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Abstract

Nowadays, most of tools for spatial data manipulation
allow to edit information on maps without performing any
integrity verification. On the other hand, data repositories
such as the DBMS only permit few constraints to be defined
by means of their Data Definition Languages and leave pro-
grammers to implement procedures for complex constraints.
In this work we present the WiSPY system, a plugin of the
GIS tool uDig for visually specifying and verifying complex
spatial integrity constraints. WiSPY includes a visual en-
vironment for defining spatial data models with integrity
constraints and for automatically generating the constraint
checker. The latter is used by the WiSPY tool to verify the
integrity of the data produced during the map editing pro-
cess. The system has been validated on a real case study
concerning the current regulation of the Public Illumination
Plan (PIP) managed by an Italian municipality.

1 Introduction

The management of spatial data is one of the fields where
companies and researchers have invested much money and
time in the last decade. The result is that commercial prod-
ucts such as Autodesk Autocad Map 3D!, Bentley Microsta-

"http://www.autodesk.it/products/
autocad-map-3d/overview
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tion2, ESRI ArcGIS3, or free and open source products such
as Google Map*, QGIS’®, GRASS GIS®, uDig [22], have
become part of the daily life not only for GIS users. This
is because, they offer a large amount of features for spa-
tial data manipulation, spatial analysis and reasoning func-
tionalities that in many cases may support or simplify our
activities. Despite the large amount of available features,
these products lack of an adequate control during the edit-
ing phase, not allowing a solid constraint check. Also in the
Database Management Systems (DBMS) field, commonly
used product as Oracle and PostgreSQL, which offer spatial
extensions, only allow basic functionalities to support con-
straint checking. Indeed, their Data Definition Languages
(DDL) only support the management of simple topological
constraints while advanced controls need to be coded. In
this context, it appears to be desirable to provide a signif-
icant support in this phase in order to improve the quality
of data and minimizing the implementation activities which
often are annoying and repetitive.

In order to increase the dataset quality, correction oper-
ations can be performed both during the editing phase (on
the fly) or after a data manipulation session (a posteriori).
Both such approaches have pros and cons. On one hand,
checking correctness during the editing phase has a direct
effect on the data entry process, since the feedback is im-
mediate, but the check can be performed only on a subset

2http://www.bentley.com/it—-IT/products/
microstation/
3http://www.esri.com/software/arcgis
4https://maps.google.com/
Shttp://www.qgis.org/en/site/
Shttp://grass.osgeo.org/



of data. On the other hand, an a posteriori check is per-
formed on the whole dataset or on a selected subset of data,
giving the possibility to apply a complete verification and
to globally re-adjust geographic data. However, in this case
the system returns feedback to the user just at the end of
the manipulation process, making more difficult to handle
possible errors.

To guarantee the effective verification of map constraints
according to the designer requirements, in [7] a visual lan-
guage parsing approach for constraint checking of input
spatial data during the editing phase is presented. The in-
tegrity of data produced during the map editing process is
guaranteed by a constraint checker automatically generated
from a visual language grammar. In order to reduce the ef-
forts for defining the constraints to be checked, a high-level
data model is used to specify the user needs.

In this paper we propose a software system, named
WiSPY, which consists of two uDig plugins that allow the
user to:

e specify geographic models by means of the OMT-G
visual modeling language;

e automatically translate the OMT-G models to the cor-
responding grammars;

e validate geographic incoming data against the con-
straint checker generated from the grammars.

The rest of the paper is organized as follows. Section
2 presents the case study based on the Public Illumina-
tion Plan which we used to validate the proposed system.
Section 3 introduces the OMT-G modeling language used
for specifying spatial integrity constraints (SICs, for short).
Section 4 describes the WiSPY tool, while Section 5 shows
its application to the considered case study. Section 6 dis-
cusses the work existing in literature related with our pro-
posal. Conclusions and future work are given in Section 7.

2 Case Study

The case study presented in this section represents the
current regulation of the Public [llumination Plan (PIP)
managed by the South Tyrolean Municipalities Consortium
(STMC), in South Tyrol, Italy. The STMC’ is a coopera-
tive founded in 1954 that includes among its members all
the south Tyrolean municipalities and is mainly focused on
legal practice, administrative training, labor legislation, and
ICT services. The PIP is a complex set of regulations that
can be difficult to interpret and apply correctly. In partic-
ular, these regulations define a complex set of lighting cat-
egories depending on the type of road the lamp is placed
(urban or extraurban roads, pedestrian zone, bicycle paths),

"http://www.gvce.net

if the road is heavily busy or not, if there is a pedestrian pas-
sage, if there are crossing roads, and so on. The plan must
be “safe for people and things” and implemented in order
to limit light pollution. Light pollution is considered as a
misdirected, excessive or obtrusive artificial light, causing
a serious degradation of the natural nocturne light. A pub-
lic administration must intervene in order to prevent such
situations. In addition, a illumination system that involves
wrong light bulbs, wrong lamp types or has an overestima-
tion of the lamp power could create economical issues. The
proposed WiSPY tool can help domain experts to better un-
derstand and effectively manage such a complex real world
scenario.

The verification of the PIP is a typical task that a pub-
lic administration is faced with and it is a complex task for
different reasons, such as the difficulty of managing many
types of geographic data involved in, as well as, the tight
connection to the context they are inserted in. In fact, the
simple containment spatial relationship is not sufficient to
check a wide range of constraints that could depend on the
context on which a lamp is being placed (type of road or
area), the type of lamp itself, the type of illumination based
on both lumen and lux. In addition, checking the correct-
ness of the geographic data related to a street lamp could
be tricky, because a lamp is normally represented as a point
in space, while the constraints may need a polygon to be
successfully checked. For example, checking the correct
distribution of lamps along a road is not sufficient to com-
pute the distance between the points of the lamps, it is also
necessary to calculate the amplitude of the radiation given
by the lux value.

The case study consists in the automatic verification of
real geographic data related to the PIP of the South Ty-
rolean Municipalities. The data includes basic cartographic
data (boundaries, hydrography, vegetation), roads, build-
ings, and of course the PIP. Based on the current regula-
tions, a set of constraints suited to the validation of the cho-
sen municipality’s PIP can be specified. The road types in
the municipal boundaries are of type C (secondary extra ur-
ban road) and type F (local roads and bicycle paths). The
following steps are necessary to determine which configu-
ration is suitable for each road type:

e determine whether the road is of type C or F, including
the speed limit;

e determine which technical illumination class is related
to the road, in order to have the right luminance values;

e determine the type of lamp;
e determine the height of the poles;
e determine how to place the poles at the side of the road:

— unilateral;



— bilateral with alternate center;
— bilateral with opposite center;

— double centred (between the two carriageways);
e determine the distance of the poles.

All these factors must be taken into account during the
verification process, and they depend on each others; de-
termining the distance of the poles is the step that depends
more on the other steps, whilst the first two steps are those
that influence more the decision.

3 Visual Modeling Geographic Data embed-
ding Integrity Constraints with OMT-G

Although existing data modeling approaches and tools
can be adapted for geographic database design, most of
them do not support certain aspects of the modeling pro-
cess, such as the treatment of SICs. A visual language for
modeling geographic data must be able to visualize differ-
ent aspects of the data structure including numerous types of
representations, such as point, line, polygon as well as non-
spatial data; conventional as well as geo-referenced classes;
different types of spatial relations, spatial constraints, spa-
tial aggregation relationships.

Object Modeling Technique for Geographic Applica-
tions (OMT-G) is an object-oriented approach to model data
for geographic information. Its notation is based on the
classic OMT class diagram notation [5], and further ex-
tended to embrace also Unified Modeling Language (UML)
concepts and notations [4]. OMT-G provides three types of
primitives, based on the UML primitives for class diagrams,
to model the geometry and topology of geographic data,
providing support for topologic structures, network struc-
tures, multiple views of objects, and spatial relationships.
These types are classes, relationships and SICs. These
primitives allow also for the specification of alphanumeric
attributes and associated methods for each class.

OMT-G offers three types of diagrams: the class dia-
gram, that represents the classes involved in the model, as
well as their relations; the transformation diagram, that per-
mits the description of the transformation process of a class,
if the class diagram indicates the need of multiple represen-
tation of it; the presentation diagram which describes how
to represent the visual aspects of objects in the visualization.

OMT-G class diagrams are composed of conventional
and geo-referenced classes. The first behave as UML
classes and have no geographical properties. The latter in-
clude a geographical representation alternative, which spe-
cializes in two types of representations: discrete, associated
with real world elements (geo-objects), or continuously dis-
tributed over the space (geo-fields). Geo-objects are rep-
resented with points, lines, polygons or network elements,

whereas geo-fields correspond to variables such as soil type,
relief and temperature. The relationships of a OMT-G class
diagrams can be conventional, e.g. UML relationships, or
georeferenced. The latter include topological relations (e.g.
touch, in, cross, overlap, and disjoint), arc-node network
relations and spatial aggregations.

OMT-G class diagram permits the derivation of the set
of SICs that must be observed in the implementation. SICs
can be classified in: fopological (the geometrical proper-
ties), semantic (the semantic of the geographic feature), and
user-defined integrity constraints, “business rules” and all
those controls that are non-spatial. Topological integrity
constraints include spatial dependencies, spatial associa-
tions, connectivity, and geo-field rules. Semantic integrity
constraints include spatial association and disjunction rules.
User-defined integrity constraints are obtained from meth-
ods that can be associated to the classes.

4 The WiSPY Tool

In this section we present WiSPY (Visual specification
& Verification of SPatial integritY constraints), an exten-
sion of the uDig GIS tool [22] for enabling users to visu-
ally model geographic applications, also embedding SICs,
and to verify the correctness of the input geographic data.
WiSPY has been implemented by means of two plugins. In
the following we present the architecture of the WiSPY tool
and provide details about the implemented plugins.

4.1 The Architecture

Figure 1 shows the architecture of the proposed WiSPY
tool. It has been implemented on top of uDig, which is a
software program based on the Eclipse platform featuring
full-layered Open Source GIS. In particular, uDig provides
a complete Java solution for viewing, editing, and accessing
GIS data. Since it is built on top of the Eclipse “Rich Client
Platform”, WiSPY has been developed in Java as two uDig
plugins, namely OMT-G Editor and Constraint Checker.

The OMT-G Editor provides three different environ-
ments, one for each diagram the OMT-G data model pro-
vides. In the canvas of the class diagram editor, users spec-
ify their schema, adding classes and relationships chosen
from the tool palette. The relationships selected from the
palette can be inserted by clicking over the source class and
dragging a line to the target class. As an example, Figure 2
shows simple OMT-G class diagram modeling containment
constraints among Municipality, Lamp, and Road objects.

The OMT-G editor includes a function to derive a visual
grammar modeling the SICs specified in the OMT-G data
model. The Constraint Checker generated from the gram-
mar by using the ANTLR parser generator® can be activated

8http://www.antlr.org/
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Figure 1: The architecture of WiSPY tool.

by the user during map editing phase. In particular, the input
of WiSPY is a set of geographic data whose type is defined
in the OMT-G data model. The output is the validation of
the input data with respect to the SICs specified between the
classes of the OMT-G data model. If a SIC is violated then
a suitable error message is shown to user with information
to recover from the violation.

4.2 Constraint Checker Generation

The WiSPY tool automatically generates a constraint
checker able to verify the SICs defined by a OMT-G class
diagram. In particular, WiSPY exploits the visual lan-
guage compiler-compiler technique proposed in [6] for de-
riving a visual language parser through standard compiler-
compilers, like YACC [11].

The OMT-G Editor allows users to develop their schema,
adding classes and relationships chosen from the tool
palette. The relationships can be annotated with SICs,
which impose restrictions on the input data. In particular,
the classes of the model represents the geographical ob-
jects that the user can place on the map, while the rela-
tionships specified between two classes define SICs on their
instances. Such constraints are defined on the attributes of
the involved classes. The editor provides the set of standard
OMT-G spatial integrity rules (e.g., contain relation, coin-
cide relation, cross relation, touch, in) as well as standard
processes such as generalization and specialization. More-
over, the users can define new rules by specifying a set of
conditions on the classes’ attributes.

The constraint checker generation process consists of
mapping the OMT-G class model into a visual grammar.
To this end, we use the XPG grammar formalism [6], which
is similar to context-free string grammars, where more gen-
eral relations other than concatenation are allowed. In par-
ticular, an XPG textually describes a diagram by grammar

productions that alternate (terminal and nonterminal) sym-
bols with relations defined on the symbol attributes. Thus,
the idea is to map the classes defined in the OMT-G schema,
which represent the spatial objects to be placed on the map,
into terminal symbols of the grammar, while the SICs de-
fined between the spatial objects are modeled in terms of
spatial relations among them [6]. In this way, the user can
analyze the SICs specified for a particular application do-
main and, eventually, customize some of them interacting
with the editor.

For instance, the containment constraint between Road
and Lamp in Fig. 2 is modeled by the production:

Roads — ROAD {(contains) LAMP
where contains is an empty production with associated a se-
mantic action that verifies the satisfiability of the relation-
ship [6]. ROAD and LAMP are terminal symbols having
associated the set of attributes defined in the corresponding
classes of the OMT-G model, e.g., type for ROAD. Such
attributes are used by the contains production to verify the
spatial constraint. The nonterminal symbol Roads has as-
sociated a set of attributes whose value is synthesized from
the attribute values of ROAD and LAMP.

The WiSPY tool provides the implementation of seman-
tic actions for a predefined set of constraints. However, as
said above, the tool enables users to define their own con-
straints. In particular, the user can annotate a OMT-G re-
lationship connecting two classes A and B with a boolean
condition on the attributes of A and B. As an example,
for the OMT-G diagram in Figure 2, a user could define
the following illuminance constraint: the lightning of lamps
associated to urban highways is greater than 40SB?. This
constraint is named illuminates and is defined by the fol-
lowing boolean expression:

(Road.type="Highway’ A Lamp.lightning >40).

The constraint checker is obtained by giving as input to
a compiler-compiler the grammar automatically generated
from the OMT-G model. Since WiSPY uses the ANTLR
parser generator to perform this task, we represent the XPG
grammar into a format compatible with ANTLR. The use of

Fig. 3 shows the grammar constraint checker editor em-
bedded into the uDig interface. In particular, in the right
side of the interface (label D), the palette contains all the
suitable tools for grammar checking, and the “Select Fea-
ture Set” operator is activated. By using this operator, users
can select geographic features into the area of interest by
using a simple rectangle selection tool on the standard uDig
map view. After this operation the geographic data of inter-
est are selected and highlighted in yellow in the map (see
label A). In this example, the highlighted polygons repre-
sent areas, while the highlighted points represent lamps. In
this case, only the selected geographic features are involved
in the constraint check process. At the bottom left side of
the interface (label B), the details about the selected features
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Figure 2: OMT-G interface for specifying the spatial integrity constraints.

are shown. Finally, at the bottom right side of the inter-
face (label C), the output console of the validation process
is shown.

4.3 Verification of SICs

The parser generated with ANTLR is used by WiSPY
to validate the input spatial data against the SICs specified
in the OMT-G model. In particular, the parser analyzes the
spatial objects positioned on a map driven by the relation-
ships specified in the grammar. If the spatial objects violates
a SIC then it yields a parse error.

Fig. 4 shows the result of the constraint checking process
in the WiSPY interface. In this example, points represent-
ing lamps are highlighted by using the “Select Feature Set”
operator. Executing the constraint checking, the steps per-
formed by the validation process are listed into the console
view, located at the bottom of the interface. If an error oc-
curs, it is reported to the user in the console view.

5 Checking SICs for Public Illumination
Plans

The best way to illustrate how to apply our system to real
problems is through an example on PIP case study. In this
domain, lamps are spatial objects having associated the fol-
lowing information: localization of the lamp ( municipality,
hamlet, street, GPS coordinates), number of light points for
every lamp, lamp type, type of light source, number of light
sources for light point, electric power for each light source,
year, overall electric power of the lamp, mounting typology
(wall or pole), pole type, pole height, circuit and electric
power panel, road classification and technical illumination
classification. The roads are classified as:

e Category A: highways;
e Category B: high-speed extraurban roads;
e Category C: secondary extraurban roads;

e Category D: urban arterial roads;



|- BR[OS REE QAR 4

@ Progetti 2| <° ¥ = O| [d Mappa = =0
V& Lamp 5
» [dMappa
Editing using grammar <«
¢ New Feature
7 Edit feature
e x|0OA [@p |=0O {1 Select feature set
e d@
™ o lamp_castel
™ A cart_castel_class6
™ Alcart_castel_class5
™ Acart_castel_class3
™ flcart_castel_class2
ETRSES. . .ne 32K
{7l grammar view 82 | ] GrammarFeatureEditorView 1w @m=O
TableView_featureSelected 0
FID I rowid_ | objectid typ
lamp_castel.176 A 45594.0 1
lamp_castel.177 A 45595.0 1
lamp_castel.182 A 45600.0 1
lamp_castel.227 A 45272.0 1
lamp_castel.228 A 45273.0 1
B c
| e H 648251,7075, 51670202384 “

Figure 3: WiSPY main window with the additional tools for grammar parsing.

e Category E: urban district roads;
e Category F: local roads.

Road illumination varies depending on road classifica-
tion and on the related technical illumination classification.
This classification is the same specified in the UNI EN
13201 European normative, which states that the illumina-
tion level is based on the traffic intensity of the road and on
the daytime. Therefore the technical illumination classifi-
cation of a road may vary during the daytime. Since the ge-
ographic data used for the prototype are coming from a mu-
nicipality far away from highways, the classification used
in WiSPY is simplified as reported in Tables 1 and 2. The
illumination parameters reported in Table 2 refers to:

e L(cd/m?) is the average road surface luminance of a
carriageway of a road expressed in candelas per square
meter;

e U, is the overall uniformity of road surface luminance;

e U is the longitudinal uniformity of road surface lumi-
nance;

e 7] is the threshold increment, which measures the loss
in percentage of visibility caused by the disability glare
of the luminaries of a road lighting installation;

e S B2 is the surround ratio of illumination of a carriage-
way of a road

e [ is the hemispherical illuminance averaged over a
road area expressed in lux.

Road Type Road description Speed limit (km/h)  Tech. Illum. Class.
C - Secondary extraurban roads ~ Extraurban road 70-90 ME3a
Local extraurban roads 50 ME4b
F - Local roads Local urban roads 30 S3
Historic town center - CE4
F - Pedestrian and bicyle routes - N S3

Table 1: UNI EN 13201 road classification (subset).

In order to illustrate how WiSPY is able to identify vio-
lations in the public illumination plan, in the following we
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Figure 4: WiSPY interface showing the result of the constraint checking process.
sketch the grammar derived from the OMT-G model in Fig-
ure 2. In particular, the terminal symbols of the grammar
correspond to the classes of the model, i.e., MUNICIPAL-
Class  Detail type Detail values ITY, LAMP, and ROAD, while the productions are gen-
ME3a  Luminance of the road surface of the carriageway 1,0 L(cd/m?) erated according to the class relationships specified in the
04Uo OMT-G model:
07U,
Disability glare 15 Tl in % 3 .
Lighting of surroundings 0,5 5B2 1. Map — MUNICIPALITY (contains) Objects;
ME4b  Luminance of the road surface of the carriageway  0,75L(cd/m?)
04U, 2. Objects — Lamps (union) Roads;
06U;
Disability glare 15 TIin % .
Lighting of surroundings 0,5 SB?2 3. La‘mps - Lamp <p p > Lamps
S3 Horizontal illuminance 7,5E in Ix
1,5Emin inlx 4. pip — €
CE4 Horizontal illuminance 10 E in Ix SemanticAction: {
04 U. P
2 if distance(Lamp,Lamps)<MIN_LAMP_DIST
Table 2: Considered UNI EN 13201 technical illumination then ) ,
classes parse.alert(‘CONSTRAINT VIOLATION’,

‘Lamp’+Lamp.pos+ ‘ is too close to other lamps’);

}

5. Lamps — Lamp



Lamp — LAMP
Roads — Road (touches) Roads
Roads — Road

e A

Road — ROAD
10. Road — ROAD ({contains,isIlluminated) Lamp

11. isllluminated — €
SemanticAction: {
if (ROAD.type="C’A Lamp.lightning=£0.5) V(. . .)
then
parse.alert(‘CONSTRAINT VIOLATION’,
‘Lamp’+Lamp.position + ‘ violates the ’+
‘illumination of road ° + ROAD.name);

}

The productions have associated semantic actions that an-
alyze the values of the attributes associated to the spatial
symbols and verify whether the PIP constraints are satis-
fied. In particular, the first production indicates that a map
is composed of a municipality symbol (visually defined in
Figure 2 with a polygon) containing within its area other
objects. The latter can be Lamps and/or Roads as defined
in production 2. The set of lamps in the municipality has
to satisfy the constraint associated to the PIP relationship in
Figure 2, which defines the compatibility constraints among
lamps. As an example, the semantic action associated to
production 4 checks if the lamps are positioned too close. In
this case, a message is shown to the user. Thus, productions
3-6 define the nonterminal Lamps as a set of LAMP posi-
tioned within a MUNICIPALITY according to compatibil-
ity constraints. Similarly, productions 7-9 define the nonter-
minal Road as a set of ROAD symbols positioned within a
MUNICIPALITY and related through a touch relationship.
Productions 10 and 11 define the compatibility constraint
between roads and lamps according to the classifications re-
ported in Tables 1 and 2. In particular, each lamp is asso-
ciated to road and has to satify the user-defined constraint
isllluminated. Notice that, for readability of productions,
we have omitted the semantic actions that synthesize the at-
tributes for the LHS nonterminal from the attributes of the
RHS (non)terminals.

The parser automatically generated from the previous
grammar is able to analyze the municipality, road, and lamp
symbols positioned by the user on a map, as shown in Fig-
ure 4, and verify whether the previously described SICs are
violated. As an example, when the parser analizes the lamps
positioned on a map it applies productions 3 and 4 trying
to reduce the LAMP terminal symbols into Lamps nonter-
minal symbols. If a lamp is too close to a lamp already
analyzed (the spatial coordinates of the lamps previously
analyzed by the parser are associated to Lamps’ nontermi-
nal symbol) then violation message is shown to the user.

When a SIC is violated by two or more geographical ob-
jects WiSPY shows a message with the information on the
objects involved in the violation and the type of violation.

Thw WiSPY approach simplifies the specification and
verification of SICs since the geographic application do-
main can be easily modeled with OMT-G class diagrams,
the SICs can be specified as visual relationships between
classes and customized using boolean conditions on at-
tribute values, and the constraint checker can be automat-
ically obtained from the annotated OMT-G model. In
this way, the user can easily customize/add new SICs and
rapidly prototyping new constraint checkers.

6 Related Work

The quality of spatial databases is an open problem in
the field of geographic information systems and, in the last
few decades, many efforts have been done to deal with im-
plementation and management issues [15, 23]. In the fol-
lowing, we highlight the most important features of these
works.

A constraint solver of spatial data based on programming
logic has been presented in [1, 2]. The constraint system is
able to handle the basic spatial types such as points, lines
and polygons as well as the constraints in terms of equali-
ties and inequalities, memberships, metric, topological and
structural constraints. The system also provides a suitable
theory for managing constraints and a set of transformation
rules. The latter handle a special kind of constraints used
for consistency checking, enabling an optimized and effi-
cient resolution of spatial constraints.

In [12] a dimension graph representation is used for
maintaining the spatial constraints among objects in an Eu-
clidean space. The constraint consistency checking prob-
lem is transformed into a graph cycle detection problem on
dimension graph.

The process for discovering inconsistencies in geograph-
ical dataset described in [19] consists of three steps: error
definition, error checking, and error correction. Basically,
the first step consists of the execution of some computa-
tional geometry algorithms, while the third one is solved by
applying the first order calculus predicates.

In [14] a system developed for automatically maintain-
ing topological constraints in a geographic database is pre-
sented. This system is based on extending to spatial data
the notion of standard integrity maintenance through active
databases. Topological relationships, defined by the users,
are transformed into SICs, which are stored in the database
as production rules. A similar approach is also introduces
in [3].

An automated constraint checking procedure has been
introduced by Udagepola et al. [21] to check constraint vi-
olations at compiling time before updating the database. It



is based on a data structure called Semantic Spatial Outlier
R-Tree (SSRO-Tree).

In [17] Rigaux et al. presented Dedale, a constraint-
based spatial database system relied on a linear constraints
logical model. This system provides both an abstract data
model and a user declarative query language based on SQL
in order to represent and manipulate geometric data in arbi-
trary dimension. A different approach which combines re-
lational and constraint data models is used in [10], where
a three-tier constraint database architecture is presented.
The latter increases the level of abstraction between the
physical data and its semantics by introducing an addi-
tional layer to the classical relational data model architec-
ture (logical and physical layer), which allows to manage
both constraint-based and geometric data representations in
the same layer of abstraction, in opposition to the pure con-
straint databases, where all data are represented in terms of
constraints.

The framework presented in [20] allows the definition of
hierarchical descriptions of abstract regions. To this aim,
the framework exploits attributed grammars which can be
translated by a compiler of compiler to a parser for abstract
regions. Once generated, the parsers can be used for evalu-
ating whether the incoming regions are consistent with the
specified patterns. Basically, the abstract region candidates
that were identified by the parsing rules can be evaluated to
check if they conform to the definition provided by the user.

On the commercial side, Oracle(®) Spatial® allows spatial
constraint checking by using either the PL/SQL language or
by defining the constraint within the table procedure. Ar-
cGIS'? provides users with a button bar where it is possible
to visually define simple constraints. More complex con-
straints have to be implemented by specific languages.

A significant part of the proposed WiSPY tool concerned
with the visual definition of spatial constraints. The choice
we made for this purpose is using the OMT-G modelling
language. Similar to other approaches, it uses some visual
formalisms for describing the spatial objects composing the
geodatabase and others for connecting the objects specify-
ing the relationships existing among them. We have cho-
sen OMT-G [4] for its capability of explicitly specifying
the constraints in associations and attributes [9], which is a
limitation of the models extending UML [18], such as Ext.
UML [16] and GeoFrame [8]. Moreover, OMT-G seems
to be the most simply and user-friendly notation for non-
expert constraint designers. Along this line, in [13] Lizardo
and Davis presented a tool which provides various consis-
tency checks on the integrity of the defined schema, and
includes a function that maps OMT-G geographic concep-

https://docs.oracle.com/cd/E18283_01/appdev.
112/e11830/sdo_intro.htm#insertedIDO

Onttps://sites.google.com/site/
ochaimwiki/geodata-preparation-manual/
how-to-check-topology-using-arcgis

tual schemas into physical schemas, including the SICs. Al-
though, it seems very similar to our approach, it is based
on SQL constraints which considerably limits the power of
constraint checking.

7 Conclusions

In this paper we have proposed a system to support users
in the automatic verification of SICs in geographic appli-
cations by exploiting visual language parsing. We have
demonstrated, by implementing the WiSPY tool, that the
visual language parsing is suitable for identifying violation
in the PIP case study and for solving ambiguities that may
arise in their interpretation. We have motivated our choice
of having an entirely visual system, and highlighted its ad-
vantages. This choice represents the major difference be-
tween our proposal and the related work.

Our future work will focus on the extension of the cur-
rent prototype in a fully functional product. Moreover, we
will concentrate our efforts on finding appropriate solutions
to present the information provided to the user, feedback
and solutions, in a flexible and supportive manner.
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