounded in cognitive load theory,
which is the mental effort for a novice to learn something new.
Cognitive load theory can be reduced by improving instruc-
tional material, such as worked examples, to focus a learner’s
attention on the steps needed to solve a problem [55]. Worked
examples have been used to teach a variety of topics, including
mathematics [54] as well as programming [44, 56]. One recent
study uses programming worked examples to study the effect
of labels on learning [57]. Worked example research has also
investigated differing degrees of example similarity, finding
that both similar and dissimilar examples can be useful for
learning [58, 59]. The research on worked examples supports
the idea that the use of examples in learning can be highly
effective, but worked examples have been primarily studied in
classroom contexts. More work needs to be done to determine
how the ideas from cognitive load theory and worked examples
can apply to the types of examples programmers would find on
the web, when programmers are more focused on completing
a task than working through educational material.

2.3. Independent Learning for Novice Programmers
There are a variety of blocks-based programming environ-

ments that are used outside of classrooms and often provide
some support for learning without a structured class, such as
games, tutorials, and reuse.

Many blocks-based environments provide tutorials on their
websites, such as Scratch [60] and App Inventor [61], which
both have web pages providing video tutorials to get users
started. However, video tutorials can be hard to use because
it is often difficult to step forward or backward [62]. Fur-
thermore, one study found that tutorials were not as effective
as puzzles for novices for learning [63]. Some blocks-based
environments are games-based, such as Blockly Games [64]
and Code.org [6]. Games have been shown to be effective
learning mechanisms for novice programmers [65], but often
do not allow users to create their own project. Furthermore,
learning through games does not apply to learning more
advanced programming, where example use is critical.

Many blocks-based environments now provide the ability to
share and reuse others’ code, similar to the way experienced
programmers sometimes use example code. Scratch [60] and
Looking Glass [3] provide explicit “remixing” features. App
Inventor [2], Kodu [66] and Touch Develop [67] also allow
users to use other programmers’ projects. However, research
has found that novice programmers often have trouble select-
ing the code they need, which likely makes adapting others’
code difficult for novices [14]. Research has been able to
cluster behaviorally similar visual code for Scratch [68], which
could help novices to find appropriate code more easily in
blocks-based environments, but it is still unclear how to help
them use example code more effectively.

Overall, prior work on examples in programming has fo-
cused on more experienced programmers in text languages.

The research on examples in education supports the idea that
examples can be an effective way for novices to learn new con-
cepts. Novice programming environments provide a variety of
learning supports, but none addresses understanding novices’
behavior when using examples as models for learning.

3. Study
The goal of this study was to better understand novices’

example use by exploring (1) how example similarity and
annotations impact example use, (2) whether successful ana-
logical mappings correlate with task success, and (3) whether
programming behavior can be used to predict success.

For the study, we asked participants to complete twelve
experimental programming and mapping tasks, equally di-
vided between similar and different examples. Participants
were randomly assigned to use examples with one of our
three annotation styles or no annotations throughout all tasks.
Participants completed the tasks in Looking Glass, a blocks-
based programming environment for creating 3D animations,
designed for middle school aged children (see Figure 4). In
this section, we discuss the reasons for our study design and
the details of how we ran the study.

3.1. Study Design Rationale
In this section, we explain how we chose our experimental

materials (example similarity and annotations) and why we
decided to look at how analogical mappings and behaviors
relate to task success or failure.

3.1.1. Example Task Design
We decided to vary the similarity between examples and

task code to simulate the natural variety that would occur
in found examples online. However, analogical reasoning re-
search suggests that learners are more successful at completing
problem solving tasks when they have an example that is
similar to the target problem [17]. This work demonstrates the
utility of two kinds of similarity: surface similarity refers to
the correspondence between superficial features of the problem
and example; structural similarity refers to the correspondence
between the operations necessary to solve the problem and
example [17]. To explore the impact of similarity, we created
two kinds of tasks: similar and dissimilar example tasks.

The similar examples and programs have both structural and
surface similarity because they share a similar code structure.
For instance, in the similar task and example in Figure 1, the
example and the solution use the exact same structure, a Do
together block with two nested statements. For the dissimilar
example tasks, the structures in the examples differ greatly
from the solutions. As shown in Figure 1, the example has a
Do together block with three statements, however the solution
requires two Do together blocks each with two statements.
Additionally, the dissimilar task and example differ in the
types and number of objects used in the Do together blocks.
We hypothesized that participants would be more successful
at completing tasks with similar examples than tasks with
dissimilar examples.

103

Figure 1: The similar and dissimilar example tasks for the simple parallel execution (Do together) task.

3.1.2. Example Annotations

We decided to compare example annotations because they
are a common feature of found examples online, as well as
in examples provided by support systems. Figure 2 shows the
three annotation styles we selected and an example with no
annotation (the control condition).

Below we describe the four annotation styles used in this
study:

Brief Summary: provides a high-level description of code
behavior, but it does not link explanations to individual lines
of code. We selected this type of annotation because it is
used in other systems and example work [15, 40]. We believe
brief summaries could be useful in solving programming tasks
because they can help a user to understand the overall behavior
of the code, which could help with forming mappings and
solving tasks.

Line-Specific Notes: provides descriptions of each salient
line, shown near the associated code. We also selected this
style as a comparison because it is commonly used for pro-
gramming examples [16, 30, 41, 57]. Furthermore, line-specific
notes could help a user who is confused about how a certain
construct works to view information specifically about that
part of the code.

Visual Emphasis: provides a red highlighted outline around
the critical element or elements of the example. We designed
this annotation based on formative testing, in which we found
that simply circling the important part of an example in red
helped novices to solve programming tasks. This could be
because programmers can test the correctness of their code, so
this annotation could provide them with enough information
to identify the code elements involved in the solution so that
they could then use that to try out possible solutions. A benefit
of this annotation style is that it is quick to create and is not
based on writing style, reading comprehension, or language.

No annotation (Control): the code example is shown
without any textual information or highlighting.

3.1.3. Example-Task Analogical Mapping
Based on the idea that analogical problem solving is similar

to completing a programming task using an example, we
hypothesized that having novice programmers complete an
analogical mapping task might provide insight into whether
they correctly completed the task.

Cognitive psychologists define analogical problem solving
as using one provided problem and solution (the base) to solve
another problem (the target) [17, 18]. We believe that novice
programming with examples is most closely related to ana-
logical reasoning in mathematics [69]. To illustrate the model
of analogical problem solving using mathematics, imagine a
student solving problem 3x+2 = 11 using an example 2x-4
= 6, as shown in Figure 3. The student must first map the
parts of the task and example that are related. In this case,
the 3x and 2x are related, the + 2 and - 4 are related, and
the =11 and =5 are related. The example solution might begin
with moving 4 to the opposite side of the equation. Using the
mapping, the learner would similarly subtract the 2 from both
sides of the target equation. The mappings allow learners to
adapt the sequence of steps necessary to solve the problem to
the context of the target problem. In this case, the base and
target problems have high surface similarity, meaning that the
words are similar, making it easy to map the two [70].

Prior work is divided on whether the ability to generate cor-
rect mappings can predict task success. Gentner [18] describes
the structure-mapping theory, which argues that there is a set of
relations in the base problem that is also true for the target. The
analogy is a mapping between the set of relations for the base
and target problems. Gentner’s work suggests that the primary
difficulty associated with solving a problem using an analogy
comes from mapping the example and the target. If participants

104

Figure 2: An example shown with three different styles of annotation and with no annotation.

can correctly map the example and target, they are highly
likely to correctly solve the problem. In contrast, Novick
and Holyoak’s research [71] in the context of mathematical
problem solving suggests that while mapping the example and
target problems is necessary, it may not be sufficient to enable
a learner to solve a problem using an analogy. In particular,
when learners need to adapt the example to fit their target
problem, some learners may succeed at mapping but struggle
to construct a full solution [71].

Programming using an example shares some similarities
with analogical reasoning in mathematics: novice program-
mers attempt to use a completed solution, in the form of an
example to develop a related solution. However, there are also
two important differences between analogies in mathematics
and programming. First, novice programmers can incorporate
testing into their problem solving process. Second, program-
ming examples are not analogies in the traditional sense.
Generally, an analogy provides both an analogous problem
and the sequence of steps necessary to arrive at the solution.
However, example code is essentially the completed solution.
Because of these differences, it is important to evaluate how
analogical mappings in programming relate to task success.

In order to understand whether correct mappings correlate

Figure 3: An example of analogical problem solving.

with success for novice programmers, we needed to collect
mapping and task performance. Mapping can be operational-
ized as the ability to define relationships between elements
in the example and target [17]. If a mapping is achieved, it
occurs at some point during the task, possibly before the task is
completed, making it difficult to collect mapping information
without interrupting the task. We chose to collect the data
after the task to prevent the data collection from changing the
problem solving strategy.

3.1.4. Example-Based Problem Solving Process
While previous work suggests that inexperienced program-

mers often struggle to make effective use of example code,
relatively little is known about how novices attempt to solve
problems using example code and what kinds of behaviors
predict success or failure. Characterizing predictive behaviors
may help to identify opportunities for future systems to better
support example use. For instance, knowing whether difficulty
finding specific code blocks is linked to success or failure can
indicate how big of a hurdle the programming environment
is in solving a task. This can be accomplished using log data
from the programming tasks and using decision trees to under-
stand which features predict success and failure. Decision trees
are often used for prediction across many domains, and have
been successfully used in human-computer interaction, such
as in predicting interruptability [72]. We selected this analysis
method after the study was complete to answer questions
about programming behavior generated by the example-task
mapping analysis.

3.2. Study Methods
We gave participants 90 minutes to complete a computing

history survey, a training task, and 12 programming tasks with
examples. The computing history survey asked participants
about their experiences using computers and with program-
ming in the past to confirm that they were eligible for the

105

study. Each participant was assigned to one of the four an-
notation conditions. For this evaluation, we used the novice
programming environment, Looking Glass [3]. Looking Glass
has similar complexity to other blocks-based programming
environments in many respects, like having blocks organized
in palettes.

3.2.1. Participants

We recruited 99 participants between the ages of 10 and 15
for our study through the Academy of Science of St. Louis
mailing list. The Academy of Science of St. Louis is an orga-
nization that provides opportunities for members to participate
in science and technology programs city-wide. Community
members also forwarded our email to a newspaper and a home-
school message board on their own. Since this work aims
to address the problems of novice programmers who do not
have access to formal computer science education in schools,
we asked that participants have “minimal” programming ex-
perience, which we defined as 3 or fewer hours. This limit
on the number of hours participants had coding also ensures
that the participants did not have prior experience using the
programming concepts in the tasks.

We analyzed the data for 80 participants (33 female, 47
male, age: M = 11.8, SD = 1.3). Each participant received
a $10 gift card for Amazon.com in recognition of his or her
participation. We excluded 19 participants: 13 had more than
minimal programming experience (i.e. had programmed for
more than three hours); 4 did not complete the study within
the allotted time; and we had 2 study administration mistakes.

3.2.2. Training Task

We asked participants to complete a training task designed
to help familiarize them with the study format and the basic
mechanics of the Looking Glass programming environment.
The training task had two parts: (1) participants completed a
simple program using an example, (2) participants mapped the
example and training program on paper.

To complete the training program, participants assembled
a simple three-line program in the correct order using an
onscreen example. While completing the training program,
participants could reference a mechanics help sheet that pro-
vided an overview of creating a simple program within the pro-
gramming environment. This task was designed to introduce
participants to the format of the programming tasks and basic
interface mechanics. Through pilot tests, we found that this
introduction helped to reduce the number of interface and task-
related problems during the experimental tasks. Participants
were free to reference the mechanics help sheet throughout
all study tasks. There was no time limit for this task, but if
participants seemed stuck, a researcher helped them to com-
plete the task. Participants were also allowed to ask questions
during this task.

After completing the training program, participants also
completed a paper-based analogical mapping task. This map-
ping task asked participants to draw lines connecting elements

in the example code with the introductory program (see Fig-
ure 5). As with the program training task, the mapping training
task familiarized participants with the task instructions.

3.2.3. Programming Tasks with Examples
We next asked participants to complete twelve programming

tasks using examples. The tasks covered six programming
concepts, listed here from easy to difficult: simple parallel
execution, using a for loop, using an iterator within a for
each loop, using an advanced API method unique to Looking
Glass, setting a conditional for a while loop, and using a
function’s return value as an argument to a method call.
For each programming concept, we developed similar and
dissimilar example tasks. See Figure 1 for the similar and
dissimilar example programming tasks for the simple parallel
execution concept.

We chose programming concepts that greatly varied in diffi-
culty to help provide insight into how concept difficulty affects
novices’ abilities to complete the tasks. We designed the
tasks with the understanding that many would be challenging,
especially for novice programmers with minimal programming
experience, leading to an expected low overall task perfor-
mance. This was purposeful because we wanted to explore
both the times when novices succeeded using examples as
well as when they had difficulties. As prior research suggests
that novices are often unsuccessful in using examples, we
included a significant proportion of tasks that our pilot tests
indicated would have a low success rate in order to capture
the challenges novices face when using examples.

As in the training task, each programming task consisted
of: (1) modifying a program using an on-screen example
(see Figure 4), and (2) completing a paper-based analogical
mapping task (see Figure 5).

To complete each programming task, participants needed
to modify an existing program to achieve a stated goal while
meeting task constraints intended to ensure use of the targeted
programming concept. For example, in looping tasks, we
required that participants only add a certain number of code
blocks in order to force them to use a loop in order to correctly
complete the task. Figure 4 shows one programming task used
in the study. Participants had at most five minutes to complete
each programming task. If participants stated that they finished
the task early, a researcher asked them if they were sure that
they fulfilled all of the criteria of the task, but did not tell
them if it was correct or incorrect. We did this to encourage
participants to check their own work and try to make sure
they fulfilled the criteria on their own, as pilot studies showed
that participants sometimes did not always read directions
carefully. We created the tasks and selected time limits based
on formative and pilot testing.

To complete the mapping task, participants drew lines con-
necting code elements in the example to related elements in the
program as shown in Figure 5. There was no time limit on the
mapping task, but participants generally completed mapping
tasks very quickly. Participants completed paper mappings
after each programming task to prevent the mapping task from

106

Figure 4: The dissimilar repeat task shown in the (A) Looking Glass programming environment with a (B) dissimilar example. Initially the
(C) actions tab is selected. There are three steps to complete the task, shown with pointers in the figure. Step (1): the user clicks on the
(D) constructs tab to transition from the Exploring & Searching Stage to the Ready-to-Program Stage. Step (2): the user drags the repeat
construct into the code editor to transition from the Ready-to-Program to Assembling Stage. Step (3): the user drags the move statement into
the repeat construct to correctly complete the task.

Figure 5: The dissimilar repeat mapping task completed by a study
participant. We asked participants to connect the (A) example shown
in the task with (B) the initial state of the program by (C) drawing
lines connecting the two.

influencing their problem solving process. We acknowledge,
however, that collecting mappings at the end of the task could
overestimate how many participants had correct mappings
during the tasks. Furthermore, it is possible that not having
a time limit on mapping tasks may have allowed participants
to figure out the mapping at the end of the task.

To account for learning effects, we used a Latin squares
design to assign task orderings across participants. We varied
the order of the six programming concepts using a balanced 6
x 6 Latin square. For each programming concept, a participant

first completed a similar or dissimilar example task for that
concept, immediately followed by the other example similarity
type. For the six concepts, each participant completed three
with a similar example task followed by a dissimilar example
task and three with a dissimilar example task followed by a
similar example task. Each participant saw one of the four
example annotation types for all 12 tasks.

4. Data and Analysis
We analyzed three types of data: program performance,

example-target mappings, and programming behavior.

4.1. Program Performance
We saved participants’ task programs when they finished the

task, which was when they either stated that they were finished
or timed out after five minutes. We graded these final state
programs for correctness using criteria based on previous work
scoring similar programming tasks [17]. We assigned points
for (1) correct usage of the target programming construct, (2)
correct placement of the provided code statements relative to
the target programming concept, and (3) a lack of extraneous
changes. We created rubrics in which participants earned one
point for each correct attribute in these three categories. One
researcher then scored each participant’s programs using the
rubric.

107

User Interface Behaviors
Number of UI actions: User interface actions such as exploring a drop down menu, changing a tab stage, etc.
Time performing UI actions: Continuous blocks of user interface actions spaced closer than one second apart.
Number of example actions: The number of times participants interacted with the example (i.e. by mousing over or playing it). It
is important to note that this is, at best, an imperfect indicator of example engagement. While some users moused over or moved
the example while studying it, we also observed participants who were clearly studying the example without use of the mouse.
Time interacting with example: Continuous blocks of interacting with the example using the mouse, spaced closer than one second
apart.
Idle time: The amount of time the participant spent not doing anything. We computed this by looking for periods where the time
between events was greater than fifteen seconds.
Number of scene edits: The number of times the participant changes the scene layout (e.g. moving the camera or changing the
position of a 3D model). None of the tasks required that participants edit the scene, so this is always off-task behavior.
Code Editing Behaviors
Number of irrelevant edits : An irrelevant code edit does not make any progress towards a correct solution and does not touch any
code elements used in achieving a correct solution.
Number of semi-relevant edits: A semi-relevant edit modifies an element of the code that is involved in a correct solution, but does
so in a way that does not make progress towards a correct solution. For example, in the case where a participant needs to replace a
numeric parameter with a call to a function, a semi-relevant edit might change that numeric parameter to a different numeric value.
Number of relevant edits: The number of relevant edits and the time at which the participant first made a relevant edit. We define
a relevant edit as one that makes progress towards a correct solution.
Number of edits: This included all code edits, regardless of type.
Number of tinkering edits: We noticed that when participants gave up on solving tasks, they appeared to frequently transition to
changing unrelated parameter values or experimenting with keyed parameters (e.g. animation styles, duration, etc). This often takes
the form of “what does this do?” style experimentation. We refer to these types of changes as tinkering edits.
Number of executions: The number of times the participant executes their program.

Table 1: Programming behavior features

4.2. Example-Target Mappings
To analyze the mapping tasks, two authors independently

transcribed which components the lines were drawn between
for 14% of participants, reaching high agreement (Cohen’s
κ >.61) for the mappings (κ = .794, p < .001). The authors
then worked independently to transcribe the remaining par-
ticipants’ mappings. This was necessary because in a small
number of cases, it was slightly ambiguous which blocks the
mappings were connecting. We developed a set of correct
mappings consistent with the program solution and recorded
whether the transcribed mappings contained one or more of
these correct mappings, similar to the analysis from Spellman
et al. [73].

4.3. Programming Behavior
In addition to mappings and program performance, we also

recorded log files of the actions that participants took while
working on each task. This includes data such as interface
interactions like opening a palette of blocks, time spent with
their mouse interacting with example, and program modifi-
cations, as shown in Table 1. We use this log information
to compute program solution progress, which we will discuss
throughout our results section to provide more granularity than
just success or failure. Our log parser analyzed participants’
code editing behavior when working towards the solution of
a task. Because each task has a known solution and a known
interface state to reach that solution, we were able to ascertain
whether their actions were relevant to the solution or were in
no way related to the task. We also investigate whether this
log data can predict success or failure on tasks using decision
trees, which we will go into greater detail in the results section.

4.3.1. Program Solution Progress
The majority of our tasks required that participants work

through a series of stages in order to arrive at a solution, which
we will discuss throughout the results section. These stages are
four key parts of a task in a blocks-based environment that we
hypothesized could provide us with more in-depth information
about where novices struggled:

Exploring & Searching Stage: The user has made no
progress towards a solution. Typically, the user is exploring
and searching the interface in an effort to advance their task.
This stage may include both code changes and user interface
actions that do not advance the user towards a solution. This
is an essential part of many new programmers’ experiences
in blocks-based environments, where rather than being able to
type a command, they must explore the environment in order
to find the blocks they need to program.

Ready-to-Program Stage: The user interface is in a state
where the program elements necessary to solve the problem
are accessible. For example, if the user needs to add a loop
to solve a problem, the palette containing the loop code block
is visible in the interface, as shown in Figure 4-(1). For a
blocks-based environment, this demonstrates progress toward
solving a task because it likely indicates that the programmer
has correctly determined which block they need and have also
found it in the interface.

Assembling Stage: Any needed program elements have
been added to the program, but the code is incorrect. Con-
tinuing the loop example, the loop is in the user’s program
but is incorrectly placed or does not contain all of the required
statements, as shown in Figure 4-(2). At this point, in a blocks-
based environment, all the programmer must do is re-arrange
the blocks to create the correct solution.

108

Completed Stage: The program is completed and correct,
as shown in Figure 4 after the action in (3).

For each task, we record the time at which a user first
reaches each stage. We note that it is possible that a user
can regress to a previous stage. This commonly happens with
the Ready-to-Program stage because the user may change
the state of the interface away from being ready to solve
the problem. Our stage-based model was a post-hoc analysis
designed to more deeply understand the behaviors affecting
task success. For our stage-based analysis we excluded two
programming concepts: using an iterator within a for each loop
and calling an API method (four of the twelve tasks in total).
These four tasks initially begin in the Ready-to-Program Stage,
instead of the first stage, Exploring & Searching because the
participants did not need to change the state of the interface to
find the component needed to complete the task. We believe
that analyzing the remaining 8 tasks for this part makes sense
because in order to best understand exactly where the problems
are taking place, we want to look at tasks where all four
stages are required for successful task completion. All results
unrelated to our stage-based analysis are based on the data
from all twelve tasks.

5. Results
We seek to answer three questions: (1) how does the in-

teraction of annotations and example similarity affect novice
programmers’ performance on tasks using examples, (2) to
what degree does the ability to map an example and target
problem correlate with task success, and (3) to what degree
do programming environment and coding behaviors predict
task success?

5.1. How do novice programmers perform on tasks
using examples and how do annotations and example
similarity affect performance?

To answer this, we discuss the overall task success, the
effects of annotations on task success, and the effects of
example-task similarity on task success.

5.1.1. Overall Task Performance
Overall, participants completed 30.3% of tasks correctly.

This result generally aligns with our expectation and the
idea that novices often struggle completing tasks using ex-
amples. We will discuss this result further later in the paper.
When completing most tasks, most participants did not move
past the Exploring & Searching Stage (51.6%). Conversely,
most participants failed to reach the correct solution (only
30.3% succeeded). Only 9.8% of tasks ended at the Ready-
To-Program Stage and 8.2% of tasks ended at the Assembling
Stage (as seen in Table 2). We also investigated whether gender
may play a role in task performance by including it as a
covariate in our analysis based on past research on gender in
end-user programming [74]. However, we found no significant
gender differences in any of the statistical tests we ran.

Stage %
Tasks

% Correct
Mappings

%
Tasks

% Correct
Mappings

Ended at Stage Reached Stage
Exploring &
Searching

51.6% 45.6% 100% 55.2%

Ready-to-
Program

9.8% 50.0% 48.4% 65.4%

Assembling 8.2% 56.8% 38.6% 69.3%
Completed 30.3% 72.7% 30.3% 72.7%

Table 2: This table shows the percentages of tasks and mappings
that ended at each stage and reached each stage. The percentage that
ended at each stage shows how many tasks were at a stage when the
tasks were over. The percentage that reached each stage demonstrates
the amount of tasks that that got to each of the stages.

5.1.2. Effects of Annotations
Using MANCOVA and Roy’s largest root, there is a signif-

icant effect of annotations versus no annotation on program
performance, Θ = .35, F(12, 66) = 1.93, p < .05. The three
annotation conditions outperformed the no annotation condi-
tion. Separate univariate ANCOVAs revealed that there are no
significant differences between the three annotation styles.

This effect was also present for the similar example tasks;
participants who used similar examples with any annotation
style significantly out-performed participants without any an-
notations, Θ = .21, F(6, 72) = 2.52, p < .05. However,
we found no significant effect for dissimilar examples and
annotation styles. We would have expected annotations to
assist novice programmers in solving dissimilar example prob-
lems, since the annotations help novice programmers to map
examples and problems. For dissimilar example tasks, partici-
pants may have needed more time to understand the mapping
between the task and the example, which prevented them from
having time to actually complete the task, though they may
have realized how to complete it by the end of the task time.

We also wanted to know whether the annotations had any
effect on which stage participants made it to for their tasks. We
computed the percent of the tasks that finished in each stage,
for each participant. Because the Completed Stage is func-
tionally equivalent to program correctness results presented
above, we report whether the annotations had any effect in
the earlier stages. Using a MANCOVA and Roy’s largest root,
there is a significant effect of annotation versus no annotation
on the stage participants reached, Θ = .10, F(3, 81) = 2.74, p
< .05. Compared to the no annotation condition, participants
with annotations were slightly more likely to finish their tasks
at a higher stage than the no annotation condition. Separate
univariate ANCOVAs revealed that there are no significant
differences between the three annotation styles.

5.1.3. Effects of Example-Task Similarity
As predicted, participants correctly completed more tasks

using similar examples (Mdn = 2.2 of 6 points) than dissimilar
examples (Mdn = 1.83 of 6 points), p < .01, r = -.34. The
low median task scores align with the low overall success
rate. Using a MANCOVA and Roy’s largest root, there is
a significant effect of example-task similarity on the stage,

109

Θ = .06, F(2, 168) = 4.78, p < .01. We will discuss how
annotations and example-task similarity affect mappings in the
next section.

5.2. To what degree does the ability to map an exam-
ple and target problem correlate with task success?

First we discuss the overall results for mapping and task
success as well as example similarity, which both support
the idea that mapping and task success are related. However,
it turns out that mappings and performance actually have a
relatively low correlation. Finally, we describe behaviors that
may be influencing the low correlation.

5.2.1. Overall Mapping and Task Success
In the majority of tasks, participants either made no mea-

surable progress towards a solution (51.6% ended the task in
the Exploring & Searching Stage) or correctly completed them
(30.3% ended the task in the Completed Stage). Table 2 shows
the percentage of the total tasks that reached each stage and the
proportions of tasks for the stages that had correct mappings.
While there are some instances in which participants have
identified the necessary code elements and failed to arrive at
a fully correct solution (ending the task in the Assembling
Stage), the ability to modify and test a program appears to
enable those who successfully added the needed code element
to complete the task. We found an increasing proportion of
correct mappings for tasks ending in the later stages. For tasks
ending in the Exploring & Searching Stage, 45.6% of tasks had
correct mappings. By the Completed Stage, 72.6% of tasks
had correct mappings. This trend is consistent with correct
mappings contributing to task success.

5.2.2. Annotation and Mapping Results
Using MANCOVA and Roy’s largest root, there is a sig-

nificant effect of annotations versus no annotation on correct
mapping of the example to the program, Θ = .38, F(12,
66) = 2.10, p < .05. Separate univariate ANCOVAs revealed
that there are no significant differences between the three
annotation styles. Compared to the no annotation condition,
all participants whose examples had annotations constructed
correct example-program mappings more often. There is also
a significant effect of annotations versus no annotation on
correct mappings when looking at both the similar example
tasks, Θ = .23, F(6, 72) = 2.73, p < .05, and the dissimilar
example tasks, Θ = .25, F(6,72) = 3.01, p < .05.

This suggests that even for similar examples, annotations are
important in helping novices understand mappings. While this
is what we expected for dissimilar tasks, as the annotations can
help to fill in information missing when there is low surface
similarity, this is unexpected for the similar example tasks.
We would expect the surface similarity in the similar example
tasks to make them doable without annotations. We believe
one reason for this may be the difficulty level of some tasks.
When a novice programmer is working on a task that is beyond
their current level of understanding, surface similarity may not

be enough to assist in understanding the correlation between
an example and a problem, but an annotation can improve this.

5.2.3. Example Similarity and Mapping
A Wilcoxon Signed-Ranks test revealed that participants

were more successful at similar example mapping (Mdn = 5
of 6 correct mappings) than dissimilar example mapping (Mdn
= 3 of 6 correct mappings), p < .001, r = -.65.

5.2.4. Mapping and Task Success Connection to Analogical
Reasoning

While the upward trend of mappings for each stage and
the similar and dissimilar example results start to support a
relationship between mapping and task success, we found only
a weak correlation, rb = .21, p < .001. This low correlation
provides some support for Novick and Holyoak’s findings that
mappings are necessary but not sufficient for problem solving
[71]. However, it is worth noting that nearly 28% of fully
correct tasks did not have correct mappings, which suggests
that some participants may be solving tasks using a strategy
outside of analogical reasoning.

If Gentner’s structure-mapping theory holds for program-
ming, we should have seen a strong correlation between
mapping success and program success. Structure-mapping the-
ory states that the primary difficulty problem solving using
analogies comes through mapping the problems. If learners can
successfully map the problems, they should be able to correctly
solve the target problem. In that scenario, we would only
observe problems with executing that plan such as difficulty
finding a needed program element. Instead, we saw a weak
correlation. We explore possible reasons behind the weak
correlation using the stages of task completion:

1. Correct mappings and incorrect tasks:

• Participants may have developed their mappings too
late in the task to use them. This could happen as
a result of attempting to solve the problem without
using the example initially, either through a desire
to complete the task independently or because of
difficulties understanding the example (discussed in
Sec. 5.2.5 Correct Mappings and Incomplete So-
lution Plans). This is suggested by a large number
of irrelevant edits in the early stages.

• Participants may have generated full plans based on
the mappings between the example and target prob-
lems but struggled to execute those plans within the
programming environment (discussed in Sec. 5.2.6
Correct Mappings and Difficulties Executing So-
lution Plans). Many user interface actions in the
early stages of a task could support that users were
searching for how to execute their solution plans.

2. Incorrect mapping and correct task:

• Though we based our mapping task on those used
in psychology studies in the past, there are dif-
ferences in blocks programming environments that

110

may have made the mapping task unclear (discussed
in Sec. 5.2.7 Mapping Task Design).

We now describe each of these three cases and the data
that supports these as possible reasons for the low correlation
between mapping and performance.

5.2.5. Correct Mappings and Incomplete Solution Plans

For 25.4% of tasks with correct mappings, participants’
behavior suggests that they began with an incomplete solution
plan and tested multiple variations to arrive at a solution.
Adding the missing code element for a problem marks the
boundary between forming a plan and beginning to carry out
that plan. In our stage-based model, participants implemented
their solution plans during the Assembling Stage.

If participants shaped solutions through working with the
programming environment, we would expect to see more
testing behavior through higher numbers of edits and program
executions. To explore this, we divided the tasks in the Assem-
bling Stage with correct mappings into low editing (0 or 1 edits
beyond those necessary to solve the task’s problem) and high
editing (two or more extra edits) groups. A Wilcoxon Signed-
Ranks test revealed that there is a significant difference in the
number of program executions between the high (Mdn = 2)
and low (Mdn = 1) editing groups, p < .001, r = -.38. Behavior
in the low editing group (74.6% of tasks) is consistent with
Gentner’s separation between planning a problem solution and
executing it [70]. Behavior in the high editing group suggests
that for 25.4% of tasks, participants began to execute an
incomplete solution plan, supporting Novick and Holyoak’s
findings that mappings are not always sufficient to enable
problem solving [71]. These types of difficulties spurred our
third question about the ability of programming behavior using
examples to predict success or failure.

5.2.6. Correct Mappings and Difficulties Executing Solu-
tion Plans

Difficulties executing a solution plan may explain some
task failures, but we failed to find evidence suggesting that
execution difficulties are a large source of task failures.

If a participant is able to generate a plan but struggles
to execute their plan, we would expect that task to end in
the Exploring & Searching Stage (no progress) or Ready-to-
Program Stage (interface correct) with correct mappings and a
higher rate of user interface actions due to search behavior. A
Wilcoxon Signed-Ranks test revealed that there is a marginally
significant difference between the number of user interface
actions among tasks ending in the Exploring & Searching
Stage and the Ready-to-Program Stage with correct mappings
(Mdn = 110) and without correct mappings (Mdn = 84), p =
.05, r = -.14. This suggests that there are likely some tasks
in which participants had a plan but struggled to execute it.
However, it seems unlikely that difficulties executing a solution
plan account for a large proportion of failed tasks.

5.2.7. Mapping Task Design
In 27.3% of the tasks that reached the Completed Stage

(9.1% of all tasks), participants produced incorrect mappings
but correctly completed the program. Based on reviewing a
random selection of 20% of these mappings, we observed that:

• Some participants struggled to represent mappings where
a code element present in the example was related to
something that needed to be added to their program. This
meant that one correct mapping was to map a block in the
example to an empty space in the task code. It was not
clearly specified how to do this, so this was a weakness
of the mapping task design. Since many tasks require that
participants add programming constructs, we may need to
explore alternative methods for capturing these mappings.

• In some cases, participants mapped sub-elements of a
statement rather than full code statements. For example,
a participant might map the method callers, names, and
parameters for two statements. We did not rate sub-
element mappings as correct, even when a mapping be-
tween their parent statements was correct. In these cases,
it seemed more likely that participants were drawing lines
between everything that was in the same location in the
code, rather than understanding that the methods as a
whole were the important related components. However,
it is possible that participants who created sub-element
mappings may have correctly understood the code.

5.3. Where in the process of solving a programming
problem using an example do novices struggle and
which behaviors predict success and failure?

In order to understand what challenges participants were
having, we wanted to determine what kinds of programming
behavior predict success and failure at each of the stages
(Exploring & Searching, Ready-to-Program, Assembling, and
Completed). To do this, we (1) identified predictive features
from among the programming behavior features, as shown in
Table 3, and then (2) used the subset of predictive features
to train a decision tree that predicts successful completion of
each of the stages in our stage model.

In this process, we used two classifiers: random forests and
decision trees. A random forest is “a classifier consisting of
a collection of tree-structured classifiers” where the input to
each of the classifiers is an independent identically distributed
random vector and each classifier “votes” for the most popular
[75]. In our analysis, we used R’s randomForest package,
which implements Breiman and Cutler’s algorithm for random
forests [76]. A decision tree is a classifier that partitions the
space based on the values of the internal nodes. Each leaf of
the tree has the most likely target value based on the paths
from the root that reach that leaf.

To identify predictive features for each stage, we trained a
random forest of 500 trees using a combination of performance
based features (see Table 1) and demographic features. The
demographic features included age, condition, and gender.

111

Stage Predictive Features(%MSE explained)
Exploring &
Searching

Idle Time (40.26)
Num. of Runs (28.94)
Num. of Code Edits (28.73)
Num. of UI Actions (19.47)
Num. of Tinker Edits (16.18)
UI Time (15.08)
Num. of Irrelevant Code Edits (13.78)
Num. of Semi-relevant Code Edits (11.23)
Age (10.16)

Ready-to-
Program

UI Correct Time (27.95)
Num. of Runs (20.24)
Num. of UI Actions (17.21)
UI Time (14.04)
Idle Time (13.41)
Num. of Code Edits (12.80)
Example Time (10.74)
Num. of Irrelevant Edits (10.47)

Assembling Num. of UI Actions (16.63)
UI Time (13.47)
Num. of Irrelevant Edits (12.63)
Num. of Relevant Edits (10.60)
Num. of Tinker Edits (10.11)

Table 3: Predictive features for each stage

Note that all of the performance features are stage-specific. In
predicting which tasks would achieve the Ready-to-Program
Stage, we used only performance features for the previous
stage, the Exploring & Searching Stage. Then, for each of
the forests, we examined the variable importance statistics
and identified the subset of features that improved the mean-
squared error by more than 10% for use in constructing the
decision tree.

Next, we trained an individual decision tree for each stage
using our selected subset of features (see Table 3). We use
the resulting decision trees to pull out behavioral differences
between successful and unsuccessful participants at each stage.
In training both the random forests and decision trees, we
included only tasks that achieved the previous stage. Notice
that most of the features used for this analysis do not explicitly
focus on the example, but instead attempt to measure the
behaviors that indicate difficulties using the example. There
are several reasons for this: (1) we did did not use eye-tracking,
so the main ways to measure example use were mouse move-
ments and example executions, and (2) participants very rarely
executed the example code.

First, we will discuss how we assessed our decision tree
models and then we will explore the decision trees for each
of the stages and discuss the features that predict success and
failure for those stages.

5.3.1. Decision Tree Model Quality

We assessed the quality of our three decision tree models
in two ways:

First, we constructed a Baseline Model that always predicts
the most common classification (success or failure) for that
stage. Using a binomial test, we evaluate whether the decision
tree performs significantly better than this baseline (see Ta-

ble 4). We acknowledge that comparing to the Baseline Model
is a relatively weak test of significance.

To provide additional insight, we also constructed a Null
Mixed Logistic Regression model with two random factors:
task ID and participant ID. This model leverages the fact that
knowing the difficulty of the task and the general performance
of a participant is often sufficient to make good performance
predictions. As expected, the Null Mixed Logistic Regression
models perform fairly well. It is important to note that they
leverage task and participant information that we intentionally
excluded from our decision tree model. Yet, the decision tree
models achieve similar accuracy using purely behavioral data
(see Table 4).

In training both the random forests and decision trees, we
included only the subset of tasks that successfully achieved
the previous stage.

5.3.2. Predicting Ready-to-Program Stage Success
Figure 6 shows the decision tree that predicts whether a

given task will achieve the Ready-to-Program Stage (correct
interface state) given the programming behavior during the
Exploring & Searching Stage. Any amount of code editing dur-
ing the Exploring & Searching Stage is a strong predictor that
task will not achieve the Ready-to-Program Stage. Specifically,
tasks without the Exploring & Searching Stage code editing
successfully reach the Ready-to-Program Stage 91% of the
time; those with code editing successfully reach the Ready-to-
Program Stage only 20% of the time. Among the tasks without
code editing, those with task idle times of more than two
minutes are dramatically less successful, reaching the Ready-
to-Program Stage only 25% of the time. This behavior may
indicate that participants did not know what to do and were
reluctant to explore. Among the tasks with code edits during
the Exploring & Searching Stage, running the program once
or not at all increased the chances of successfully reaching
the Ready-to-Program Stage to 60%. These participants made
and tested a small number of changes before moving on to
searching for the necessary code elements in the interface.

5.3.3. Predicting Assembling Stage Success
A task successfully reaches the Assembling Stage when the

participant adds a code element needed for task completion.
Figure 7 shows the decision tree that predicts success at reach-
ing the Assembling Stage based on the programming behavior
in the Ready-to-Program Stage. The strongest predictor of
successfully achieving the Assembling Stage is the number
of user interface actions that occur in the previous stage. If a
participant makes a large number of user interface actions (i.e.
26 or more), this may suggest that they reached the Ready-to-
Program Stage (the correct interface state) by chance; 77% of
these tasks end in the Ready-to-Program Stage. Additionally,
tasks with a large number of user interface actions are less
likely to have correct mappings. For tasks with 26 or more
user interface actions, 52% have correct mappings. For those
with fewer than 26 user interface actions, 69% have correct
mappings. Finally, we note that if participants reached the

112

Stage # of Tasks Baseline Model Accu-
racy

Null Mixed Logistic Re-
gression Accuracy

Decision Tree Model
Accuracy

Ready-to-program 531 51.79% 88.89% 87.76%**
Assembling 256 80.08% 89.06% 92.97%**
Completed 205 78.05% 82.93% 84.39%*

Table 4: Decision tree model quality. **p< .0001, *p< .05

Figure 6: The decision tree predicting success at achieving the Ready-
to-Program Stage based on Exploring & Searching Stage perfor-
mance.
Yes/no: value of the inequalities.
Line thickness: percentage of tasks following each path.
Percentages in boxes: accuracy of each node.
’X’: predict failure to reach stage.
Check marks: predict success at reaching stage.

Ready-to-Program Stage late in the task, that often predicted
failure.

5.3.4. Predicting Completed Stage Success

Figure 8 shows the decision tree that predicts success at
reaching the Completed Stage, based on the programming
behavior in the Assembling Stage. Effectively, tasks break into
three categories based on the number of user interface actions.
Overall, tasks with fewer than 35 user interface actions were
most successful: 88% achieve a correct task solution. Tasks
with a mid-range (ranging from 35 to 85) number of user
interface actions were least successful, only 22% arrived at a
correct solution. Interestingly, tasks with the highest number
of user interface actions were more successful than those in
the mid-range: 54% achieved a correct solution. We note that
user interface actions are strongly correlated with code editing,
p < .001, r(205)=.64.

Once participants reach the Assembling Stage, they have all

Figure 7: The decision tree predicting success at achieving the
Assembling Stage based on the Ready-to-Program Stage performance.
Yes/no: value of the inequalities.
Line thickness: percentage of tasks following each path.
Percentages in boxes: accuracy of each node.
’X’: predict failure to reach stage.
Check marks: predict success at reaching stage.

of the code elements necessary to correctly solve the task. So,
moving from the Assembling Stage to the Completed Stage is a
matter of placing the code elements in the right positions. The
group with the lowest number of user interface actions shows
a more selective approach to making code changes. In the
middle, participants made a larger number of edits, but likely
with less deliberation about each individual change. Since even
with relatively short programs, there are a large number of
potential edits that can be made, this strategy tended towards
failure. Finally, the group that made the largest number of code
edits shows an increase in overall success rates. This may be
a result of a fast guess and test approach.

6. Discussion

We first go into further discussion on each of our primary
topics: (1) example annotations, (2) analogical reasoning, and
(3) programming behavior analysis as compared to a qualita-
tive study on example use. Then, we discuss the importance
of how this work fits into the larger picture of blocks-based
programming environments.

113

Figure 8: The decision tree predicting success at achieving the
Completed Stage based on the Assembling Stage performance.
Yes/no: value of the inequalities.
Line thickness: percentage of tasks following each path.
Percentages in boxes: accuracy of each node.
’X’: predict failure to reach stage.
Check marks: predict success at reaching stage.

6.1. High Failure Rates Regardless of Annotation
While we hypothesized that the different annotation con-

ditions would provide different affordances for similar and
dissimilar example mappings and performance, we did not
find significant performance differences between the individual
annotation styles for mapping or for task performance. One
reason for this might be that each of the annotations provided
extra information to lead participants to better mappings and
solutions [17]. Yet, novices still had significant problems
completing tasks in all conditions. Looking at the results,
the two main issues causing low overall success were (1)
inability to move beyond the Exploring & Searching Stage,
and (2) incomplete solution plans with correct mappings. In
order to help novice programmers in using examples, future
work should address these two problems.

Our study results suggest that supporting novices in taking
the first steps in using an example is crucial, similar to a
finding that getting started is generally difficult for end-user
programmers working on specified tasks [77]. In 51% of tasks,
participants made no discernible progress towards a solution.
Of those who made any progress, 62% arrived at the correct
solution. One reason for this is that novice programmers may
be overwhelmed at first, trying to figure out what to focus on
and how to start. Only 45% of participants at this stage made
correct mappings, so it may be critical to nudge novices back
toward looking at and using an example if they have made a
certain number of edits with no progress. Another issue might
be that a programmer does not understand the example if their
mapping is wrong, which could indicate the need for multiple
examples of varying surface similarity, allowing novices to
search for another example if the first one is confusing.

We showed that one reason behind failure is that once

novice programmers reach the Assembling Stage, they often
do not have a complete or correct plan for how to reach
the solution. This means that although they understand the
relationships between the task and the example, they do not
know how to formulate a plan. The first step in helping
novices in this situation is to be able to identify that they are
having this specific issue. Based on our results, we believe
systems should automatically keep track of whether a novice
has added the correct component, whether they have reached
a correct solution, and whether they have made multiple edits.
Essentially, a system could leverage the stage model discussed
in our results to keep track of progress and provide strategic
advice. Future work could use this model as a starting point for
educational strategies in programming, similar to the problem
solving strategies introduced by Loksa et al. [78].

6.2. Programming Examples and Analogical Reason-
ing

In nearly 75% of tasks, participants’ behavior is consistent
with the prediction that mapping success is sufficient to enable
task success. However, in the remaining 25% of tasks, partic-
ipants made a series of code edits and program executions
that suggests they did not have a full solution in mind when
they began to make changes to the target program. If we
can think of example code use as analogical problem solving,
this opens up this topic to being able to apply other findings
from analogical problem solving research to support for novice
programming with examples. Two applications of analogical
reasoning that could apply to novice programming are (1)
using visual analogies as hints and (2) work on analogical
reasoning across ages.

Research has found that visual analogies can be used as
cues to hint at an analogy that had been presented earlier
[79]. This could apply to novice programming because once
a novice programmer has learned a concept once, they may
still not realize that they should use it in another situation. In
this case, a visual analogy might be useful because it would
cue memory of previously provided information, without being
repetitive. One study on programmers found that they naturally
use examples as reminders [9], so this might be useful for
novices as they are learning as well.

Work on analogical problem solving and the development
of reasoning in children may also apply to example use in
novice programming, since blocks-based environments exist
for all ages. One study found that middle school students were
stronger at solving analogy problems, but pre-schoolers were
also capable of using an analogy to solve a new problem [80].
Further, middle school students often had similar performance
as adults. This implies that we may be able to use similar sup-
port for middle school children and adults. Examples are also
likely to be applicable for very young novice programmers,
but the analogies must be very carefully selected [80].

114

6.3. Programming Behavior and Relation to Quali-
tative Study on Example Use

This study inspired a qualitative study on the barriers of
novice programmer example use that looked at what novice
programmers talked about during similar tasks to this study
[53]. In the qualitative study, participants worked in pairs
and only saw examples with the Visual Emphasis annotation.
Findings included hurdles to success like being distracted by
other exciting aspects of the programming environment, not
understanding the example, not knowing where to find com-
ponents in the interface, and trouble implementing solutions
due to misunderstandings about the code.

Three hurdles from the qualitative study seem to align well
with predictions in the decision trees: the context distraction
hurdle, the example comprehension hurdle, and the program-
ming environment hurdle.

• In the context distraction hurdle, participants talked about
exploring the programming interface and trying out ideas
they had to solve the task based on what they saw in
the programming environment (rather than the example).
This aligns with the decision tree in which having edits
in the Exploring & Searching Stage often leads to failure,
shown in Figure 6.

• The example comprehension hurdle captured participants
talking about not understanding how an example worked
or how it was relevant to a task. Spending long amounts
of time with the example (as in the Assembling Stage
decision tree in Figure 7) may indicate that a participant
was trying to understand an example but struggling.

• In the programming environment hurdle, participants dis-
cussed having trouble finding a block they needed to
solve a task, or having trouble editing their code in some
manner. This aligns with the fact that a large number of
UI actions in the Ready-to-program Stage likely means
that a participant will not reach the Assembling Stage, as
shown in the first prediction branch in Figure 7.

Novice programmers’ descriptions of their difficulties on
similar tasks aligning with the behavioral predictions in this
analysis supports the value of using decision trees and behav-
ioral data to explore example use and predict success.

6.4. Examples and Blocks-Based Programming
While examples are readily available for programmers in

text languages, there are many fewer resources for program-
mers in blocks-based programming environments to find ex-
amples. Part of this may be due to the fact that it is not as
easy to quickly copy and paste code to a forum like it is for
text languages. However, the popularity of using example code
in programming implies that it is important for the research
community to address example use in blocks-based program-
ming languages. This research topic is further compounded by
the fact that most blocks-based programming language users
are novices, so using examples is not as straightforward as it

would be for experts. This study contributes a better under-
standing of novice blocks programmers using examples with
varying annotations and similarities. This study also begins
to explore two ways to predict success or failure of novice
programmers using examples in blocks-based programming
environments.

For the analogical mapping task, participants drew lines
between components that were related in the example and the
task. While there were several challenges in the implemen-
tation of this task, the challenges for a text-based language
would be different. Instead of having discrete components,
or blocks, that can be connected with lines, the participants
would have to somehow decide which part of the code they
wanted to connect and mark that in an understandable way.
For novices, this might be more challenging because blocks
of code are not necessarily as obvious in a text language.
Furthermore, it would be much more difficult to group correct
and incorrect mappings because participants would be able to
draw lines between many more combinations of characters,
whereas in a blocks-based programming environment, there
are more constraints.

Our task stages and decision tree predictive modeling were
also highly blocks-specific. For example, some of the stages
were based on having the UI in the correct configuration to
access the blocks needed to succeed in the task. This works
across almost all blocks-based programming environments,
where blocks are organized in palettes that programmers must
correctly select to find the component that they need. In a
text language, the intermediate steps would be different and
likely more difficult to observe. Furthermore, code edits are
easier to define in a blocks-based programming environment
because it is easy to track when a code block has been added
to a program, modified in a discrete way, or removed. In a text
programming language, it would be more challenging to define
when a code change has started and ended. While heuristics
could be created for this purpose, the strategy used in this
paper suits a blocks-based programming language more easily
and effectively.

6.5. Limitations
In this study, we focused exclusively on the behavior of

young novices as they attempt to use examples. Although
young novice programmers may share some challenges with
older novices, there are likely unique features about their
approach to using examples. While we suspect that analogical
reasoning has similar behavior in older children and adults,
we do not know which aspects of the programming behavior
we observed would apply to adult novices.

Additionally, participants were unfamiliar with both the
target program and the example. Some prior work suggests
that adult novices often attempt to integrate several snippets of
found code to solve a problem [13]. This results in a situation
similar to that of our study: novice programmers have code
to modify that they do not fully understand and an example
they want to apply to it. We think this is an important type
of example use, but we acknowledge that it does not capture

115

all example use. The combination of a familiar, understood
target program and an unfamiliar example is important and
not addressed through this study.

7. Conclusions and Future Work
Overall, our results support other findings that completing

programming tasks using examples is challenging for novice
programmers. While similar examples and annotations help
novice programmers perform better, it is clear that these are
not enough support for novice programmers using examples.
However, it is interesting that the three annotation conditions
were not significantly different, indicating that the simple
visual emphasis may be enough help even for novices to draw
attention to the part of the example related to their task. This
could be highly valuable if a system needed to automatically
annotate examples, as visual emphasis is the only of the three
where automation would be a viable option.

In terms of predicting success, analogical mapping seems
like a promising method, but needs some improvement. Al-
though we did not want to interrupt task flow to assess ana-
logical mappings, future educational systems may benefit from
integrating analogical mapping tasks into learning materials,
which would allow them to measure analogical mappings dur-
ing tasks. Furthermore, if future work could reduce the number
of errors in mapping due to the way the mapping task was
operationalized, there might be a higher correlation between
mappings and success. Specifically, adding more constraints
about which components can be mapped and how to map
blocks in an example to missing blocks in a task are two
important future directions for this evaluation method. We
believe better constraints and a stricter time limit could vastly
improve the consistency and accuracy of this method.

The stage-based analysis and decision tree models pro-
vide information about which programming behaviors impact
success at each stage of the problem solving process. We
found that in most tasks that do not succeed, participants
did not progress past the Exploring & Searching Stage. This
has important implications for the beginning of a task, when
participants seem to need the most help. The large number of
UI actions leading to failure in later stages gives some support
to the idea of adding programming environment assistance to
examples if programmers do not have the option to directly
insert the example code into their program. These stages are
highly applicable to other blocks-based programming environ-
ments where programmers normally must follow the same
process to find the components they need in the interface,
add them to their program, and then modify the program to
complete the task. One promising future direction for this
analysis of programming behaviors is in designing educational
systems, such as intelligent tutoring systems, where a system
could assess programmer behavior in real-time and use that to
provide feedback to the learner.

References
[1] M. Resnick, J. Maloney, A. Monroy-Hernndez, N. Rusk, E. Eastmond,

K. Brennan, A. Millner, E. Rosenbaum, J. Silver, B. Silverman, and

Y. Kafai, “Scratch: programming for all,” Communications of the ACM,
vol. 52, no. 11, pp. 60–67, 2009.

[2] “MIT App Inventor | Explore MIT App Inventor.” [Online].
http://appinventor.mit.edu/explore/

[3] “Looking Glass Community.” [Online]. https://lookingglass.wustl.edu/

[4] M. Guzdial, “Why the U.S. is not ready for mandatory CS education,”
Communications of the ACM, vol. 57, no. 8, pp. 8–9, Aug. 2014.

[5] K. J. Harms, D. Cosgrove, S. Gray, and C. Kelleher, “Automatically
generating tutorials to enable middle school children to learn
programming independently,” in Proceedings of the 12th International
Conference on Interaction Design and Children. ACM, 2013, pp.
11–19.

[6] “Anybody can learn | Code.org.” [Online]. http://code.org/

[7] M. J. Lee and A. J. Ko, “Personifying programming tool feedback
improves novice programmers’ learning,” in Proceedings of the Seventh
International Workshop on Computing Education Research. ACM,
2011, pp. 109–116.

[8] C. J. Butz, S. Hua, and R. B. Maguire, “A web-based Bayesian
intelligent tutoring system for computer programming,” Web Intelligence
and Agent Systems: An International Journal, vol. 4, no. 1, pp. 77–97,
2006.

[9] J. Brandt, P. J. Guo, J. Lewenstein, M. Dontcheva, and S. R. Klemmer,
“Two studies of opportunistic programming: interleaving web foraging,
learning, and writing code,” in Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems. ACM, 2009, pp. 1589–1598.

[10] J. Brandt, P. J. Guo, J. Lewenstein, S. R. Klemmer, and M. Dontcheva,
“Writing code to prototype, ideate, and discover,” IEEE Software,
vol. 26, no. 5, pp. 18–24, 2009.

[11] B. Dorn and M. Guzdial, “Graphic designers who program as informal
computer science learners,” in Proceedings 2nd International Workshop
on Computing Education Research, 2006, pp. 127–134.

[12] M. B. Rosson, J. Ballin, and J. Rode, “Who, what, and how: A survey
of informal and professional web developers,” in IEEE Symposium on
Visual Languages and Human-Centric Computing, 2005, pp. 199–206.

[13] M. B. Rosson, J. Ballin, and H. Nash, “Everyday Programming: Chal-
lenges and Opportunities for Informal Web Development,” in IEEE
Symposium on Visual Languages and Human-Centric Computing, 2004,
pp. 123–130.

[14] P. Gross and C. Kelleher, “Non-programmers identifying functionality
in unfamiliar code: strategies and barriers,” Journal of Visual Languages
& Computing, vol. 21, no. 5, pp. 263–276, 2010.

[15] J. Brandt, M. Dontcheva, M. Weskamp, and S. R. Klemmer, “Example-
centric programming: integrating web search into the development
environment,” in Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems. ACM, 2010, pp. 513–522.

[16] K. S.-P. Chang and B. A. Myers, “WebCrystal: understanding and
reusing examples in web authoring,” in Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems. ACM, 2012,
pp. 3205–3214.

[17] M. L. Gick and K. J. Holyoak, “Analogical problem solving,” Cognitive
Psychology, vol. 12, no. 3, pp. 306–355, 1980.

[18] D. Gentner, “Structure-mapping: A theoretical framework for analogy,”
Cognitive Science, vol. 7, no. 2, pp. 155–170, 1983.

[19] “Hoogle.” [Online]. https://www.haskell.org/hoogle/

[20] “Java Examples - JExamples.com.” [Online]. http://www.jexamples.com/

[21] “Google Code.” [Online]. https://code.google.com/

[22] “Open Hub Code Search.” [Online]. http://code.openhub.net/

[23] J. Stylos and B. A. Myers, “Mica: A web-search tool for finding API
components and examples,” in IEEE Symposium on Visual Languages
and Human-Centric Computing, 2006, pp. 195–202.

[24] R. Holmes and G. C. Murphy, “Using structural context to recommend
source code examples,” in Proceedings of the 27th International
Conference on Software Engineering. ACM, 2005, pp. 117–125.

[25] O. Hummel, W. Janjic, and C. Atkinson, “Code conjurer: Pulling
reusable software out of thin air,” IEEE Software, vol. 25, no. 5, pp.
45–52, 2008.

116

http://appinventor.mit.edu/explore/
https://lookingglass.wustl.edu/
http://code.org/
https://www.haskell.org/hoogle/
http://www.jexamples.com/
https://code.google.com/
http://code.openhub.net/

[26] D. Mandelin, L. Xu, R. Bodk, and D. Kimelman, “Jungloid mining:
Helping to navigate the API jungle,” in Proceedings of the 2005
ACM SIGPLAN Conference on Programming Language Design and
Implementation, ser. PLDI ’05. New York, NY, USA: ACM, 2005,
pp. 48–61.

[27] N. Sahavechaphan and K. Claypool, “Xsnippet: Mining for sample
code,” in Proceedings of the 21st Annual ACM SIGPLAN Conference on
Object-oriented Programming Systems, Languages, and Applications,
ser. OOPSLA ’06. New York, NY, USA: ACM, 2006, pp. 413–430.

[28] S. Thummalapenta and T. Xie, “Parseweb: a programmer assistant
for reusing open source code on the web,” in Proceedings of the
Twenty-second IEEE/ACM International Conference on Automated
Software Engineering. ACM, 2007, pp. 204–213.

[29] Y. Ye and G. Fischer, “Supporting reuse by delivering task-relevant
and personalized information,” in Proceedings of the 24th International
Conference on Software Engineering. ACM, 2002, pp. 513–523.

[30] P. Brusilovsky, “WebEx: Learning from Examples in a Programming
Course.” in WebNet, vol. 1, 2001, pp. 124–129.

[31] R. Burow and G. Weber, “Example explanation in learning
environments,” in Intelligent Tutoring Systems. Springer, 1996,
pp. 457–465.

[32] J. M. Faries and B. J. Reiser, “Access and use of previous solutions in
a problem solving situation,” Cognitive Science Laboratory, Princeton
University, Tech. Rep. CSL Report 29, Jun. 1988.

[33] M. Guzdial and C. Kehoe, “Apprenticeship-based learning environments:
A principled approach to providing software-realized scaffolding
through hypermedia,” Journal of Interactive Learning Research, vol. 9,
pp. 289–336, 1998.

[34] L. Hohmann, M. Guzdial, and E. Soloway, “SODA: A computer-aided
design environment for the doing and learning of software design,” in
Computer Assisted Learning. Springer, 1992, pp. 307–319.

[35] M. C. Linn, “How can hypermedia tools help teach programming?”
Learning and Instruction, vol. 2, no. 2, pp. 119–139, 1992.

[36] M. C. Linn and M. J. Clancy, “Can experts’ explanations help students
develop program design skills?” International Journal of Man-Machine
Studies, vol. 36, no. 4, pp. 511–551, 1992.

[37] H. Ramadhan, “An intelligent discovery programming system,” in
Proceedings of the 1992 ACM/SIGAPP Symposium on Applied
Computing: Technological Challenges of the 1990’s. ACM, 1992, pp.
149–159.

[38] A. S. Bruckman, “MOOSE Crossing: Construction, community, and
learning in a networked virtual world for kids,” Ph.D. dissertation,
Massachusetts Institute of Technology, 1997.

[39] K. J. Harms, J. H. Kerr, M. Ichinco, M. Santolucito, A. Chuck,
T. Koscik, M. Chou, and C. L. Kelleher, “Designing a community to
support long-term interest in programming for middle school children,”
in Proceedings of the 11th International Conference on Interaction
Design and Children, ser. IDC ’12. New York, NY, USA: ACM,
2012, pp. 304–307.

[40] J. Cao, I. Kwan, R. White, S. D. Fleming, M. Burnett, and C. Scaffidi,
“From barriers to learning in the idea garden: An empirical study,” in
IEEE Symposium on Visual Languages and Human-Centric Computing,
2012, pp. 59–66.

[41] B. Hartmann, D. MacDougall, J. Brandt, and S. R. Klemmer, “What
would other programmers do: suggesting solutions to error messages,”
in Proceedings 28th International Conference on Human Factors in
Computing Systems, 2010, pp. 1019–1028.

[42] S. Oney and J. Brandt, “Codelets: linking interactive documentation
and example code in the editor,” in Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems. ACM, 2012,
pp. 2697–2706.

[43] L. R. Neal, “A system for example-based programming,” in ACM
SIGCHI Bulletin, vol. 20. ACM, 1989, pp. 63–68.

[44] D. F. Redmiles, “Reducing the variability of programmers’ performance
through explained examples,” in Proceedings of the INTERACT’93 and
CHI’93 Conference on Human Factors in Computing Systems. ACM,
1993, pp. 67–73.

[45] G. Weber and A. Mollenberg, “ELM-PE: A Knowledge-based
Programming Environment for Learning LISP.” in Proceedings of
ED-MEDIA 94–World Conference on Educational Multimedia and
Hypermedia, 1994, pp. 557–562.

[46] K. Østerbye, “Minimalist documentation of frameworks,” in ECOOP
Workshops, 1999, pp. 172–173.

[47] T. Vestdam, “Generating consistent program tutorials,” in Proceedings
of NWPER2002-Nordic Workshop on on Programming and Software
Development Tools and Techniques, 2002.

[48] J. M. Carroll, P. L. Smith-Kerker, J. R. Ford, and S. A. Mazur-Rimetz,
“The minimal manual,” Human-Computer Interaction, vol. 3, no. 2, pp.
123–153, 1987.

[49] J. M. Carroll, The Nurnberg Funnel: Designing Minimalist Instruction
for Practical Computer Skill. MIT Press, 1990.

[50] J. L. Kolodner, M. T. Cox, and P. A. Gonzlez-Calero, “Case-
based reasoning-inspired approaches to education,” The Knowledge
Engineering Review, vol. 20, no. 03, pp. 299–303, 2005.

[51] E. Domeshek and J. Kolodner, “Using the points of large
cases,” Artificial Intelligence for Engineering, Design, Analysis
and Manufacturing, vol. 7, no. 02, p. 87, May 1993.

[52] J. L. Kolodner and M. Guzdial, “Theory and practice of case-based
learning aids,” Theoretical Foundations of Learning Environments, pp.
215–242, 2000.

[53] M. Ichinco and C. Kelleher, “Exploring novice programmer example
use,” in IEEE Symposium on Visual Languages and Human-Centric
Computing, 2015, pp. 63–71.

[54] J. Sweller and G. A. Cooper, “The use of worked examples as a
substitute for problem solving in learning algebra,” Cognition and
Instruction, vol. 2, no. 1, pp. 59–89, 1985.

[55] A. Rourke and J. Sweller, “The worked-example effect using ill-defined
problems: Learning to recognise designers’ styles,” Learning and
Instruction, vol. 19, no. 2, pp. 185–199, Apr. 2009.

[56] J. J. Van Merrinboer and M. B. De Croock, “Strategies for computer-
based programming instruction: Program completion vs. program
generation,” Journal of Educational Computing Research, vol. 8, no. 3,
pp. 365–394, 1992.

[57] B. B. Morrison, L. E. Margulieux, B. Ericson, and M. Guzdial,
“Subgoals Help Students Solve Parsons Problems,” in Proceedings of
the 47th ACM Technical Symposium on Computing Science Education.
ACM, 2016, pp. 42–47.

[58] F. G. Paas and J. J. Van Merrinboer, “Variability of worked examples
and transfer of geometrical problem-solving skills: A cognitive-load
approach.” Journal of Educational Psychology, vol. 86, no. 1, p. 122,
1994.

[59] J. Sweller, “Element interactivity and intrinsic, extraneous, and germane
cognitive load,” Educational Psychology Review, vol. 22, no. 2, pp.
123–138, 2010.

[60] “Scratch - Videos.” [Online]. https://scratch.mit.edu/help/videos/

[61] “Tutorials for App Inventor | Explore MIT App Inventor.” [Online].
http://appinventor.mit.edu/explore/ai2/tutorials.html

[62] S. Pongnumkul, M. Dontcheva, W. Li, J. Wang, L. Bourdev, S. Avidan,
and M. F. Cohen, “Pause-and-play: automatically linking screencast
video tutorials with applications,” in Proceedings of the 24th annual
ACM Symposium on User Interface Software and Technology. ACM,
2011, pp. 135–144.

[63] K. J. Harms, N. Rowlett, and C. Kelleher, “Enabling independent
learning of programming concepts through programming completion
puzzles,” in IEEE Symposium on Visual Languages and Human-Centric
Computing, 2015, pp. 271–279.

[64] “Blockly Games.” [Online]. https://blockly-games.appspot.com/

[65] M. J. Lee and A. J. Ko, “Comparing the effectiveness of online
learning approaches on CS1 learning outcomes,” in Proceedings of the
Eleventh Annual International Conference on International Computing
Education Research. ACM, 2015, pp. 237–246.

[66] “Kodu | Home.” [Online]. http://www.kodugamelab.com/

117

https://scratch.mit.edu/help/videos/
http://appinventor.mit.edu/explore/ai2/tutorials.html
https://blockly-games.appspot.com/
http://www.kodugamelab.com/

[67] “TouchDevelop - create apps everywhere, on all your devices!”
[Online]. https://www.touchdevelop.com/

[68] S. Surisetty, C. Law, and C. Scaffidi, “Behavior-based clustering
of visual code,” in IEEE Symposium on Visual Languages and
Human-Centric Computing, 2015, pp. 261–269.

[69] L. E. Richland, K. J. Holyoak, and J. W. Stigler, “Analogy use
in eighth-grade mathematics classrooms,” Cognition and Instruction,
vol. 22, no. 1, pp. 37–60, 2004.

[70] D. Gentner and C. Toupin, “Systematicity and surface similarity in
the development of analogy,” Cognitive Science, vol. 10, no. 3, pp.
277–300, 1986.

[71] L. R. Novick and K. J. Holyoak, “Mathematical problem solving by
analogy.” Journal of Experimental Psychology: Learning, Memory, and
Cognition, vol. 17, no. 3, p. 398, 1991.

[72] S. Hudson, J. Fogarty, C. Atkeson, D. Avrahami, J. Forlizzi, S. Kiesler,
J. Lee, and J. Yang, “Predicting human interruptibility with sensors:
a Wizard of Oz feasibility study,” in Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems. ACM, 2003,
pp. 257–264.

[73] B. A. Spellman and K. J. Holyoak, “If Saddam is Hitler then who is
George Bush? Analogical mapping between systems of social roles.”
Journal of Personality and Social Psychology, vol. 62, no. 6, p. 913,
1992.

[74] L. Beckwith, C. Kissinger, M. Burnett, S. Wiedenbeck, J. Lawrance,
A. Blackwell, and C. Cook, “Tinkering and gender in end-user
programmers’ debugging,” in Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems. ACM, 2006, pp. 231–240.

[75] L. Breiman, “Random forests,” Machine Learning, vol. 45, no. 1, pp.
5–32, 2001.

[76] L. Breiman and A. Cutler, “Random forests – classification
description,” 2007. [Online]. https://www.stat.berkeley.edu/∼breiman/
RandomForests/cc home.htm

[77] J. Cao, S. D. Fleming, and M. M. Burnett, “An exploration of design
opportunities for “gardening” end-user programmers’ ideas.” in IEEE
Symposium on Visual Languages and Human-Centric Computing, 2011,
pp. 35–42.

[78] D. Loksa, A. J. Ko, W. Jernigan, A. Oleson, C. J. Mendez, and M. M.
Burnett, “Programming, problem solving, and self-awareness: Effects
of explicit guidance,” Proceedings International Conference on Human
factors In Computing Systems, 2016.

[79] M. Beveridge and E. Parkins, “Visual representation in analogical
problem solving,” Memory & Cognition, vol. 15, no. 3, pp. 230–237,
1987.

[80] K. J. Holyoak, E. N. Junn, and D. O. Billman, “Development of
analogical problem-solving skill,” Child Development, pp. 2042–2055,
1984.

118

https://www.touchdevelop.com/
https://www.stat.berkeley.edu/~breiman/RandomForests/cc_home.htm
https://www.stat.berkeley.edu/~breiman/RandomForests/cc_home.htm

	Introduction
	Related Work
	Support for Programming with Examples
	Learning From Examples
	Independent Learning for Novice Programmers

	Study
	Study Design Rationale
	Example Task Design
	Example Annotations
	Example-Task Analogical Mapping
	Example-Based Problem Solving Process

	Study Methods
	Participants
	Training Task
	Programming Tasks with Examples

	Data and Analysis
	Program Performance
	Example-Target Mappings
	Programming Behavior
	Program Solution Progress

	Results
	How do novice programmers perform on tasks using examples and how do annotations and example similarity affect performance?
	Overall Task Performance
	Effects of Annotations
	Effects of Example-Task Similarity

	To what degree does the ability to map an example and target problem correlate with task success?
	Overall Mapping and Task Success
	Annotation and Mapping Results
	Example Similarity and Mapping
	Mapping and Task Success Connection to Analogical Reasoning
	Correct Mappings and Incomplete Solution Plans
	Correct Mappings and Difficulties Executing Solution Plans
	Mapping Task Design

	Where in the process of solving a programming problem using an example do novices struggle and which behaviors predict success and failure?
	Decision Tree Model Quality
	Predicting Ready-to-Program Stage Success
	Predicting Assembling Stage Success
	Predicting Completed Stage Success

	Discussion
	High Failure Rates Regardless of Annotation
	Programming Examples and Analogical Reasoning
	Programming Behavior and Relation to Qualitative Study on Example Use
	Examples and Blocks-Based Programming
	Limitations

	Conclusions and Future Work
	References

