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Abstract—Graphs long have been valued as a pictorial way of 
representing relationships between entities. Contemporary 
applications use graphs to model social networks, protein 
interactions, chemical structures, and a variety of other systems. 
In many cases, it is useful to detect patterns within graphs. For 
example, one could be interested in identifying frequently 
occurring subgraphs, which is known as the frequent subgraph 
mining problem. A complete solution to this problem can result in 
numerous subgraphs and can be time-consuming to compute. An 
approximate solution is faster, but is subject to static heuristics 
that are beyond the control of the user. Herein we present 
VisCFSM, a visual, constraint-based, frequent subgraph mining 
system which allows the user to dynamically specify a variety of 
constraints on the subgraphs to be found while the mining 
algorithm is running. The constraint specification interactions are 
performed through a visual user interface, thereby facilitating a 
form of visual algorithm steering. This approach can be integrated 
with any frequent subgraph mining algorithm. Most importantly, 
this approach has the potential for the user to better, and more 
quickly, find the information that is of most interest to him/her in 
a graph.  

Keywords-graph; data mining; visual algorithm steering 

I.  INTRODUCTION 
Graphs long have been valued as a pictorial way of 

representing complex relationships between entities. 
Commercial, research, and government organizations use graphs 
to model social networks, protein interactions, chemical 
structures, and a variety of other systems. A common application 
of graph data mining is to identify the most recurrent 
relationships or patterns amongst the data in a graph, which 
typically requires finding frequently occurring subgraphs.  

For some applications, the input will be a collection of 
relatively small graphs, and the search for frequent subgraphs is 
performed over each individual graph in the collection before 
those results are combined. This is known as a graph-
transaction setting. In contrast, the input may be a single graph; 
this is referred to as a single graph setting. Our work refers to 
the latter environment. We also restrict our work to static 
graphs, and do not address dynamic graphs or streaming graphs, 
which are discussed in [1]. 

Formally, we define the Frequent Subgraph Mining (FSM) 
problem as in the paper by Abedijaberi [2] using Definitions 1-
4 given below. 

Definition 1. A labelled graph G = (V, E, LV, LE) consists of 
a set of vertices V, a set of undirected or directed edges E, and 
two labeling functions LV and LE that association labels with 
vertices and edges, respectively. 

It should be noted that the labels of any two vertices (or any two 
edges) may not be unique. However, each vertex (and each edge) 
will have a unique id. 

Definition 2. A graph S = (VS, ES, LVS, LES) is a subgraph of 
G = (V, E, LV, LE) iff VS V, ES E, LVS(v) = LV(v) and LES(e) 
= LE(e) for all v ϵ VS and e ϵ ES. 

Definition 3. A subgraph isomorphism of S to G is a one-to-
one function f: VS → V where LVS(v) = LV(f(v)) for all vertices in 
v ϵ VS, and for all edges (u,v) ϵ ES, ((f(u),f(v)) ϵ E and LES(u,v) = 
LE((f(u), f(v)). 

Definition 4.  Let IS be the set of isomorphisms of a subgraph 
S in graph G. Given a minimum support threshold τ, the frequent 
subgraph mining problem (FSM) is to find all subgraphs S in G 
such that |IS| ≥ τ.  

The advantage of limiting frequent subgraphs to only those with 
disjoint edges is computational tractability [3]. But this comes at 
the expense of disregarding potentially useful information. 
Hence, in our work we allow isomorphic subgraphs to share 
edges. 

FSM algorithms that find complete solutions may, 
depending upon the specified threshold value and the size of the 
graph, result in numerous subgraphs and take a considerable 
amount of time to compute. Algorithms that find approximate 
solutions are faster, but apply static heuristics that are beyond 
the control of the user (unless s/he modifies the software).  

Herein we present VisCFSM, a visual, constraint-based, 
frequent subgraph mining system which allows the user to 
dynamically specify a variety of constraints on the subgraph 
mining algorithm while it is running. The constraint 
specification interactions are performed through a visual user 
interface, thereby facilitating a form of visual algorithm steering. 
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The prototype implementation uses the FSG [4] frequent 
subgraph algorithm; however, the approach we employ can be 
integrated with any FSM algorithm. Most importantly, this 
approach has the potential for the user to better, and more 
quickly, find the information that is of most interest to him/her 
in a graph. 

The organization of this paper is as follows. Section II 
provides a brief overview of related work in graph data mining. 
Motivation for the need for dynamic, visual steering of FSM 
using constraints is presented in Section III. In Section IV, we 
discuss the VisCFSM infrastructure in terms of the FSM, the 
constraint satisfaction system, and the graphical user interface. 
An example of running VisCFSM is presented in Section V. 
Finally, we discuss our plans for future work in Section VI and 
conclusions in Section VII. 

II. RELATED WORK 

A. Graph Data Mining Algorithms 
Graph Data Mining (GDM) algorithms are divided into three 

main categories: Graph Theory Based, Inductive Logic 
Programming, and Greedy Search [5]. Our work focuses on the 
Graph Theory Based category, which consists of two main 
groups: Apriori-based and pattern growth-based approaches. 
Algorithms in the first group generate candidate subgraphs by 
joining two frequent subgraphs of the same size to generate 
larger subgraphs. Pattern growth algorithms generate candidates 
by adding a new edge to each smaller frequent subgraph.  

FSM algorithms typically face two computational 
challenges: (i) candidate subgraph generation, and (ii) 
identification of candidate subgraphs that meet the minimum 
support threshold. In the worst case, all subgraphs in the graph 
must be examined, which is exponential in complexity, and 
subgraph isomorphisms must be computed, which is an NP-
complete problem. FSM algorithms may attempt to improve 
runtime performance by reducing the size of the search space, 
avoiding duplicate comparisons, and/or minimizing the amount 
of memory required for compiling intermediate results. Another 
solution to reduce the runtime is to provide an approximate, 
rather than a complete, solution to the FSM problem. 

B. Heuristics for Approximate Solutions 
Heuristic FSM algorithms such as SUBDUE [6], GREW [7] 

and GRAMI [8] discover only a subset of all frequent subgraphs 
of a graph. These algorithms do not return any infrequent 
patterns (i.e., the results do not have false positives), but may 
miss some frequent ones (i.e., the results effectively may have 
false negatives). The type of heuristics that are employed are 
quite diverse, and also vary considerably in their degree of 
complexity. Some examples are listed below: 

x SUBDUE [6] starts with frequent subgraphs consisting 
of a single vertex, and then expands those in a breadth-
first manner by adding a new edge. The order of 
processing is known as a “beam search”, and only a 
predetermined number of paths (i.e., the beam width) 
are kept as candidates at each iteration. Hence some 
valid frequent subgraphs will be missed. 

x Like SUBDUE, GREW [7] employs a beam search to 
prune large portions of the search space. It also 
iteratively joins frequently occurring pairs of nodes into 
a single supernode, and determines disjoint embeddings 
of connected subgraphs using a maximal independent 
set algorithm. GREW employs an additional heuristic 
that deliberately underestimates the frequency of each 
discovered subgraph in an attempt to reduce the search 
space. While experiments showed that GREW 
significantly outperformed SUBDUE with respect to 
runtime, those experiments showed that this came at the 
expense of finding fewer frequent subgraphs. 

x Pattern growth algorithms generate candidate subgraphs 
by adding a new edge to smaller frequent subgraphs. 
GRAMI [8] only adds frequently occurring edges to 
smaller frequent subgraphs when generating candidate 
subgraphs. This will miss finding some valid frequent 
subgraphs, but reduces the total number of iterations 
over edges that must be considered. 

x AGRAMI [8] is an extension of GRAMI that employs 
additional heuristics in an effort to scale to larger graphs. 
For example, it enforces a timeout when testing whether 
a subgraph occurs at least as many times as the 
minimum support threshold; if the solution cannot be 
computed within a particular amount of time, that 
subgraph is assumed to be infrequent. 

In the same paper that presents GRAMI and AGRAMI [8], 
the authors briefly discuss CGRAMI, a version of GRAMI that 
seeks to find more general patterns in graphs than just frequent 
subgraphs. This work is noteworthy to mention herein because 
it claims to support the following user-defined constraints: 

x Number of vertices (or edges) in a pattern cannot exceed 
a specified value 

x Vertex degree in a pattern cannot exceed a certain value 

x A pattern must include/exclude only vertices with 
certain labels 

x A pattern must include only certain edges 

x A pattern cannot include certain edges 

x A pattern cannot include a specified subgraph 

x A specified vertex label cannot appear more than N 
times in a pattern 

To specify desired constraints in CGRAMI, the user must 
comment out certain lines of code (and uncomment other lines) 
for the constraints, set the values for parameters, and then 
recompile the program. The program has a command-line 
interface; there is no graphical user interface.   

As stated previously, what all heuristic FSM (and constraint-
based GDM) algorithms have in common is the inability for the 
user to dynamically customize the heuristics, or any form of 
constraints, while the algorithm is running. This is the novel 
contribution of the work presented herein. 
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III. MOTIVATION 
In part, motivation for this work came from a graduate course 

on Advanced Data Mining taught by author Leopold in 2015 at 
Missouri University of Science and Technology. That year the 
focus of the course was graph data mining. Students read several 
research papers on GDM algorithms and applications. Some of 
the students in the class implemented a few of the algorithms in 
Python, but were frustrated that they had to wait a considerable 
amount of time for the computation on some relatively small 
graphs (e.g., a graph of 50 vertices with average vertex degree 
3.5 took over 8 hours to compute all frequent subgraphs of 
minimum support 2).  When they had their programs output 
intermediate results as the subgraphs were being found, 
sometimes the students would terminate the program, and restart 
it with a different threshold value to further discriminate the 
result set and make the program finish more quickly. 

At the end of the course, the students were asked what kinds 
of constraints they would have found useful to “steer” a FSM 
algorithm dynamically, even if it meant that the resulting set of 
subgraphs would not be complete. Here we use the term steering 
as discussed in [9]: the ability to have a continuous visualization 
of the (output) data as a program executes, coupled with the 
ability for the programmer to interactively modify any aspect of 
the program and see the effects without restarting the 
computation. 

With a social network (specifically, a terrorist network) as an 
application domain, the students identified the constraints and 
use case examples listed below. In this social network, it is 
assumed that a vertex in the graph is labelled with a person’s 
name, which are not necessarily unique. Additional information 
about a person and his/her relationship to other people may be 
represented in the graph as vertex or edge data. 

x Include/exclude subgraphs containing a certain set 
of vertices. Ex.: Suppose that we’re using a social media 
network to identify terrorist threats. The number of 
frequent subgraph results may be quite high at first due 
to very small terrorist groups. So we then want to narrow 
our search, and only continue to look for subgraphs that 
include a specific group of people that we know conduct 
terrorist activities. 

x Include/exclude only frequent subgraphs that 
appear more/less than subgraph (or vertex) X does. 
Ex.: We see a specific name in the preliminary results of 
our search that we already know is a leader and a threat. 
But his name isn’t the only one we see, and we want to 
know who in the group is more important, of high rank, 
or higher rank than this person. So we then narrow our 
search to find subgraphs that appear more often than 
those containing this person. Or maybe we are looking 
for someone we can capture and get information from, 
in which case we look for someone important who 
appears less often. 

x Include/exclude only frequent subgraphs that are 
disconnected/connected to subgraph (or vertex) X. 
Ex.: We begin a search on terrorist cells. However, 
based on seeing a particular group appearing frequently 
in the results, we want to narrow our search to those 

connected to that group. Similarly, if we are trying to 
identify new terrorist cells or rival cells, we may want to 
look only at those groups that are disconnected from a 
certain group. 

x Include/exclude only frequent subgraphs where the 
average vertex degree is greater than some number. 
Ex.: We’re looking for potential terrorist cells, and not 
interested in groups with only a couple of connections; 
such groups are unlikely to be funded or be a real threat. 
We may not see this until after we have seen the initial 
(small-sized) frequent subgraphs. 

x Include/exclude subgraphs containing a certain 
number of edges. We may not be interested in seeing 
small terrorist groups, but rather want to see a certain 
amount of interconnectivity; these might prove to be the 
more dangerous terrorist groups. 

x Change minimum support. Ex.: We may start our 
search very wide open, but, after seeing some 
preliminary results that are too numerous and/or contain 
trivial information (e.g., everyone is a potential 
terrorist), decide that we want to raise the threshold. 

It should be noted that these constraints are not intended to be 
mutually exclusive, but rather conjunctive; we should be able to 
specify any combination of constraints. 

In the next section, we discuss the VisCFSM infrastructure 
in terms of the FSM, the constraint satisfaction system, and the 
graphical user interface. The system was designed to address 
many of the above listed constraints. 

IV. VISCFSM 
The infrastructure of VisCFSM consists of a front end and a 

back end. The front end is comprised of the graphical user 
interface which displays the frequent subgraphs as they are 
computed, and allows the user to visually steer the FSM by 
specifying constraints on frequent subgraph selection as the 
algorithm is progressing. The back end consists of the FSM and 
the constraint satisfaction system. In this section we briefly 
discuss each part of the infrastructure. 

A. The FSM 
As mentioned in Section II, we have chosen to focus on the 

Graph Theory Based category of graph data mining algorithms, 
which consists of Apriori-based and pattern growth-based 
approaches. For the prototype implementation of VisCFSM we 
chose a pattern growth algorithm, FSG [4]. The algorithm starts 
by finding all frequent subgraphs consisting of one edge. It then 
makes repeated iterations, generating candidates by adding a 
new edge to each of the largest frequent subgraphs found so far. 
This particular algorithm was selected primarily for its 
simplicity; it is certainly not one of the most efficient FSM 
algorithms that exists, but we believed that the logic upon which 
it is based could easily be understood by most users. The choice 
of FSM algorithms to be used in VisCFSM is not important; the 
constraint satisfaction system and visualization control system 
that we employ actually can be integrated with any FSM 
algorithm. 
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B. The Constraint Satisfaction System 
Inspired by the use cases presented in Section III, several 

structural and semantic constraints have been implemented for 
VisCFSM. These are listed below: 

x Include/exclude frequent subgraphs that contain certain 
vertices or edges 

x Include/exclude frequent subgraphs that include a 
particular subgraph 

x Include subgraphs that are connected/disconnected to a 
particular vertex or edge 

x Include only frequent subgraphs that have at least one 
vertex that has degree greater than a specified number 

x Include only frequent subgraphs where the average 
vertex degree greater than  a specified number 

x Include/exclude frequent subgraphs containing a certain 
number of edges 

x Exclude frequent subgraphs where a certain vertex label 
appears greater than a specified number of times 

x Change minimum support 

The user interface allows the user to specify the constraints 
that should be applied to the set of frequent subgraphs found so 
far, and whether to continue applying these constraints in the 
next iteration of the algorithm in an effort to find new frequent 
subgraphs (e.g., in the case of the FSG algorithm, the next 
iteration adds an edge to each of the largest-sized frequent 
subgraphs found so far in order to form new candidate frequent 
subgraphs). 

C. The Graphical User Interface 
The VisCFSM FSM and constraint satisfaction system were 

implemented in SWI-Prolog. The choice of a logic 
programming language seemed most suitable for modeling a 
constraint satisfaction problem. However, SWI-Prolog has no 
graphical capabilities. Hence, the VisCFSM graphic user 
interface was developed in Python. 

The graphic user interface (GUI) consists of the following 
controls: (i) a file chooser to allow the user to select a Prolog 
file that contains the specification of a graph, (ii) a text input 
field to specify the name of the graph (i.e., a Prolog file may 
contain multiple graph specifications, each defined as a 
relation), (iii) a text input field to specify the minimum support 
threshold for considering a subgraph to be frequent, (iv) a 
constraint editor, (v) a control button to start the FSG by finding 
the smallest-sized FSGs, and (vi) a control button to add an edge 
to each of the largest FSGs found thus far. A graph specification 
consists of a Prolog list containing the list of vertices (in the 
format [ID, label]) and a list of edges, where each edge is 
represented as a list of two vertices.  Fig. 1 shows the GUI after 
an undirected graph named sampleGraph has been loaded from 
a Prolog file named graph.pl. In this figure, no frequent 
subgraphs have been found yet. 

The constraint editor allows the user to set up rules to filter 
the frequent subgraphs that will be reported. Examples of the 
constraint editor are shown in Fig. 2 and Fig. 3. Constraints are 
represented in Disjunctive Normal Form (DNF); that is, as a 
series of AND clauses OR’d together. The editor includes a 
drop-down menu of the possible constraints, a text input field 
for specifying the arguments to a constraint, and a display of the 
DNF clauses that have been specified so far.  Help text is also 
provided to guide the user in specifying the arguments 
correctly. 

Figure 1. VisCFSM GUI after a sample graph has been loaded 
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Figure 2. Constraint editor showing one clause 

 

 
Figure 3. Constraint editor showing two clauses 

 
The main display area in the GUI initially shows the graph 

that the user has specified from the selected Prolog file. Once 
the FSG algorithm is invoked, that area of the GUI is used to 
display the frequent subgraphs found in the most recent 
iteration of the algorithm. Recall that FSG starts by finding all 
frequent single-edge subgraphs, then makes repeated iterations, 

adding a new edge to each of the largest frequent subgraphs 
found so far. In future refinements of the GUI, the user will be 
given the ability to scroll back to previously displayed sets of 
(smaller-sized) frequent subgraphs, and also will be given the 
option to undo/redo the application of constraints and edge 
additions.  With the current implementation, at any time, the 
user may restart the FSG generation algorithm from the 
beginning by clicking on the Start FSG button. 

V. AN EXAMPLE IN VISCFSM 
To demonstrate the concepts behind VisCFSM, here we 

walk through two simple examples. We start by assuming that 
we have reached the state shown in Fig. 1, having specifying the 
file graph.pl and selecting sampleGraph as the desired graph.  
Clicking on the DRAW! button renders the graph without 
finding any frequent subgraphs. 

For this particular graph, a minimum support threshold of 2 
provides interesting results.  Fig. 4 shows all frequent subgraphs 
with a minimum support of 2.  These are listed individually with 
their unique vertex IDs rather than, for example, simply 
reporting that a subgraph with edge (blue, red) occurs at least 2 
times; there is, however, an option in the GUI to report the 
results only by unique label combinations in the subgraphs.  

Suppose that we want only subgraphs that contain a specific 
vertex, say those with the ID 0. The user would first click on the 
Condition Editor button, which will open the condition editor 
window.  In the condition editor, the user would then select 
“Contains Vertex” from the dropdown menu, and specify the ID 
of the vertex to include; see Fig. 2.  Finally, the user would click 
on the Add Condition button. The constraint editor can be 
closed by clicking on Done or closing the window.  

Upon completing those steps, if the user now clicks the Start 
FSG button, the FSG algorithm will be restarted with the 
specified constraint applied; these results are shown in Fig. 5.  At 
this point, the user may increment the size of these subgraphs 
(by clicking on the Add Edge button), or go back to the 
constraint editor, add additional constraints to the current AND 
clause, and recompute the set of frequent single-edge subgraphs.  

To add an alternative set of constraints (i.e., add another 
clause that will be OR’d in the DNF representation), the user can 
open the constraint editor and click on the Add Clause button.  
A new clause column will be displayed, and the user now can 
add constraints to either of the clauses. Fig. 3 shows the addition  

 

  
Figure 4. Subgraphs from the graph shown in Fig. 1 that occur with minimum support 2 
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Figure 5. Results of applying the constraint specified in Fig. 2 when 

finding single-edge frequent subgraphs for the graph shown in Fig. 1 

of another constraint in our example; namely we also want 
frequent subgraphs that exclude the vertex with ID 3. The 
resulting set of frequent single-edge subgraphs (obtained by 
clicking the Start FSG button) is shown in Fig. 6.  The result set 
now includes single-edge subgraphs that occur at least 2 times, 
and include vertices with ID 0 or exclude vertices with ID 3.  

 
Figure 6. Results of applying the constraints specified in Fig. 3 when finding 

single-edge frequent subgraphs for the graph shown in Fig. 1 

VI. FUTURE WORK 
Future work on VisCFSM will be focused on three areas. 

First, we intend to perform informal studies of the usefulness and 
usability of the system when author Leopold again teaches the 
graduate course on Advanced Data Mining at Missouri 
University of Science and Technology in 2017. This should 
yield ideas for improving existing features in the user interface 
and adding new constraints.  

Secondly, we plan to explore the incorporation of 
specifications of constraints by natural language and/or 
gestures/drawing in the user interface. The use of multimodal 
user interfaces for spatially-oriented applications have been of 
interest for years, particularly for GIS applications; see the 
discussion in [10], for example. Such interfaces have become a 
particularly active research topic in the past few years with the 
prevalence of mobile GIS applications (e.g., [11], [12]). Many 
of the same concepts for querying general spatial settings (e.g., 
objects such as buildings, connections between objects such as 
roads, directionality, etc.) should also be applicable to specifying 
patterns in a graph. 

The third focus for future work will be improving the 
runtime efficiency of VisCFSM. Most algorithms used for graph 
data mining are designed for implementations in procedural 
languages.  It is possible that some of our FSM operations 
(written in Prolog) could be sped up by expressing the steps of 
those algorithms (e.g., testing for graph isomorphism) in a more 
logical form rather than mimicking procedural solutions.   

Additionally, many parts of the algorithm are embarrassingly 
parallel in nature; operations that are performed on every 
subgraph in the list of frequent subgraphs are independent from 
those being applied to other subgraphs, and as such can be done 
in a parallel manner. SWI-Prolog offers the concurrent/3 and 
concurrent_maplist/N predicates that automatically distribute 
the execution of goals across multiple threads. As threading 
introduces significant overhead to the process, determining the 
appropriate size of problems to apply concurrent operations will  
require empirical experimentation so as to not degrade the 
performance of the system. 

Another option for exploring concurrency in VisCFSM 
includes using a Prolog interpreter embedded in the language in 
which the GUI is implemented. Javascript, for example, has a 
library that is a Prolog interpreter implemented in Javascript. 
This would allow the GUI to use the threading and GUI features 
of the host language (in Javascript’s case, Electron or NW.js 
could provide the GUI features) while preserving the Prolog 
computational backend. This has the disadvantage of requiring 
the GUI to manage communication between threads, but the 
higher-level threading abilities may make this a preferable 
option to sending queries to a Prolog process. 

If reconciling the data representations of Prolog and a host 
language prove to introduce more complexity than is needed, a 
domain-specific logic language that integrates tightly with other 
languages (such as miniKanren [13]) would provide a more 
native approach to interacting with the computational backend. 
This would provide access to high-level threading and GUI 
capabilities of more general-purpose programming languages 
while leveraging the constraint programming capabilities of a 
logic programming language. 

VII. SUMMARY AND CONCLUSIONS 
Herein we have presented the infrastructure for a graph 

mining system that provides the ability for the user to 
dynamically customize a variety of semantic and structural 
constraints while the algorithm is working to complete its overall 
task. Effectively, this system supports visual algorithm steering, 
providing the ability for the user to continuously visualize the 
results of the graph mining program as it executes, interactively 
modify aspects of the program, and see the effects without 
restarting the computation from the very beginning. Such 
capabilities are extremely valuable when dealing with graph 
mining, wherein the data representation is intrinsically visual, 
and patterns of interest may not become obvious until 
preliminary results are seen. Because frequent subgraph mining 
is a computationally intensive problem, the ability to 
dynamically adjust constraints on the computation can allow the 
user to more quickly find the information that is of most interest 
to him/her in a graph.  
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