
VisCFSM: Visual, Constraint-Based, Frequent
Subgraph Mining

Jennifer L. Leopold

Missouri University of Science &
Technology

Department of Computer Science
Rolla, Mo USA

leopoldj@mst.edu

Chaman L. Sabharwal
Missouri University of Science &

Technology
Department of Computer Science

Rolla, MO USA
chaman@mst.edu

Nathan W. Eloe
Northwest Missouri State

University
School of Computer Science and

Information Systems
Maryville, MO USA

nathane@nwmissouri.edu

Abstract—Graphs long have been valued as a pictorial way of
representing relationships between entities. Contemporary
applications use graphs to model social networks, protein
interactions, chemical structures, and a variety of other systems.
In many cases, it is useful to detect patterns within graphs. For
example, one could be interested in identifying frequently
occurring subgraphs, which is known as the frequent subgraph
mining problem. A complete solution to this problem can result in
numerous subgraphs and can be time-consuming to compute. An
approximate solution is faster, but is subject to static heuristics
that are beyond the control of the user. Herein we present
VisCFSM, a visual, constraint-based, frequent subgraph mining
system which allows the user to dynamically specify a variety of
constraints on the subgraphs to be found while the mining
algorithm is running. The constraint specification interactions are
performed through a visual user interface, thereby facilitating a
form of visual algorithm steering. This approach can be integrated
with any frequent subgraph mining algorithm. Most importantly,
this approach has the potential for the user to better, and more
quickly, find the information that is of most interest to him/her in
a graph.

Keywords-graph; data mining; visual algorithm steering

I. INTRODUCTION
Graphs long have been valued as a pictorial way of

representing complex relationships between entities.
Commercial, research, and government organizations use graphs
to model social networks, protein interactions, chemical
structures, and a variety of other systems. A common application
of graph data mining is to identify the most recurrent
relationships or patterns amongst the data in a graph, which
typically requires finding frequently occurring subgraphs.

For some applications, the input will be a collection of
relatively small graphs, and the search for frequent subgraphs is
performed over each individual graph in the collection before
those results are combined. This is known as a graph-
transaction setting. In contrast, the input may be a single graph;
this is referred to as a single graph setting. Our work refers to
the latter environment. We also restrict our work to static
graphs, and do not address dynamic graphs or streaming graphs,
which are discussed in [1].

Formally, we define the Frequent Subgraph Mining (FSM)
problem as in the paper by Abedijaberi [2] using Definitions 1-
4 given below.

Definition 1. A labelled graph G = (V, E, LV, LE) consists of
a set of vertices V, a set of undirected or directed edges E, and
two labeling functions LV and LE that association labels with
vertices and edges, respectively.

It should be noted that the labels of any two vertices (or any two
edges) may not be unique. However, each vertex (and each edge)
will have a unique id.

Definition 2. A graph S = (VS, ES, LVS, LES) is a subgraph of
G = (V, E, LV, LE) iff VS V, ES E, LVS(v) = LV(v) and LES(e)
= LE(e) for all v ϵ VS and e ϵ ES.

Definition 3. A subgraph isomorphism of S to G is a one-to-
one function f: VS → V where LVS(v) = LV(f(v)) for all vertices in
v ϵ VS, and for all edges (u,v) ϵ ES, ((f(u),f(v)) ϵ E and LES(u,v) =
LE((f(u), f(v)).

Definition 4. Let IS be the set of isomorphisms of a subgraph
S in graph G. Given a minimum support threshold τ, the frequent
subgraph mining problem (FSM) is to find all subgraphs S in G
such that |IS| ≥ τ.

The advantage of limiting frequent subgraphs to only those with
disjoint edges is computational tractability [3]. But this comes at
the expense of disregarding potentially useful information.
Hence, in our work we allow isomorphic subgraphs to share
edges.

FSM algorithms that find complete solutions may,
depending upon the specified threshold value and the size of the
graph, result in numerous subgraphs and take a considerable
amount of time to compute. Algorithms that find approximate
solutions are faster, but apply static heuristics that are beyond
the control of the user (unless s/he modifies the software).

Herein we present VisCFSM, a visual, constraint-based,
frequent subgraph mining system which allows the user to
dynamically specify a variety of constraints on the subgraph
mining algorithm while it is running. The constraint
specification interactions are performed through a visual user
interface, thereby facilitating a form of visual algorithm steering.

9

DOI reference number: 10.18293/DMS2016-026

The prototype implementation uses the FSG [4] frequent
subgraph algorithm; however, the approach we employ can be
integrated with any FSM algorithm. Most importantly, this
approach has the potential for the user to better, and more
quickly, find the information that is of most interest to him/her
in a graph.

The organization of this paper is as follows. Section II
provides a brief overview of related work in graph data mining.
Motivation for the need for dynamic, visual steering of FSM
using constraints is presented in Section III. In Section IV, we
discuss the VisCFSM infrastructure in terms of the FSM, the
constraint satisfaction system, and the graphical user interface.
An example of running VisCFSM is presented in Section V.
Finally, we discuss our plans for future work in Section VI and
conclusions in Section VII.

II. RELATED WORK

A. Graph Data Mining Algorithms
Graph Data Mining (GDM) algorithms are divided into three

main categories: Graph Theory Based, Inductive Logic
Programming, and Greedy Search [5]. Our work focuses on the
Graph Theory Based category, which consists of two main
groups: Apriori-based and pattern growth-based approaches.
Algorithms in the first group generate candidate subgraphs by
joining two frequent subgraphs of the same size to generate
larger subgraphs. Pattern growth algorithms generate candidates
by adding a new edge to each smaller frequent subgraph.

FSM algorithms typically face two computational
challenges: (i) candidate subgraph generation, and (ii)
identification of candidate subgraphs that meet the minimum
support threshold. In the worst case, all subgraphs in the graph
must be examined, which is exponential in complexity, and
subgraph isomorphisms must be computed, which is an NP-
complete problem. FSM algorithms may attempt to improve
runtime performance by reducing the size of the search space,
avoiding duplicate comparisons, and/or minimizing the amount
of memory required for compiling intermediate results. Another
solution to reduce the runtime is to provide an approximate,
rather than a complete, solution to the FSM problem.

B. Heuristics for Approximate Solutions
Heuristic FSM algorithms such as SUBDUE [6], GREW [7]

and GRAMI [8] discover only a subset of all frequent subgraphs
of a graph. These algorithms do not return any infrequent
patterns (i.e., the results do not have false positives), but may
miss some frequent ones (i.e., the results effectively may have
false negatives). The type of heuristics that are employed are
quite diverse, and also vary considerably in their degree of
complexity. Some examples are listed below:

x SUBDUE [6] starts with frequent subgraphs consisting
of a single vertex, and then expands those in a breadth-
first manner by adding a new edge. The order of
processing is known as a “beam search”, and only a
predetermined number of paths (i.e., the beam width)
are kept as candidates at each iteration. Hence some
valid frequent subgraphs will be missed.

x Like SUBDUE, GREW [7] employs a beam search to
prune large portions of the search space. It also
iteratively joins frequently occurring pairs of nodes into
a single supernode, and determines disjoint embeddings
of connected subgraphs using a maximal independent
set algorithm. GREW employs an additional heuristic
that deliberately underestimates the frequency of each
discovered subgraph in an attempt to reduce the search
space. While experiments showed that GREW
significantly outperformed SUBDUE with respect to
runtime, those experiments showed that this came at the
expense of finding fewer frequent subgraphs.

x Pattern growth algorithms generate candidate subgraphs
by adding a new edge to smaller frequent subgraphs.
GRAMI [8] only adds frequently occurring edges to
smaller frequent subgraphs when generating candidate
subgraphs. This will miss finding some valid frequent
subgraphs, but reduces the total number of iterations
over edges that must be considered.

x AGRAMI [8] is an extension of GRAMI that employs
additional heuristics in an effort to scale to larger graphs.
For example, it enforces a timeout when testing whether
a subgraph occurs at least as many times as the
minimum support threshold; if the solution cannot be
computed within a particular amount of time, that
subgraph is assumed to be infrequent.

In the same paper that presents GRAMI and AGRAMI [8],
the authors briefly discuss CGRAMI, a version of GRAMI that
seeks to find more general patterns in graphs than just frequent
subgraphs. This work is noteworthy to mention herein because
it claims to support the following user-defined constraints:

x Number of vertices (or edges) in a pattern cannot exceed
a specified value

x Vertex degree in a pattern cannot exceed a certain value

x A pattern must include/exclude only vertices with
certain labels

x A pattern must include only certain edges

x A pattern cannot include certain edges

x A pattern cannot include a specified subgraph

x A specified vertex label cannot appear more than N
times in a pattern

To specify desired constraints in CGRAMI, the user must
comment out certain lines of code (and uncomment other lines)
for the constraints, set the values for parameters, and then
recompile the program. The program has a command-line
interface; there is no graphical user interface.

As stated previously, what all heuristic FSM (and constraint-
based GDM) algorithms have in common is the inability for the
user to dynamically customize the heuristics, or any form of
constraints, while the algorithm is running. This is the novel
contribution of the work presented herein.

10

III. MOTIVATION
In part, motivation for this work came from a graduate course

on Advanced Data Mining taught by author Leopold in 2015 at
Missouri University of Science and Technology. That year the
focus of the course was graph data mining. Students read several
research papers on GDM algorithms and applications. Some of
the students in the class implemented a few of the algorithms in
Python, but were frustrated that they had to wait a considerable
amount of time for the computation on some relatively small
graphs (e.g., a graph of 50 vertices with average vertex degree
3.5 took over 8 hours to compute all frequent subgraphs of
minimum support 2). When they had their programs output
intermediate results as the subgraphs were being found,
sometimes the students would terminate the program, and restart
it with a different threshold value to further discriminate the
result set and make the program finish more quickly.

At the end of the course, the students were asked what kinds
of constraints they would have found useful to “steer” a FSM
algorithm dynamically, even if it meant that the resulting set of
subgraphs would not be complete. Here we use the term steering
as discussed in [9]: the ability to have a continuous visualization
of the (output) data as a program executes, coupled with the
ability for the programmer to interactively modify any aspect of
the program and see the effects without restarting the
computation.

With a social network (specifically, a terrorist network) as an
application domain, the students identified the constraints and
use case examples listed below. In this social network, it is
assumed that a vertex in the graph is labelled with a person’s
name, which are not necessarily unique. Additional information
about a person and his/her relationship to other people may be
represented in the graph as vertex or edge data.

x Include/exclude subgraphs containing a certain set
of vertices. Ex.: Suppose that we’re using a social media
network to identify terrorist threats. The number of
frequent subgraph results may be quite high at first due
to very small terrorist groups. So we then want to narrow
our search, and only continue to look for subgraphs that
include a specific group of people that we know conduct
terrorist activities.

x Include/exclude only frequent subgraphs that
appear more/less than subgraph (or vertex) X does.
Ex.: We see a specific name in the preliminary results of
our search that we already know is a leader and a threat.
But his name isn’t the only one we see, and we want to
know who in the group is more important, of high rank,
or higher rank than this person. So we then narrow our
search to find subgraphs that appear more often than
those containing this person. Or maybe we are looking
for someone we can capture and get information from,
in which case we look for someone important who
appears less often.

x Include/exclude only frequent subgraphs that are
disconnected/connected to subgraph (or vertex) X.
Ex.: We begin a search on terrorist cells. However,
based on seeing a particular group appearing frequently
in the results, we want to narrow our search to those

connected to that group. Similarly, if we are trying to
identify new terrorist cells or rival cells, we may want to
look only at those groups that are disconnected from a
certain group.

x Include/exclude only frequent subgraphs where the
average vertex degree is greater than some number.
Ex.: We’re looking for potential terrorist cells, and not
interested in groups with only a couple of connections;
such groups are unlikely to be funded or be a real threat.
We may not see this until after we have seen the initial
(small-sized) frequent subgraphs.

x Include/exclude subgraphs containing a certain
number of edges. We may not be interested in seeing
small terrorist groups, but rather want to see a certain
amount of interconnectivity; these might prove to be the
more dangerous terrorist groups.

x Change minimum support. Ex.: We may start our
search very wide open, but, after seeing some
preliminary results that are too numerous and/or contain
trivial information (e.g., everyone is a potential
terrorist), decide that we want to raise the threshold.

It should be noted that these constraints are not intended to be
mutually exclusive, but rather conjunctive; we should be able to
specify any combination of constraints.

In the next section, we discuss the VisCFSM infrastructure
in terms of the FSM, the constraint satisfaction system, and the
graphical user interface. The system was designed to address
many of the above listed constraints.

IV. VISCFSM
The infrastructure of VisCFSM consists of a front end and a

back end. The front end is comprised of the graphical user
interface which displays the frequent subgraphs as they are
computed, and allows the user to visually steer the FSM by
specifying constraints on frequent subgraph selection as the
algorithm is progressing. The back end consists of the FSM and
the constraint satisfaction system. In this section we briefly
discuss each part of the infrastructure.

A. The FSM
As mentioned in Section II, we have chosen to focus on the

Graph Theory Based category of graph data mining algorithms,
which consists of Apriori-based and pattern growth-based
approaches. For the prototype implementation of VisCFSM we
chose a pattern growth algorithm, FSG [4]. The algorithm starts
by finding all frequent subgraphs consisting of one edge. It then
makes repeated iterations, generating candidates by adding a
new edge to each of the largest frequent subgraphs found so far.
This particular algorithm was selected primarily for its
simplicity; it is certainly not one of the most efficient FSM
algorithms that exists, but we believed that the logic upon which
it is based could easily be understood by most users. The choice
of FSM algorithms to be used in VisCFSM is not important; the
constraint satisfaction system and visualization control system
that we employ actually can be integrated with any FSM
algorithm.

11

B. The Constraint Satisfaction System
Inspired by the use cases presented in Section III, several

structural and semantic constraints have been implemented for
VisCFSM. These are listed below:

x Include/exclude frequent subgraphs that contain certain
vertices or edges

x Include/exclude frequent subgraphs that include a
particular subgraph

x Include subgraphs that are connected/disconnected to a
particular vertex or edge

x Include only frequent subgraphs that have at least one
vertex that has degree greater than a specified number

x Include only frequent subgraphs where the average
vertex degree greater than a specified number

x Include/exclude frequent subgraphs containing a certain
number of edges

x Exclude frequent subgraphs where a certain vertex label
appears greater than a specified number of times

x Change minimum support

The user interface allows the user to specify the constraints
that should be applied to the set of frequent subgraphs found so
far, and whether to continue applying these constraints in the
next iteration of the algorithm in an effort to find new frequent
subgraphs (e.g., in the case of the FSG algorithm, the next
iteration adds an edge to each of the largest-sized frequent
subgraphs found so far in order to form new candidate frequent
subgraphs).

C. The Graphical User Interface
The VisCFSM FSM and constraint satisfaction system were

implemented in SWI-Prolog. The choice of a logic
programming language seemed most suitable for modeling a
constraint satisfaction problem. However, SWI-Prolog has no
graphical capabilities. Hence, the VisCFSM graphic user
interface was developed in Python.

The graphic user interface (GUI) consists of the following
controls: (i) a file chooser to allow the user to select a Prolog
file that contains the specification of a graph, (ii) a text input
field to specify the name of the graph (i.e., a Prolog file may
contain multiple graph specifications, each defined as a
relation), (iii) a text input field to specify the minimum support
threshold for considering a subgraph to be frequent, (iv) a
constraint editor, (v) a control button to start the FSG by finding
the smallest-sized FSGs, and (vi) a control button to add an edge
to each of the largest FSGs found thus far. A graph specification
consists of a Prolog list containing the list of vertices (in the
format [ID, label]) and a list of edges, where each edge is
represented as a list of two vertices. Fig. 1 shows the GUI after
an undirected graph named sampleGraph has been loaded from
a Prolog file named graph.pl. In this figure, no frequent
subgraphs have been found yet.

The constraint editor allows the user to set up rules to filter
the frequent subgraphs that will be reported. Examples of the
constraint editor are shown in Fig. 2 and Fig. 3. Constraints are
represented in Disjunctive Normal Form (DNF); that is, as a
series of AND clauses OR’d together. The editor includes a
drop-down menu of the possible constraints, a text input field
for specifying the arguments to a constraint, and a display of the
DNF clauses that have been specified so far. Help text is also
provided to guide the user in specifying the arguments
correctly.

Figure 1. VisCFSM GUI after a sample graph has been loaded

12

Figure 2. Constraint editor showing one clause

Figure 3. Constraint editor showing two clauses

The main display area in the GUI initially shows the graph

that the user has specified from the selected Prolog file. Once
the FSG algorithm is invoked, that area of the GUI is used to
display the frequent subgraphs found in the most recent
iteration of the algorithm. Recall that FSG starts by finding all
frequent single-edge subgraphs, then makes repeated iterations,

adding a new edge to each of the largest frequent subgraphs
found so far. In future refinements of the GUI, the user will be
given the ability to scroll back to previously displayed sets of
(smaller-sized) frequent subgraphs, and also will be given the
option to undo/redo the application of constraints and edge
additions. With the current implementation, at any time, the
user may restart the FSG generation algorithm from the
beginning by clicking on the Start FSG button.

V. AN EXAMPLE IN VISCFSM
To demonstrate the concepts behind VisCFSM, here we

walk through two simple examples. We start by assuming that
we have reached the state shown in Fig. 1, having specifying the
file graph.pl and selecting sampleGraph as the desired graph.
Clicking on the DRAW! button renders the graph without
finding any frequent subgraphs.

For this particular graph, a minimum support threshold of 2
provides interesting results. Fig. 4 shows all frequent subgraphs
with a minimum support of 2. These are listed individually with
their unique vertex IDs rather than, for example, simply
reporting that a subgraph with edge (blue, red) occurs at least 2
times; there is, however, an option in the GUI to report the
results only by unique label combinations in the subgraphs.

Suppose that we want only subgraphs that contain a specific
vertex, say those with the ID 0. The user would first click on the
Condition Editor button, which will open the condition editor
window. In the condition editor, the user would then select
“Contains Vertex” from the dropdown menu, and specify the ID
of the vertex to include; see Fig. 2. Finally, the user would click
on the Add Condition button. The constraint editor can be
closed by clicking on Done or closing the window.

Upon completing those steps, if the user now clicks the Start
FSG button, the FSG algorithm will be restarted with the
specified constraint applied; these results are shown in Fig. 5. At
this point, the user may increment the size of these subgraphs
(by clicking on the Add Edge button), or go back to the
constraint editor, add additional constraints to the current AND
clause, and recompute the set of frequent single-edge subgraphs.

To add an alternative set of constraints (i.e., add another
clause that will be OR’d in the DNF representation), the user can
open the constraint editor and click on the Add Clause button.
A new clause column will be displayed, and the user now can
add constraints to either of the clauses. Fig. 3 shows the addition

Figure 4. Subgraphs from the graph shown in Fig. 1 that occur with minimum support 2

13

Figure 5. Results of applying the constraint specified in Fig. 2 when

finding single-edge frequent subgraphs for the graph shown in Fig. 1

of another constraint in our example; namely we also want
frequent subgraphs that exclude the vertex with ID 3. The
resulting set of frequent single-edge subgraphs (obtained by
clicking the Start FSG button) is shown in Fig. 6. The result set
now includes single-edge subgraphs that occur at least 2 times,
and include vertices with ID 0 or exclude vertices with ID 3.

Figure 6. Results of applying the constraints specified in Fig. 3 when finding

single-edge frequent subgraphs for the graph shown in Fig. 1

VI. FUTURE WORK
Future work on VisCFSM will be focused on three areas.

First, we intend to perform informal studies of the usefulness and
usability of the system when author Leopold again teaches the
graduate course on Advanced Data Mining at Missouri
University of Science and Technology in 2017. This should
yield ideas for improving existing features in the user interface
and adding new constraints.

Secondly, we plan to explore the incorporation of
specifications of constraints by natural language and/or
gestures/drawing in the user interface. The use of multimodal
user interfaces for spatially-oriented applications have been of
interest for years, particularly for GIS applications; see the
discussion in [10], for example. Such interfaces have become a
particularly active research topic in the past few years with the
prevalence of mobile GIS applications (e.g., [11], [12]). Many
of the same concepts for querying general spatial settings (e.g.,
objects such as buildings, connections between objects such as
roads, directionality, etc.) should also be applicable to specifying
patterns in a graph.

The third focus for future work will be improving the
runtime efficiency of VisCFSM. Most algorithms used for graph
data mining are designed for implementations in procedural
languages. It is possible that some of our FSM operations
(written in Prolog) could be sped up by expressing the steps of
those algorithms (e.g., testing for graph isomorphism) in a more
logical form rather than mimicking procedural solutions.

Additionally, many parts of the algorithm are embarrassingly
parallel in nature; operations that are performed on every
subgraph in the list of frequent subgraphs are independent from
those being applied to other subgraphs, and as such can be done
in a parallel manner. SWI-Prolog offers the concurrent/3 and
concurrent_maplist/N predicates that automatically distribute
the execution of goals across multiple threads. As threading
introduces significant overhead to the process, determining the
appropriate size of problems to apply concurrent operations will
require empirical experimentation so as to not degrade the
performance of the system.

Another option for exploring concurrency in VisCFSM
includes using a Prolog interpreter embedded in the language in
which the GUI is implemented. Javascript, for example, has a
library that is a Prolog interpreter implemented in Javascript.
This would allow the GUI to use the threading and GUI features
of the host language (in Javascript’s case, Electron or NW.js
could provide the GUI features) while preserving the Prolog
computational backend. This has the disadvantage of requiring
the GUI to manage communication between threads, but the
higher-level threading abilities may make this a preferable
option to sending queries to a Prolog process.

If reconciling the data representations of Prolog and a host
language prove to introduce more complexity than is needed, a
domain-specific logic language that integrates tightly with other
languages (such as miniKanren [13]) would provide a more
native approach to interacting with the computational backend.
This would provide access to high-level threading and GUI
capabilities of more general-purpose programming languages
while leveraging the constraint programming capabilities of a
logic programming language.

VII. SUMMARY AND CONCLUSIONS
Herein we have presented the infrastructure for a graph

mining system that provides the ability for the user to
dynamically customize a variety of semantic and structural
constraints while the algorithm is working to complete its overall
task. Effectively, this system supports visual algorithm steering,
providing the ability for the user to continuously visualize the
results of the graph mining program as it executes, interactively
modify aspects of the program, and see the effects without
restarting the computation from the very beginning. Such
capabilities are extremely valuable when dealing with graph
mining, wherein the data representation is intrinsically visual,
and patterns of interest may not become obvious until
preliminary results are seen. Because frequent subgraph mining
is a computationally intensive problem, the ability to
dynamically adjust constraints on the computation can allow the
user to more quickly find the information that is of most interest
to him/her in a graph.

14

REFERENCES
[1] A. Bifet, G. Holmes, B. Bfahringer, and R. Gavald’a, “Mining frequent

closed graphs on evolving data streams”, Proceedings of the 17th ACM
SIGKDD International Conference on Knowledge Discovery and Data
Mining, New York, NY, 2011, pp. 591-599.

[2] A. Abedijaberi and J.L. Leopold, “FSMS: a frequen subgraph mining
algorithm using mapping sets,” Proceedings of the 12th International
Conference on Machine Learning and Data Mining, New York, NY, 2016.

[3] M. Kuramochi and G. Karypis, “Finding frequent patterns in a large
sparse graph,” Data Mining and Knowledge Discovery, 11.3, 2005, pp.
243-271.

[4] M. Kuramochi and G. Karypis, “Frequent subgraph discovery,”
Proceedings of the 2001 IEEE International Conference on Data Mining,
IEEE Computer Society, 2001.

[5] M. Gholami and A. Salajegheh, “A survey on algorithms of mining
frequent subgraphs,” International Journal of Engineering Inventions, 1.5,
2012, pp. 60-63.

[6] D.J. Cook and L.B. Holder, “Substructure discovery using minimum
description length and background knowledge, “ Journal of Artificial
Intelligence Research, 1(1), 1994, pp. 231-255.

[7] M. Kuramochi and G. Karypis, “An efficient algorithm for discovering
frequent subgraphs,” IEEE Transactions on Knowledge and Data
Engineering, 16(9), September 2004, pp. 1038-1051.

[8] M. Elseidy, E. Abdelhamid, S. Skiadopoulos, and P. Kalnis, “GRAMI:
frequent subgraph and pattern mining in a single large graph,”
Proceedings of VLDB Endowment, 2014, pp. 517-528.

[9] J.W. Atwood, Jr., M.M. Burnett, R.A. Walpole, E.M. Wilcox, and S.
Yang, “Steering programs via time travel”, 1996 IEEE Symposium on
Visual Languages, Boulder, CO, 1996, pp. 1-8.

[10] I. Schlaisich and M.J. Egenhofer, “Multimodal spatial querying: what
people sketch and talk about”, 1st International Conference on Universal
Access in Human-Computer Interaction, 2001, pp. 732-736.

[11] F. Cutugno, V.A. Leano, R. Rinaldi, and G. Mignini, “Multimodal
framework for mobile application”, Proceedings of the International
Working Conference on Advanced Visual Interfaces, New York, NY,
2012, pp. 197-203.

[12] J. Doyle, M. Bertolotto, and D. Wilson, “Evaluating the benefits of
multimodal interface design for CoMPASS – a mobile GIS”,
GeomInformatica, Volume 14, Issue 2, April 2010, pp. 135-162.

[13] C.E. Alvis, J.J. Wilcock, K.M. Carter, W.E. Byrd, and D.P. Friedman,
“cKanren miniKanren with constraints”, 2011.

15

