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Abstract—This paper presents the utilization of empirical mode
decomposition (EMD) of hyperspectral images to increase the
classification accuracy using support vector machine (SVM)-based
classification. EMD has been shown in the literature to be par-
ticularly suitable for nonlinear and nonstationary signals and
is used in this paper to decompose hyperspectral image bands
into several intrinsic mode functions (IMFs) and a final residue.
EMD is utilized in this paper to improve hyperspectral-image-
classification accuracy by effectively exploiting the feature that
EMD performs a decomposition that is spatially adaptive with
respect to intrinsic features. This paper presents two different ap-
proaches for improved hyperspectral image classification making
use of EMD. In the first approach, IMFs corresponding to each
hyperspectral image band are obtained and the sums of lower
order IMFs are used as new features for classification with SVM.
In the second approach, the pieces of information contained in
the first and second IMFs of each hyperspectral image band are
combined using composite kernels for SVM classification with
higher accuracy.

Index Terms—Classification, empirical mode decomposition
(EMD), hyperspectral images, support vector machines (SVMs).

I. INTRODUCTION

HYPERSPECTRAL imaging sensors provide high-
resolution spectral information from a wide range of the

electromagnetic spectrum and offer improved performance for
classification and detection in remote sensing applications [1].

In recent years, kernel-based hyperspectral-image-
classification algorithms such as support vector machines
(SVMs) [2]–[5] and relevance vector machines [6] have
become very popular, because these approaches can provide
comparatively high classification accuracy. Hyperspectral
image classifications using different kernel-based approaches
such as regularized radial basis function neural networks,
SVMs, Fisher discriminant analysis, and regularized AdaBoost
have, for example, been evaluated in [3].

An important research topic in the area of hyperspectral
imaging in remote sensing applications comprises approaches
that can provide high classification accuracy. The effectiveness
of SVM-based hyperspectral image classification is shown
in [3]–[5]. Although spectral characteristics are used as pri-
mary discrimination features in hyperspectral images, spatial
attributes have been found very useful to increase the classifi-
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cation accuracy. Therefore, algorithms making use of both
spectral and spatial information for classification have recently
been proposed in [7]–[12]. In [7], composite kernels are used
to combine spatial and spectral information of hyperspectral
images to provide higher accuracy compared with that of using
spectral information only. For this purpose, spatial feature
vectors are obtained using either the mean only or the mean
and the standard deviation together of a certain neighborhood
window of the corresponding feature vector, and it is pro-
posed to compute kernel matrices corresponding to spatial
and spectral feature vectors separately and then combine these
using different combination approaches. In [8], spatial feature
vectors are extracted from an adaptive neighborhood (defined
as a connected zone in order to reasonably process pixels that
are close to the border of a structure), resulting in a self-
complementary area filtering, and composite kernels are used to
combine spatial and spectral information. In [9] and [10], it is
proposed to use morphological profiles (MPs) for hyperspectral
image classification. Initially, the principle components (PCs)
of hyperspectral data are obtained, and then, MPs are con-
structed by applying opening and closing operations to the PCs.
In [9], the MPs are used directly for classification with a neural
network, while in [10], the MPs are fused with the original
features for SVM-based classification. The combination of
spectral and spatial information is achieved based on Markov
random field in [11], and majority voting is used within regions
obtained by the watershed segmentation algorithm in [12].

Spatial-filtering preprocessing methods presented in [13] and
[14] have been proposed to improve the classification accuracy
by decreasing the intraclass spectral variability and spatially
smoothing homogeneous areas. Classification accuracy of hy-
perspectral images is improved in [13] by performing nonlinear
filtering with anisotropic diffusion. An adaptive spatial-filtering
algorithm which uses median filters with different sizes is
presented in [14] and has been shown to result in improved clas-
sification accuracy. An unsharp filter is used in [15] to enhance
high-frequency components (such as edges) in an image before
labeling the segmented area by human supervision for SVM
classification.

This paper proposes the utilization of empirical mode de-
composition (EMD) of hyperspectral image bands to increase
the classification accuracy by making use of the feature that
EMD performs a decomposition that is spatially adaptive with
respect to intrinsic features. EMD is a signal-decomposition
approach proposed particularly for the analysis of nonlinear and
nonstationary data [16] and decomposes the data into a finite
and often small number of intrinsic mode function (IMFs).
The first IMF resembles a high-pass-filtered signal, and the
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TABLE I
NoS FOR DIFFERENT CLASSES OF THE INDIAN

PINE DATA USED IN THE EXPERIMENTS

other IMFs resemble bandpass-filtered signals with their center
frequency decreasing in an octave band manner like a filter bank
[17]. This paper presents the detailed utilization of EMD for hy-
perspectral image classification. EMD is applied to individual
hyperspectral image bands as a preliminary decomposition step
before classification. Two different EMD-based classification
approaches are presented in this paper. The first approach uses
the sum of several IMFs and discards subsequent IMFs and
the residue of each hyperspectral image band for classification.
The second approach combines information of the first and
second IMFs using composite kernels. While the first approach
is not restricted to kernel-based classifiers, the second approach
can only be implemented using a kernel-based classifier. SVM
is used as classification method in the classification step be-
cause of its comparatively high classification accuracy. The
proposed EMD-based approaches are compared with wavelet
decomposition (WD)-based denoising [18] of hyperspectral
image bands, which has been shown to provide an increase in
hyperspectral-image-classification accuracy [19], and also with
simple low-pass filtering (LPF) as well as unsharp filtering (UF)
of hyperspectral image bands as in [15], spectral- and spatial-
domain composite kernels as presented in [7], and MP-based
classifiers presented in [9] and [10].

II. DATA SETS

Two data sets are used to present experimental results in this
paper. The Indian Pine hyperspectral image [20] is a data set
that is rather difficult to classify because of the high similarity
between spectral signatures of different classes and heavily
mixed pixels [21]. These data consist of 145 × 145 pixels with
220 bands. The number of bands is initially reduced to 200 by
removing bands covering water absorption and noisy bands.
The original ground truth has actually 16 classes, but some
classes have a very small number of elements; and therefore,
nine classes that have a higher number of samples (NoS) have
been used, and the total NoS corresponding to each class is
shown in Table I.

The second data set is the DC Mall data which have
307 × 1280 pixels with 210 bands [1]. The number of bands
was first reduced to 191 for the DC Mall data by removing
bands covering water absorption and noisy bands. Table II
shows the NoS used for the DC Mall data for all classes used in
the experiments.

TABLE II
NoS FOR DIFFERENT CLASSES OF THE DC MALL

DATA USED IN THE EXPERIMENTS

III. EMD

The Hilbert–Huang transform (HHT) has been proposed in
[16] for nonlinear and nonstationary time series analysis and
includes two main steps referred to as EMD and Hilbert spectral
analysis. EMD is regarded to form the key part of HHT by
decomposing any complicated data into a finite and often small
number of IMFs. EMD is very efficient because it is adaptive,
and it is based on the local characteristic timescale of the data
and, therefore, is applicable to nonlinear and nonstationary
data. The IMFs typically include instantaneous frequencies as
functions of time that give sharp identifications of imbedded
structures. IMFs satisfy two conditions: 1) The number of zero
crossings and the number of extreme points are equal or differ
at most by one, and 2) the mean value of the envelope defined
by the local maxima and the envelope defined by the local
minima is zero at any point. The advantage of EMD over other
decomposition techniques is that EMD is a nonparametric data-
driven method that can be used in the analysis of nonlinear and
nonstationary data, and it adaptively decomposes the data into
a finite number of IMFs. These IMFs, based on and derived
from the data, can serve as the basis of expansion which can be
linear or nonlinear as dictated by the data, and it is complete
and almost orthogonal [16]. The most important properties of
the IMFs obtained with EMD are that the IMFs represent local
features of the signal and are obtained adaptively. It is noted in
[16] that locality and adaptivity are the necessary conditions
for the basis for expanding nonlinear and nonstationary sig-
nals, while orthogonality is not a necessary criterion for basis
selection for a nonlinear system. Because IMFs are based on
local features of the signal, it becomes reasonable to refer to
instantaneous frequency content of signals. Each IMF typically
contains an oscillatory mode, inherent in the data, at different
(narrow) range of frequencies.

EMD has some important advantages in the case of non-
linearity and nonstationarity compared with the widely used
Fourier- and wavelet-transform-based signal-decomposition
techniques. Fourier transform assumes the system to be linear
and the signal to be stationary [22]; but in most real sys-
tems, either natural or even man-made ones, the data are most
likely to be both nonlinear and nonstationary [16]. Compared
with wavelet-based decomposition techniques, there are two
basic differences between EMD and the wavelet transforms
[23]. First of all, different wavelet types are possible for the
wavelet transform and the performance changes according to
the wavelet type, while EMD has no basis functions and
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decomposes the signal according to intrinsic characteristics.
Second, the frequency scale in the wavelet transform is always
fixed depending on sampling frequency and decomposition
level; while the IMFs of EMD can have variable frequency
content depending on local signal properties.

EMD has been applied in several areas of signal processing
[23]–[31]. In [23], EMD and WD are used to detect human
cataract using ultrasound signals, and it has been shown that
the detection performance of EMD is better compared with that
of WD. EMD is compared with WD in terms of the fractal-
dimension estimation of a discrete sample path in [24], and pre-
sented results again show that EMD yields better estimates of
fractal dimensions. EMD is initially presented for 1-D signals
and then used for 2-D signals in [25]–[28]. EMD is applied to
2-D face images as a preprocess to remove illumination artifacts
for a face recognition application in [25], where 2-D images are
first converted to 1-D signals. EMD is extended to be applied
directly in 2-D and used for image compression in [17] and
[26]. In [17] and [26], 2-D spline interpolation is used to enable
2-D-EMD; however, 2-D spline interpolation results in a very
high computational load for large data sizes. Fast and adaptive
2-D-EMD (FA-2-D-EMD), which uses order statistics filters
instead of 2-D spline interpolation for reduced computational
complexity, is proposed in [27] and [28]. EMD has been applied
to hyperspectral data for preliminary dimensionality reduction
in [29]. In [30], we have presented initial results showing that
it is possible to use EMD to increase the classification accuracy
of hyperspectral images. The normalized EMD that gives more
consistent and stable instantaneous frequencies compared with
[16] is presented in [31] with applications in remote sensing.

IV. EMD OF HYPERSPECTRAL IMAGE BANDS

In this paper, it is proposed to use EMD to obtain the IMFs
of hyperspectral image bands and to use these IMFs in the
classification step to provide increased classification accuracy.
In the proposed approach, EMD is applied individually to each
hyperspectral image band in the spatial domain. In the proposed
approach, 2-D EMD is utilized because EMD is applied to
each hyperspectral band separately, and the hyperspectral
image data of each spectral band is basically a 2-D signal. Both
conventional 2-D-EMD [17], [26] and FA-2-D-EMD [27],
[28] are evaluated for this purpose, and the utilization of these
approaches for hyperspectral data is explained in the following
sections.

Note that classification results for 1-D EMD applied to the
spectral dimension are also provided in this paper for com-
parative evaluation purposes, but it is observed that 1-D EMD
reduces classification accuracy.

In order to provide a common notation, Bl(i, j) is used to
denote the original hyperspectral image band with band index
l (l = 1, 2, . . . , L, with L being the total number of bands),
where (i, j) shows the spatial location. Note that IMFl,m is
used to show the values of the mth IMF (or mth order IMF)
(m = 1, 2, . . . ,M) of the lth hyperspectral image band.

A. 2-D-EMD of Hyperspectral Image Bands

The process used to find IMFs using 2-D-EMD [17], [26]
is called sifting. Sifting is an iterative process. Here, I(n)l,m(i, j)

is used to show the present values used in the nth iteration
to find the mth IMF of the lth band. This process starts from
the original hyperspectral band, and the starting point can be
expressed in the form of

I
(1)
l,1 (i, j) = Bl(i, j). (1)

The sifting process of 2-D-EMD can be summarized as
follows.

1) Find all points of 2-D local maxima and all points of 2-D
local minima of I(n)l,m(i, j).

2) Create the upper envelope (Emax(i, j)) by 2-D spline
interpolation of local maxima and the lower envelope
(Emin(i, j)) by 2-D spline interpolation of local minima.

3) Calculate the mean of the upper and lower envelopes:
A

(n)
m (i, j) = (Emax(i, j) + Emin(i, j))/2.

4) Subtract the envelope mean from the input signal:
S
(n)
m (i, j) = I

(n)
l,m(i, j)−A

(n)
m (i, j).

5) Check if the envelope mean fulfills the iteration stop crite-
rion for the current IMF. The stop criterion for the current
IMF is reached if the envelope mean signal is close to
zero [17] such that (

∑P
i=1

∑R
j=1 |A

(n)
m (i, j)|/P ×R) <

τ , where P and R are the dimensions of A(n)
m (i, j) and

τ is a small threshold. This stop criterion guarantees that
the IMFs capture signal features effectively. If the stop
criterion is fulfilled (assume at step n = N ), the current
IMF is obtained as IMFl,m(i, j) = S

(N)
m (i, j). If the

stop criterion is not fulfilled, the next iteration is started
with I

(n+1)
l,m (i, j) = S

(n)
m (i, j) and this process is repeated

from step 1) to find the current IMF.
6) If the current IMF is obtained successfully, the residue

signal Rm(i, j) = I
(n)
l,m(i, j)− IMFl,m(i, j) is com-

puted. If the residue does not contain any more extreme
points, the EMD process is stopped [17], [26]. Otherwise,
the next IMF is obtained starting from step 1) using
the current residue as the next input, i.e., I(1)l,m+1(i, j) =

Rm(i, j).

The original hyperspectral image bands Bl(i, j) can be ex-
actly reconstructed by adding all corresponding IMFs and the
final residue. This can be formulated as

Bl(i, j) =

M∑
m=1

IMFl,m(i, j) +RM (i, j). (2)

Fig. 1 shows the IMFs and residues of a sample band of the
Indian Pine hyperspectral image taken over northwest Indiana’s
Indian Pine test site in June 1992. It is seen in Fig. 1 that
the first IMF includes the highest local spatial frequency detail
and the second IMF includes the next highest local spatial fre-
quency detail and so on. Each IMF actually contains both low-
and high-spatial-frequency detail at different spatial locations,
which is a basic feature of EMD and is also demonstrated in
[17] and [26]. It is seen that the lower order IMFs such as the
first and second IMFs are much more structured and reflect the
spatial structural content of the image and that higher order
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Fig. 1. 2-D-EMD of the Indian Pine image band #28. (a) Original. (b) First IMF. (c) Second IMF. (d) Third IMF. (e) Fourth IMF. (f) Final Residue.

IMFs have a rather low-pass characteristic and lack local spatial
structure.

B. FA-2-D-EMD of Hyperspectral Image Bands

FA-2-D-EMD differs from 2-D-EMD in two ways [27], [28].
First, the upper and lower envelopes are obtained in FA-2-D-
EMD using a direct envelope estimation method instead of the
computationally intensive 2-D spline interpolation used in 2-D-
EMD. Second, there is no need to apply iterations in FA-2-D-
EMD, which again reduces the computational complexity.

The sifting process of FA-2-D-EMD does not require itera-
tions, and therefore, Il,m(i, j) is used to show the current input
values employed to find the mth IMF of the lth band. The
sifting process starts from the original hyperspectral band, and
the starting point can be expressed in the form of

Il,1(i, j) = Bl(i, j). (3)

The sifting process of FA-2-D-EMD can be summarized as
follows.

1) Find all points of local maxima and all points of local
minima of Il,m(i, j).

2) Apply MAX and MIN filters to Il,m(i, j) to estimate
the upper envelope Emax(i, j) and the lower envelope
Emin(i, j), respectively. Emax(i, j) and Emin(i, j) are
obtained as

Emax(i, j) = MAX
(q,p)∈Zij

{Il,m(q, p)}

Emin(i, j) = MIN
(q,p)∈Zij

{Il,m(q, p)} (4)

where Zij denotes a square-shaped spatial window of size
smax × smax for the MAX filter and size smin × smin for
the MIN filter, located around the spatial location (i, j). It

is proposed in [27] and [28] to obtain smax and smin adap-
tively, according to the location of local maximum and
minimum points in Il,m(i, j). For each local maximum
point, the Euclidean distance to the nearest other local
maxima is determined and recorded in a corresponding
array (arymax). The same process is carried out for each
local minimum point, and the Euclidean distance to the
nearest other local minima is recorded in a corresponding
array (arymin). Different approaches have been proposed
for setting the window sizes smax and smin in [27] and
[28], all of which are evaluated in this paper, and it is
found that the best results are obtained if smax and smin

are determined as in

smin = max{arymin}
smax = max{arymax}. (5)

Finally, smax and smin are rounded to the nearest odd
integer to set the window sizes of the MAX and MIN
filters.

3) After the upper and lower envelopes are obtained as in the
previous step, they have a rather stepwise characteristic
as a result of the MAX and MIN filters. Therefore,
LPF is applied to Emax(i, j) and Emin(i, j) to obtain
smooth envelopes. For this purpose, smax × smax and
smin × smin sized uniform filter kernels are used to obtain
the smoother upper envelope Esmax(i, j) and smoother
lower envelope Esmin(i, j), respectively. This process
can be formulated in the form of

Esmax(i, j) =
1

smax × smax

∑
(q,p)∈Zij

Emax(q, p)

Esmin(i, j) =
1

smin × smin

∑
(q,p)∈Zij

Emin(q, p). (6)



DEMIR AND ERTÜRK: EMPIRICAL MODE DECOMPOSITION OF HYPERSPECTRAL IMAGES 4075

Fig. 2. FA-2-D-EMD of Indian Pine image band #28. (a) First IMF. (b) Second IMF. (c) Final residue.

4) Calculate the mean of the smoothed upper and lower
envelopes: Am(i, j) = (Esmax(i, j) + Esmin(i, j))/2.

5) Subtract the envelope mean from the input signal:
Sm(i, j) = Il,m(i, j)−Am(i, j).

6) The current (mth) IMF is obtained as IMFl,m(i, j) =
Sm(i, j).

7) The residue Rm(i, j) = Il,m(i, j)− IMFl,m(i, j) is
computed, and the process is ended if the residue does
not contain more than one extreme point. If the residue
does contain more than one extreme point, the next IMF
is computed starting with the current residue as the next
input: Il,m+1(i, j) = Rm(i, j).

Similar to 2-D-EMD, the original hyperspectral image band
Bl(i, j) can exactly be reconstructed by adding all IMFs and
the final residue. Fig. 2 shows example IMFs and residues of a
sample band of the Indian Pine hyperspectral image. Although,
2-D-EMD provided four IMFs for this band, only two IMFs are
obtained using FA-2-D-EMD. In case of FA-2-D-EMD, the first
IMF is much more similar to the original hyperspectral image
band itself.

The important advantage of FA-2-D-EMD compared with
2-D-EMD is the reduced computational complexity. While the
2-D spline interpolation required in 2-D-EMD can result in an
extremely high computational load for hyperspectral images
with large spatial resolution, FA-2-D-EMD can easily be ap-
plied to large-sized hyperspectral images.

V. SVM-BASED CLASSIFICATION

SVMs [2] have become very popular in hyperspectral im-
age classification because they can provide high classification
performance [3]–[5]. SVM tries to find the optimal separating
hyperplane that maximizes the margin between the closest
training sample and the separating hyperplane and uses the
boundary pixels (support vectors) to create a decision sur-
face. SVM estimates a classification function using training
data from two classes: (x1, y1), . . . , (xf , yf ) ∈ �n × {±1}.
In kernel-based SVM classification, the original input space
is mapped to a higher dimensional (Hilbert) feature space
(φ : �n → H) using a kernel function. A kernel function is a
function that corresponds to an inner product in some expanded

feature space. The classification function is obtained by solving
the convex optimization problem

maximize :

f∑
u=1

αu − 1

2

f∑
u=1

f∑
v=1

αuαvyuyvK(xu,xv)

subject to :

f∑
u=1

αuyu = 0 and 0 ≤ αu ≤ C (7)

where C controls the tradeoff between complexity (number
of support vectors) and data misfit (number of nonseparable
points) and is chosen by the user (i.e., set a priori). The kernel
function K(xu,xv) = φ(xu)φ(xv) does not actually require a
direct knowledge of the transform function φ(·). Note that αu

and αv are Lagrange multipliers. Each nonzero αu indicates
that the corresponding xu is a support vector. The nonlinear
classifier for a sample x can then be expressed as

f = sgn

(∑
u=1

αuyuK(xu,x) + b

)
. (8)

Kernel functions used in SVM must satisfy Mercer’s condi-
tion which requires the kernel to be a continuous symmetric
kernel of a positive integral operator. Popular kernels imple-
menting this condition are the linear kernel K(xu,x) = xu · x,
the polynomial kernel K(xu,x) = (γxu · x)d, and the radial
basis function kernel K(xu,x) = exp(−γ‖xu − x‖2), where
d and γ are kernel parameters. For multiclass SVM, it is pos-
sible to combine multiple binary classifiers. The one-against-
one approach is utilized in this paper for multiclass SVM
because it provides fast training. In the one-against-one method,
K(K − 1)/2 binary classifiers are trained and K(K − 1)/2
binary tests are required to make a final decision, where K is
the total number of classes. Each outcome gives one vote to the
winning class, and the class with the most votes is selected as
the final result.

VI. PROPOSED EMD-BASED CLASSIFICATION

APPROACHES

This paper proposes to use the IMFs of hyperspectral bands
for hyperspectral image classification. Two separate approaches
are presented for this purpose. In both approaches, basically,
only the lower order IMFs (typically the first two IMFs) are
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used in the classification and higher order IMFs are disposed.
In this way, it is ensured that pieces of information contained
in lower order IMFs that include spatial relations are retained,
while pieces of information in higher order IMFs that typically
lack spatial structure are discarded.

In the first approach, several of the initial (lower order) IMFs
of each band are summed to reconstruct the new data of that
band by discarding remainder (higher order) IMFs and residues.

In the second approach, the first and second IMFs are treated
separately and their information is combined in the classifier
using composite kernels. The first approach is actually not
restricted to kernel-based classifiers while the second approach
is restricted to kernel-based classifiers.

SVM classification is utilized in this paper because of the
high classification accuracy.

A. Using Sum of Lower Order IMFs as Features

In the first approach presented in this paper, EMD is used
to extract the IMFs of each hyperspectral image band and
lower order IMFs are summed to reconstruct the feature data
to be used in classification, discarding higher order IMFs. Note
that IMFl,m(i, j) is regarded to be of mth order. By this
convention, lower order IMFs capture fast spatial oscillation
modes while higher order IMFs typically represent slow spatial
oscillation modes [32]. Therefore, if 2-D-EMD is interpreted as
a spatial-scale analysis method, lower order IMFs and higher
order IMFs correspond to the fine and coarse scales, respec-
tively. Because the original hyperspectral image bands Bl(i, j)
can exactly be reconstructed by adding all corresponding IMFs
and the final residue, as shown in (2), keeping lower order
IMFs, and discarding higher order IMFs and the residues,
has the effect of discarding coarse spatial scale detail. In this
approach, the reconstructed new data of each hyperspectral
band can be formulated as

B′
l(i, j) =

V∑
m=1

IMFl,m(i, j) (9)

where V shows the number of IMFs retained. Note that, in case
of hyperspectral images, as EMD is applied to each hyperspec-
tral band individually, the total number of IMFs of each band
can actually be different, depending on the data itself. In case
some bands have a lower number of IMFs than that used in the
processing, the remaining IMFs are assumed to be equal to zero.

In the proposed approach, the new hyperspectral data of each
pixel, which will be used by the classifier, comprise the spectral
data corresponding to the different bands obtained as the sum
of lower order IMFs and can be formulated as

xu = B′
l(ui, uj), l = 1, 2, . . . , L (10)

where (ui, uj) shows the spatial location of xu in the hyper-
spectral image.

Fig. 3 shows the visual result of summing lower order IMFs.
Note that 2-D-EMD is used with a stop threshold τ of 0.006 to
obtain the IMFs. This figure shows the original band as well as
the first IMF only (i.e., V = 1), the sum of the first two IMFs

Fig. 3. Indian Pine image band # 28. (a) Original. (b) First IMF. (c) Sum of
first two IMFs. (d) Sum of first three IMFs. (e) Sum of first four IMFs.

(i.e., V = 2), the sum of the first three IMFs (i.e., V = 3), and
the sum of first four IMFs (i.e., V = 4) of this band. Note that
2-D-EMD is used for results presented in this figure. It is seen
that the first IMF contains mainly fine spatial detail, and in case
of the sum of the first two IMFs, the overall detail is quite well
represented. In case of the sum of first three or first four IMFs,
the reconstructed band is rather similar to the original band.

Table III shows the Bhattacharyya distance of each class to
the other classes obtained in the original Indian Pine image
and the new feature data reconstructed from the sum of lower
order IMFs obtained for different V values. It is seen that the
process of reconstructing the data as the sum of lower order
IMFs increases the between-class distances. The best case is
observed for V = 2. This is also the best case obtained in terms
of classification accuracy as will be shown in the experimental
results.

B. Combining IMFs Using Composite Kernels

In the second approach, it is proposed to combine the infor-
mation contained in the first and second IMFs using composite
kernels in the classification stage.
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TABLE III
BHATTACHARYYA DISTANCE VALUES OF EACH CLASS WITH RESPECT

TO OTHER CLASSES FOR ORIGINAL DATA AS WELL AS

DATA RECONSTRUCTED AS THE SUM OF LOWER

ORDER IMFs FOR THE INDIAN PINE DATA

Composite-kernel SVM classification that combines spec-
tral and spatial information has been presented in [7]. In
[7], initially, spatial and spectral feature vectors (xs

u,x
p
u) are

constructed and individual kernel matrices are computed and
then combined. Each spatial feature vector is basically obtained
as either the mean value or the mean and standard deviation
values of neighborhood pixels. Different kernel combination
approaches are used in [7].

In the approach presented in this paper, it is proposed to
combine the information contained in the first and second IMFs
using composite kernels. Therefore, for each hyperspectral
pixel, two different feature vectors are constructed, one cor-
responding to the spectral information obtained from the first
IMF of each band and the other corresponding to the spectral
information obtained from the second IMF of each band. In this
case, the feature vectors corresponding to the first and second
IMFs can be expressed as

ximf1
u = IMFl,1(ui, uj) l = 1, 2, . . . , L

ximf2
u = IMFl,2(ui, uj) l = 1, 2, . . . , L. (11)

After ximf1
u and ximf2

u are constructed, the individual ker-
nel matrices are computed. In the proposed composite-kernel-
based approach, the direct summation kernel, as shown in (12),
and the weighted summation kernel given in (13) are used to
combine these kernels

K(xu,xv) = K
(
ximf1
u ,ximf1

v

)
+K

(
ximf2
u ,ximf2

v

)
(12)

K(xu,xv) = μK
(
ximf1
u ,ximf1

v

)
+ (1− μ)K

(
ximf2
u ,ximf2

v

)
.

(13)

VII. EXPERIMENTAL RESULTS

For each data set, the classification performances of the pro-
posed approaches are demonstrated using SVM classification
with RBF kernel. In the experiments, the penalty parameter C
of SVM is tested between 10 and 1000 with a step size
increment of 20 and the γ parameter of the RBF kernel is tested
between 0.1 and 2 with a step size increment of 0.1, and the best
values are obtained using a fivefold cross validation approach
for both data sets.

Classification results are presented with respect to different
training data rates (TDRs), i.e., a TDR of 10% illustrates the
case where 10% of the total data samples are used as training
data and the remaining samples are used as testing data.

The classification accuracies are evaluated in terms of overall
accuracy (OA) as well as kappa coefficient (k) [33]. The
statistical significance of changes in the classification accura-
cies obtained with two different approaches is computed using
McNemar’s test [34]. In McNemar’s test, for a significance
level of 0.05, the accuracy difference is regarded to be statis-
tically significant if |Z| > 1.96. If the sign of Z is positive, the
first classifier outperforms the second classifier and vice versa.
In the presented results, Z values are computed with the second
classifier assigned as the direct SVM case and the first classifier
assigned as the denoted classification approach.

SVM classification with 2-D-EMD is denoted as 2-D-EMD-
SVM, and SVM classification with FA-2-D-EMD is denoted as
FA-2-D-EMD-SVM in the experimental results. For 2-D-EMD,
2-D interpolation is carried out using thin-plate smoothing
spline interpolation [35], similar to [17]. The thin-plate smooth-
ing spline interpolation method gives a surface with continuous
second derivative everywhere and turns out to successfully
decompose a hyperspectral band into its IMFs and a smooth
final residue with no or only a few extremum points as reported
in [17].

For both, 2-D-EMD-SVM and FA-2-D-EMD-SVM, results
are provided for the cases where only the first IMF is used
(1 IMF), the sum of the first two IMFs is used (2 IMFs), the
sum of the first three IMFs is used (3 IMFs), and the sum of the
first four IMFs is used (4 IMFs). Note that, for bands that have
less IMFs than that used in the summation, the absent IMFs are
taken as zero.

EMD-based composite-kernel SVM classification which
combines the information of the first and second IMFs is de-
noted as CK-2-D-EMD-SVM if 2-D-EMD is used to obtain the
IMFs and CK-FA-2-D-EMD-SVM if FA-2-D-EMD is used to
obtain the IMFs. These results are given in case of using direct
summation kernels as well as weighted summation kernel. The
parameter of μ is varied in steps of 0.1 in the range [0, 1].

For comparison purposes, results of SVM classification with
WD-based denoising (denoted as WD-SVM), as presented in
[18], results of SVM classification after simple LPF (denoted
as LPF-SVM), as well as results of SVM classification after
UF as in [15] (denoted as UF-SVM) are provided. Note that
WD is implemented using symmlet orthogonal wavelets with
eight vanishing moments and four decomposition levels. On the
other hand, LPF is implemented using a 5 × 5 sized uniform
filter kernel (i.e., a moving average filter). UF is implemented
as the difference of the original image and the low-pass-filtered
image multiplied by a constant. The value of the constant is
varied within the range of [0.1, 1] with a step size increment
of 0.1, and the best classification accuracy is reported in this
paper. LPF is implemented using a 5 × 5 sized uniform filter
kernel.

Furthermore, the results of MP-based SVM classification ap-
proaches [9], [10] are also provided. To obtain the MPs, the first
three PCs are obtained, and four opening/closing operations are
applied to each PC using a circular structural element with a
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TABLE IV
COMPUTATIONAL TIME AND NUMBER OF IMFs OBTAINED USING 2-D-EMD AND FA-2-D-EMD

FOR DIFFERENT τ AND W VALUES FOR THE INDIAN PINE DATA

step size increment of four. After this process, the number of
total bands is obtained as 27. Three alternative approaches have
been used in this case for comparison. First, only these 27 bands
are used for SVM classification (this case is denoted as EMP).
Second, the original data and MPs are directly fused together,
and these fused data are used for SVM classification (this case
is denoted as Spec-EMP). In the third case, the original data
and MPs are fused after feature extraction (FE) is performed
to each data separately (this case is denoted as FE-Spec-EMP).
Although decision boundary FE and nonparametric weighted
FE (NWFE) have been used in [10], FE is implemented using
only NWFE in this paper. Results of Spec-EMP and FE-Spec-
EMP are provided for the Indian Pine image only using a
89% variance criterion of NWFE. Thereby, the total number of
original bands is reduced to ten in FE and the number of MPs
is reduced to five in FE.

The results of composite-kernel SVM classification which
combines spatial and spectral information [7] are provided
(denoted as CK-SS-SVM). CK-SS-SVM results are given in
the case of using direct summation kernels as well as weighted
summation kernel. The parameter of μ is varied in steps of 0.1
in the range [0, 1]. Spatial feature vectors are obtained using
the mean of the neighborhood pixels of a corresponding feature
vector in a 5 × 5 sized window.

A. Experimental Results for the Indian Pine Data

For the Indian Pine data, the stop threshold τ of 2-D-EMD is
varied between 0.004 and 0.01 with a neighborhood window of
size (W ) 3 × 3 used to obtain the local maximum and minimum
extreme points. Furthermore, window sizes W of 3 × 3, 5 × 5,
and 7 × 7 are evaluated for 2-D-EMD (with fixed τ = 0.006)
as well as FA-2-D-EMD for the selection of local maximum
and minimum extreme points. The total number of IMFs of
each band is actually different, depending on spatial content.
Table IV shows the total number of IMFs and the computational
load of 2-D-EMD and FA-2-D-EMD for different W and τ
values. It is seen that FA-2-D-EMD is much faster than 2-D-
EMD and using larger W values reduces the computational load
of 2-D-EMD and FA-2-D-EMD because it provides a reduced
number of extreme points.

Table V shows the OAs and k values of direct SVM, 2-D-
EMD-SVM, and FA-2-D-EMD-SVM, as well as WD-SVM,
UF-SVM, LPF-SVM, FE-Spec-EMP, Spec-EMP, and EMP in

case of different TDRs. Experimental results in Table V show
that best results for 2-D-EMD-SVM are obtained in the 2 IMFs
case in all TDRs. Furthermore, the best results of 2-D-EMD-
SVM provide higher classification accuracies than the best
results of FA-2-D-EMD-SVM in all TDRs. This shows that,
although FA-2-D-EMD provides a fast alternative to 2-D-EMD,
its performance is not as good in this case. The differences of
classification accuracies between direct SVM and 2-D-EMD-
SVM or direct SVM and FA-2-D-EMD-SVM are always ob-
tained to be statistically significant for the best cases obtained
with the two methods. Using the best results of 2-D-EMD-
SVM and FA-2-D-EMD-SVM, the classification accuracies are
increased by more than at least 6% and sometimes as high as
13% compared with standard SVM in all TDRs. It is seen that
2-D-EMD-SVM and FA-2-D-EMD-SVM provide higher clas-
sification accuracies than WD-SVM, UF-SVM, and LPF-SVM.
Furthermore, UF preprocessing is obtained to be inefficient as it
provides lower classification accuracy than conventional SVM
and the differences in classification accuracies between direct
SVM and UF-SVM are obtained to be statistically insignificant
in all TDRs. In particular, for small training data sizes, the pro-
posed approaches provide a significant increase in classification
accuracy in case of 2-D-EMD-SVM as well as FA-2-D-EMD-
SVM. For example, using a TDR of 10%, the OA of 2-D-EMD-
SVM is 13% higher than that of standard SVM, 6% higher than
that of WD-SVM, and 8% higher than that of LPF-SVM. In
order to enable visual evaluation, Fig. 4 shows the sum of the
first two IMFs, as well as the WD, LPF, and UF results for band
#28 of the Indian Pine image.

EMP, which is an MP-based classifier, is obtained to give
the best classification accuracies in all TDRs compared with
the other MP-based classifiers such as Spec-EMP and FE-
Spec-EMP for Indian pine data. If EMP is compared with
2-D-EMD-SVM and FA-2-D-EMD-SVM, it is seen that 2-D-
EMD-SVM gives higher classification accuracy than EMP,
but EMP provides higher classification accuracy than that of
FA-2-D-EMD-SVM in all TDR cases. For example, using a
TDR of 35%, the OA of 2-D-EMD-SVM is 99.67, that of EMP
is 99.27, and that of FA-2-D-EMD-SVM is 98.00.

The mean class accuracy of each class for the TDR case of
35% is given in Table VI for the best results of the proposed
approach, EMP, and direct SVM. It is seen that, for most of the
classes, the proposed approach is better than EMP, but for a few
classes, EMP provides higher accuracies.
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TABLE V
OA, k, AND Z VALUES OF DIRECT SVM, WD-SVM, UF-SVM, LPF-SVM, EMP, SPEC-EMP, FE-SPEC-EMP,

2-D-EMD-SVM, AND FA-2-D-EMD-SVM USING 10% AND 35% TDRs FOR INDIAN PINE DATA

Fig. 4. Indian Pine image band #28. (a) Sum of first two IMFs. (b) WD result. (c) LPF result. (d) UF result.

The OA and k results of CK-SS-SVM, CK-2-D-EMD-SVM,
and CK-FA-2-D-EMD-SVM are given in Table VII for 10%
and 35% TDRs. In Table VII, it is seen that CK-2-D-EMD-

SVM and CK-FA-2-D-EMD-SVM give superior performance
compared with direct SVM as well as CK-SS-SVM for the
Indian Pine data. For example, in a TDR case of 10%, the
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TABLE VI
MEAN CLASS ACCURACY OF EACH CLASS IN CASE OF 35% TDR FOR THE INDIAN PINE DATA

TABLE VII
OA AND k VALUES OF DIRECT SVM, CK-SS-SVM, CK-2-D-EMD-SVM, AND CK-FA-2-D-EMD-SVM

USING 10% AND 35% TDRs FOR INDIAN PINE DATA

best OA is obtained in case of using CK-2-D-EMD-SVM. In
this case, the OA of CK-2-D-EMD-SVM is 95.45, that of CK-
FA-2-D-EMD-SVM is 94.30, that of CK-SS-SVM is 88.69,
and that of direct SVM is only 82.24. Note that the large
differences in classification accuracies between direct SVM,
CK-2-D-EMD-SVM, CK-FA-2-D-EMD-SVM, and CK-SS-

SVM are all obtained to provide statistically significant in-
creases in all TDRs; therefore, Z values are not given in this
table.

The best results of MP-based classification are compared
with the best results of the proposed approaches for different
TDRs for the Indian Pine data in Table VIII. OA, k, and Z
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TABLE VIII
BEST RESULTS OF MP-BASED CLASSIFIER AND PROPOSED

APPROACHES FOR INDIAN PINE DATA

TABLE IX
AAs OF DIRECT SVM, EMD, 2-D-EMD-SVM, AND

CK-2-D-EMD-SVM AVERAGED FOR TEN TRIALS

WITH DIFFERENT TRAINING SETS IN CASE OF

10% TDRs FOR THE INDIAN PINE DATA

TABLE X
OA VALUES OF DIRECT SVM AND 1-D-EMD-SVM (APPLIED

IN SPECTRAL DOMAIN) USING 10%, 35%, AND

65% TDRs FOR INDIAN PINE DATA

values are provided in this table. Z values are computed, with
the second classifier being the case that gives the best results
for MP-based classification and the first classifier being the case
that gives the best results for the proposed approaches. It is seen
that the proposed approaches are more successful for the Indian
Pine data that is rather difficult to classify.

In order to better demonstrate the performance of the pro-
posed approaches, the average accuracies (AAs) of direct SVM,
EMP, as well as the 2 IMFs cases of 2-D-EMD-SVM and CK-
2-D-EMD-SVM obtained over ten trials with different training
sets are provided in Table IX for the 10% TDR case. It is
observed from this table that the proposed approaches increase
the average classification accuracy.

For informative purposes only, 1-D-EMD-SVM results are
given in Table X for the Indian Pine data set, with EMD being
applied in the spectral dimension. It is seen that, in this case,
classification results are below original SVM results in all
TDRs and that applying 1-D-EMD in the spectral domain is
found to be inefficient.

Overall, experimental results show that the EMD-based ap-
proach can significantly increase the classification accuracy of
hyperspectral images. For cases with a small number of training
samples, it is observed that 2-D-EMD provides higher clas-
sification accuracy than that of FA-2-D-EMD (for 10% TDR,
the best classification accuracy of 2-D-EMD-SVM is 95.52%,
while the best classification accuracy of FA-2-D-EMD-SVM
is 91.97%) and the difference in performance is less if the
composite kernel approach is used (for 10% TDR, the best clas-
sification accuracy of CK-2-D-EMD-SVM is 95.45%, while
the best classification accuracy of CK-FA-2-D-EMD-SVM is

TABLE XI
OA VALUES OF KNN AND 2-D-EMD-KNN USING 10%,

35%, AND 65% TDRs FOR INDIAN PINE DATA

94.30%). The difference between using the sum of lower order
IMFs or using composite kernels is negligible for 2-D-EMD,
while the composite kernel approach is favorable for FA-
2-D-EMD. For cases with a higher number of training samples
(e.g., 35% TDR case), it is seen that the composite kernel EMD
approach provides increased classification accuracies than the
sum of lower order IMF-based EMD approach. Furthermore,
in this case, CK-FA-2-D-EMD-SVM provides about the same
accuracy as CK-2-D-EMD-SVM. For the composite kernel
case, it is observed that a small weighting factor of μ = 0.1
provides the best performance. In all cases, it is seen that
the proposed approach significantly increases the classification
accuracy compared with direct SVM.

As stated before, the first approach proposed in this paper
is not restricted to kernel-based classifiers. In order to show
the effectiveness of this approach for a different classifier,
classification results of the k-nearest neighbor classifier [36] are
provided for the Indian Pine data set. Conventional k-nearest
neighbor classification results (denoted as KNN) as well as
KNN with 2-D-EMD (denoted as 2-D-EMD-KNN) are shown
in Table XI for 10%, 35%, and 65% TDRs. The results of
2-D-EMD-KNN are provided for the cases of 1 IMF, 2 IMFs,
3 IMFs, and 4 IMFs. The value k of KNN is varied in the
range [3], [7], and the best results are obtained for k = 3. These
results are provided in the corresponding table. The best result
of 2-D-EMD-KNN is obtained in the case of 3 IMFs, and in this
case, the classification accuracy is increased by at least 11%
compared with KNN for all TDRs. These results confirm that
the proposed algorithm provides good results independent from
the classifier.

B. Experimental Results for the DC Mall Data

Because of the higher spatial size of the DC Mall data, it
was not possible to implement 2-D-EMD (because of the high
computational complexity), and therefore, only FA-2-D-EMD
is used to demonstrate results. In this case, 182 of the bands
have three IMFs and 9 of the bands have four IMFs. The
window size W is fixed to 3 × 3.

Experimental results of the DC Mall data are provided only
for TDR values of 5%, 10%, and 35%. Table XII shows the
comparison results of FA-2-D-EMD-SVM with direct SVM,
WD-SVM, UF-SVM, LPF-SVM, and EMP. From the table, it
is seen that the best results of FA-2-D-EMD-SVM are obtained
using 2 IMFs in all TDRs. The differences in classification
accuracies between direct SVM and FA-2-D-EMD-SVM in
case of 2 IMFs are obtained to be statistically significant.
Note that, comparison with other algorithms is carried out
using the best results of FA-2-D-EMD-SVM. It is seen that
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TABLE XII
OA, k, AND Z VALUES OF DIRECT SVM, WD-SVM, UF-SVM, LPF-SVM, EMP, 2-D-EMD-SVM, FA-2-D-EMD-SVM,

EMP, SPEC-EMP, AND FE-SPEC-EMP USING 5%, 10%, AND 35% TDRs FOR DC MALL DATA

TABLE XIII
OA, k, AND Z VALUES OF DIRECT SVM, CK-SS-SVM, CK-2-D-EMD-SVM, AND CK-FA-2-D-EMD-SVM

USING 5%, 10%, AND 35% TDR FOR DC MALL DATA

FA-2-D-EMD-SVM provides higher classification accuracies
than those of LPF-SVM, UF-SVM, and WD-SVM in all TDRs.
LPF-SVM and UF-SVM results show that LPF and UF prepro-
cessing are not very efficient for the DC Mall data, because the
differences in classification accuracies between direct SVM and
LPF-SVM and between direct SVM and UF-SVM are obtained
to be statistically insignificant in all TDRs. The classification
accuracies of MP-based approaches are about the same as
that of the proposed FA-2-D-EMD-SVM algorithm, and the
difference in accuracy is statistically insignificant.

In Table XIII, it is seen that CK-FA-2-D-EMD-SVM gives
better results compared with direct SVM and CK-SS-SVM. For
example, in a TDR case of 10%, the OA of CK-FA-2-D-EMD-
SVM is 100, that of direct SVM is 99.54, and that of CK-SS-
SVM is 99.58. In addition, CK-FA-2-D-EMD-SVM provides
100% OA in at least one composite kernel case in 10% and
35% TDRs. Since the differences of classification accuracies
between direct SVM and CK-FA-2-D-EMD-SVM are obtained
to be statistically significant in all TDRs, Z values are not given
in the tables.

Overall, experimental results of DC Mall data show that
the EMD-based approaches can considerably improve the clas-
sification accuracy of hyperspectral images compared with
direct SVM.

VIII. CONCLUSION

In this paper, EMD-based hyperspectral-image-classification
approaches have been addressed. EMD is used to decompose
each hyperspectral image band into IMFs and a final residue.
Two EMD-based approaches are proposed in this paper: recon-
struction of hyperspectral image bands as the sum of lower or-
der IMFs for classification and combination of the information
contained in the first and second IMFs by means of composite
kernels. In order to implement EMD in this paper, two methods
are used: 1) 2-D-EMD [26] (which is computationally expen-
sive particularly for small values of W ) and 2) FA-2-D-EMD
[27] (which is proposed as an alternative fast implementation
of 2-D-EMD). Experimental results show that EMD-based
approaches can significantly improve the SVM classification
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accuracy for hyperspectral images. It is important to note that
the computational complexity of the proposed algorithms is
much higher than that of the other compared methods if 2-D-
EMD is used with small values of W . Therefore, 2-D-EMD
is not suitable for hyperspectral images which have a high
resolution, and in this case, it is recommended to use FA-
2-D-EMD. The classification accuracy is found to be better
than EMP-based approaches if 2-D-EMD is used and to be
about the same if FA-2-D-EMD is used. However, EMD is a
relatively recent approach and research on fast and accurate
EMD techniques is still ongoing. EMD has not been exploited
for utilization in hyperspectral image classification so far, and
the possibility of improving the classification accuracy even
further by exploiting different aspects of EMD, such as decision
fusion of different EMD-based representations for example
[37], seems very promising for future research.
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