
An actor system for Scala.js

Semester project, Fall 2013

Sébastien Doeraene
Under the supervision of Martin Odersky

January 31, 2014

Abstract

This reports presents the design of an actor system
for Scala.js that we implemented. Scala.js is a Scala
to JavaScript compiler, which we wrote as previous
work and enables developers to write the client-side
of Web applications entirely in Scala. The actor
system we designed is very similar to Akka, expos-
ing almost the same API and abstractions. It is
however designed to be run in Web page scripts, in
a single-threaded environment. The implementa-
tion supports remoting with Web Workers as well
as transparent communication with a server run-
ning Akka on the JVM.

1 Introduction

The goal of this project was to implement an ac-
tor sytem for Scala.js [7]. In doing so, we wanted
to expose a model and an API as similar as possi-
ble to that of Akka [1], so that Scala developers
could reuse knowledge between their client code
and server code. It turned out that Scala.js was
mature enough that we could do much more than
that: our actor system is closer to a port of Akka to
Scala.js than a new implementation from scratch,
effectively sharing several thousands of lines of code
with the original implementation. However, three
core aspects of the underlying implementation had
to be completely rethought, which is what we will
focus on in this report:

• From a thread-based implementation to an
event loop-based implementation,

• Serialization of messages for “remoting”,

• The “remoting” itself, with its two flavors:
across Web Workers and between client and
server on top of Web Sockets.

In this report, we will refer to our library as
Akka/JS.

2 An event loop-based imple-
mentation

It may seem contradictory to implement an actor
model, which is inherently concurrent and asyn-
chronous, on a purely single-threaded platform like
Scala.js. However, concurrency and asynchrony
must not be confused with parallelism. While
parallelism involves physically executing different
tasks at the same time, e.g., on multiple proces-
sors or multiple machines, concurrency is a form
of modularity which allows to model software com-
ponents as independent units of execution and be-
havior which can communicate between each other.
Similarly, asynchronous execution does not imply
parallelism, nor concurrency. In an asynchronous
call, the caller does not wait for the callee to finish
(or begin) its execution, but continues instead, po-
tentially holding a handle to the result which will
be available later (JavaScript calls this handle a
Promise [5], whereas Scala calls this a Future [6]).

All JavaScript environments provide an event
loop, which is the top-level executor. Events are
posted to the global event queue, and are dequeued
and dispatched by the top-level event loop. There
are several sources of events:

• user interactions with the Web page,

1



• I/O events: success or failure of an XHR, mes-
sages arriving to the Web Worker’s port, mes-
sages arriving through a Web Socket, and so
on.

• user-defined timers (setTimeout() and
setInterval()),

• user-defined immediate callbacks
(setImmediate()), which is more recent
and not supported everywhere, but polyfills
exist that fall back on setTimeout(f, 0).1

• and so on.

The processing of one event is essentially atomic:
only when it is done can other messages be handled.
Therefore, processing an event should be a short
task.

2.1 Messages as events, and mail-
boxes

It seems like messages sent to an actor are a canon-
ical instantiation of the more general notion of
event. A naive implementation of a message send
from an actor A to an actor B would be to post an
event to the global event queue, which when exe-
cuted will invoke the receive method of B. How-
ever, there are at least one good reason not to do
this: with this approach, it is impossible to priori-
tize system messages over user messages.

System messages are special messages exchanged
between actors to implement the actor model it-
self, in particular the life cycle and supervision, as
well as death watch registrations. For correctness
of the various internal algorithms, an actor must
always process outstanding system messages before
any enqueued user message, even if a user message
was enqueued before a system message.

If messages were all posted to the global event
queue, a user message enqueued before a system
message would be handled before the latter. In-
stead, each actor maintains two queues of its own,
one for system messages and one for user messages.
The pair of them forms a mailbox. When a message
is posted to a mailbox, the mailbox posts itself in
the global event loop. Other messages posted to

1As per the HTML specification, timeout delays are
raised to 4 ms starting from the fifth nested timer event.
[3]

the mailbox are simply enqueued as long as the
mailbox has not been scheduled by the event loop.
When it is scheduled, it dispatches (processes) sys-
tem messages before user messages, as long as there
are messages.

Note that since an actor can post messages to
itself, this can potentially never return. Therefore,
one processing of a mailbox is bounded in terms
of number of messages and execution time. If one
of the bounds is reached before the mailbox has
completely emptied, it is immediately reposted to
the global event queue. This will give the opportu-
nity to other mailboxes, but also to other sources
of events, to be processed before that same mailbox
runs again, ensuring progress of the whole applica-
tion.

The attentive reader might suggest to always dis-
patch system messages synchronously, and always
post user messages to the global event loop. Since
there is only thread anyway, we can dispatch a sys-
tem message of an actor B while another actor A
is running. However, this solution would not gen-
eralize to the setups with remoting.

2.2 Non-blocking vs mutable data
structures and algorithms

To achieve maximal efficiency, Akka internally uses
many non-blocking data structures and algorithms.
These algorithms are based on immutable data
structures stored in mutable fields, the latter being
updated by Compare-And-Swap (CAS) operations.
In the Scala.js implementation, these optimizations
become overhead, as they solve a non-existent prob-
lem.

We have redesigned and reimplemented all these
internal operations so that they use mutable data
structures instead. A major example is the
list of children of an actor, which also stores
the terminating/terminated state of the actor
(class akka.actor.dungeon.ChildrenContainer.
In Akka, it is a sealed hierarchy of immutable
classes, containing immutable maps of child name
to child actor ref. State change methods return
new instances of classes in that hierarchy. In the
Scala.js version, they become mutable classes, with
a mutable JavaScript dictionary mapping child
names to their references. A dictionary is simply
a JavaScript object, and gets and sets are simple
field selections and updates, which are basic oper-

2



ations of JavaScript VMs. To avoid unnecessary
allocations for leaf actors, the empty state is kept
immutable so that it can be shared amond all leaf
actors.

Other non-blocking algorithms have been re-
designed similarly. Some low-level mechanisms
even become completely unnecessary in a single
threaded setup, e.g., the process of reserving a child
name before it is actually created. These are re-
moved, thereby simplifying some operations and
making them more efficient.

3 Serialization, aka pickling

Arguably the most difficult challenge we had to face
was that of serialization. As long as actors commu-
nicate with other actors in the same memory space
(i.e., in the same Worker, in a Web setup), mes-
sages can simply be kept in memory and a pointer
to them be given to the receiving actor. However,
we also want to support remoting, in the forms
of cross-worker communications, and also between
client in Akka/JS and server in Akka/JVM. In that
setup, messages crossing the memory space borders
must be serialized.

Messages sent to another Web Worker are copied
using an algorithm called structured clone [2]. In
a nutshell, values copyable through that algorithm
are a small superset of values that can be serialized
to JSON. Messages sent through a WebSocket must
be serializable as strings or blobs, effectively reduc-
ing that set to JSON-serializable. Since the addi-
tional supported values for structured clone do not
buy anything in our setup, we designed a serializa-
tion mechanism whose format is a JSON-encodable
JavaScript object. Such an encoding can be sent di-
rectly through Web Workers, or can be serialized to
strings by the native call to JSON.stringify().

On the JVM, serialization is typically achieved
through reflection (or through the native JVM se-
rialization mechanism, which essentially boils down
to reflection as well). However, Scala.js does
not support runtime reflection, for several reasons
which are out of the scope of this report.

A promising approach for compile-time only se-
rialization is that of the Scala Pickling project [8].
However, even Scala Pickling falls back on runtime
reflection when the exact type of a value (or a finite
and closed enumeration of subtypes) cannot be de-

termined at compile time. As it turns out, in our
use case, exact types can never be known at com-
pile time, because messages are of type Any. We
could imagine transferring implicit picklers all the
way from the ! method through the framework to
the pickle point; but it would never work for the
unpickling phase.

3.1 Explicit registration

In Scala.js, we need a mechanism that never falls
back on runtime reflection. The only reflective op-
eration we are able to perform is to get the runtime
class of an object (getClass()) and the full name
of that class (getClass().getName()).

Our solution is inspired by Scala Pickling, in that
it is built on implicit picklers and unpicklers for the
exact types of values that need to be pickled. The
Scala.js pickling library obviously provides picklers
and unpicklers for primitive data types and strings.
It also provides automatic pickler and unpickler
generation for case classes and case objects, using
macros. However, picklers and unpicklers are not
instantiated automatically at pickle and unpickle
calls. Instead, they must be registered in advance
to a PicklerRegistry. Registering types for which
implicit picklers and unpicklers are in scope (which
include any case class, thanks to implicit macros),
is done as

picklerRegistry.register[SomeClass]

whereas registering a case object is done as

picklerRegistry.register(SomeCaseObject)

These calls must be done once for the pickler reg-
istry before that registry can be used to pickle val-
ues of these classes. Note that custom picklers and
unpicklers can be defined by providing custom im-
plicits for types, just like in Scala Pickling.

Having to register classes and objects in advance,
explicitly, can be seen as an annoyance. Future
work could remove this burden by providing auto-
matic registration for certain classes, selected by
well-chosen criteria. A simple criterium that would
give good results would be: all case classes and case
objects extending java.io.Serializable. The
Scala.js compiler could help in providing automatic
registration of picklers and unpicklers for the se-
lected classes and objects.

3



3.2 Multiple formats

In anticipation of the client-server use case, the
Scala.js pickling machinery must be available both
on the client, compiled with Scala.js, and on the
server, compiled with Scala. On the client, the
pickling format should be primitive JavaScript val-
ues, objects and arrays. On the server, on the other
hand, it should be a representation of JSON data
in some JSON manipulation library.

To that effect, the core of Scala.js pickling is
agnostic of a particular format of JSON represen-
tation (although it does assume JSON-like data).
The definitions of the pickler and unpickler traits
are parameterized with the pickle format P, and
take implicit pickle builders and readers, respec-
tively:

trait Pickler[A] {

def pickle[P](obj: A)(

implicit registry: PicklerRegistry,

builder: PBuilder[P]): P

}

trait Unpickler[A] {

def unpickle[P](pickle: P)(

implicit registry: PicklerRegistry,

reader: PReader[P]): A

}

where the pickle builder and reader traits are de-
fined as:

trait PBuilder[P] {

def makeNull(): P

def makeBoolean(b: Boolean): P

def makeNumber(x: Double): P

def makeString(s: String): P

def makeArray(elems: P*): P

def makeObject(fields: (String, P)*): P

}

trait PReader[P] {

def isUndefined(x: P): Boolean

def isNull(x: P): Boolean

def readBoolean(x: P): Boolean

def readNumber(x: P): Double

def readString(x: P): String

def readArrayLength(x: P): Int

def readArrayElem(x: P, i: Int): P

def readObjectField(x: P, f: String): P

}

The API of builders and readers was designed as-
suming that the most direct way to access array ele-
ments and object fields is by random access rather
than traversing. This is the case for JavaScript

values in Scala.js, as well as the representation for
arrays in the JSON library of the Play! frame-
work. It is not true for objects in the JSON library
of Play!, however, but we had to make a trade-off
somewhere.

Using this abstraction, the core pickling library
can be cross-compiled in Scala.js and Scala. It
is also possible to write code that uses the core
that are also generic in terms of the pickle format,
and hence can also be cross-compiled. Most of the
client-server communication layer is written that
way, as we will see in Section 5.

4 Remoting across Web
Workers

Web Workers [4] are a new technology, part of
HTML 5, that allows scripts on Web pages to
spawn truly parallel computations. Two flavors of
workers exist: dedicated workers and shared work-
ers. Since shared workers are still virtually non ex-
istent in current implementations, we covered only
dedicated workers in this project, and will imply
the dedicated flavor in this report unless explicitly
stated otherwise.

A Web worker, child of the currently executing
script, can be created with the following JavaScript
call:

var worker = new Worker(’worker-script.js’);

This instructs the browser to spawn an entirely new
JavaScript VM in a separate thread, and to exe-
cute the given script in the context of that VM. A
Worker and its parent script have distinct memory
spaces, i.e., they do not have any shared memory.
The only means of communication between them is
message passing, where messages are copied from
one VM to the other using structured cloning. The
parent script can post a message to its child with

worker.postMessage(msg);

whereas a child script can post a message to its
parent with

<global scope>.postMessage(msg);

The messages are received as “message” events sent
to the global scope of the child, and the worker ob-
ject in the parent, respectively. It is only natural
that we want to be able to talk to actors on a sep-
arate worker transparently through remote actor

4



refs.

Akka/JS, just like Akka, organizes actors in a
hierachical supervision structure with one root per
actor system. Actors can be identified by their path,
which contains two parts: the address of their own-
ing actor system, and the path through the hierar-
chy that leads to the actor. Akka/JS has a re-
strictive notion of address: an address is relative
to a Web page, and identifies one Worker spawned
directly or indirectly by that Web page.2 Hence,
paths are also relative to Web page, and scripts
cannot represent the path to an actor on another
page, much less hold an ActorRef to such an actor.

Akka/JS represents ActorRefs pointing to “re-
mote” actors, i.e., actors located on other
Workers, as a special subclass of ActorRef:
WorkerActorRef. Basically, a WorkerActorRef

only stores the path to the corresponding actor.
Every time a message is sent to that ref, the mes-
sage is pickled with the infrastructure described in
Section 3, routed to the Worker specified by the ad-
dress, then unpickled and delivered to the receiving
actor. The actual actor instance to deliver the mes-
sage to is lookup up from the actor system’s root
down through the supervision hierarchy.

4.1 Pickling ActorRefs

The sender of a message, as well as any ActorRefs in
sent messages, must be somehow pickled to be sent
to another Worker. ActorRefs are not case classes,
and they internally contain a reference to the mu-
table instance of the actor, so something must be
done to pickle them. The pickler registry used by
WorkerActorRef is overridden to give an appropri-
ate treatment to subclasses of ActorRef: instead of
trying to pickle the internals of the actor ref, only
its path (containing the address) is pickled. When
unpickling an actor ref under its path representa-
tion, the unpickler tests whether that path happens
to point to an actor in the receiving system. If
so, the corresponding LocalActorRef is looked up.
Otherwise, a WorkerActorRef is created.

2Actually, it also identifies one specific actor system
within that Worker, but we will omit this in the discussion
for simplicity.

4.2 Routing messages across Work-
ers

The attentive reader may have noticed that we have
avoided explaining what an address really was, and
how it identified a Worker. The Worker API we can
work with only allows a worker to send messages to
its parent and to its children, but never to grand-
parents, grandchildren, or siblings. However, when
actor refs are pickled and sent through messages, it
can very well happen that a Worker gets to know
an actor located on an unreachable Worker.

To be able to send messages to “distant” Work-
ers, we have built a generic routing infrastructure
for Workers. Each Worker has a router (the sin-
gleton object WebWorkerRouter), which knows its
address and provides an API to send arbitrary
messages (not only actor messages) to any Worker
given its address. To do so, routers build a hi-
erarchical structure of all the Workers, and ad-
dresses are simply paths from the root (the Web
page script) to a given Worker. When creating a
child Worker, the current Worker’s router assigns a
unique name to this child, and uses it as its address.
It sends that name and its own address in an initial-
ization message to the child Worker so that its own
router can derive its address within the hierarchy.

4.3 Bootstrapping the communica-
tion

We have silently assumed that we already hold an
ActorRef to the actor we want to send a message
to. This can happen by receiving its reference in a
message or as sender. But how do we get an ini-
tial reference to an actor on another Worker, with
which we can bootstrap the communication?

The Akka/JS actor system class provides a
means to send a message to an arbitrary path, inde-
pendent of holding an ActorRef. Sending a message
to a path may fail because there is no actor running
at that path, however. The concept is basically a
simplified version of actor selections in Akka, and
could be generalized to its full power in future work.

5



5 Communication between
client and server

The really fun feature of Akka/JS is its layer for
communication between a client running Akka/JS
and a server running Akka/JVM. We have imple-
mented this feature on top of WebSockets, but its
design could be backported to less efficient (but
more widely supported) technologies like Server-
Sent Events and AJAX calls. Unlike the cross-
Workers communication, the WebSockets commu-
nication does not have a dedicated subclass of
ActorRef. Instead, this layer is built on top of
existing classes of actor refs, both on the client and
on the server. Actually, it is completely agnostic
of the implementation details of both libraries: it
lives entirely in user-space compared to them (by
user-space, we mean it does not use any package-
private classes or methods, only the truly public
API). The main reason for this choice was that,
since the implementation layer must live in both the
Akka/JS world and the Akka/JVM world, which
have slightly different implementations, it was best
not to rely on implementation details.

Ignoring the connection establishment protocol
for now, we will start by showing the pictures in
steady state. The client and the server have sym-
metric roles in steady state, hence we will use side
A and side B interchageably for one and the other.
When a side A holds an actor ref to an actor on side
B, the locally available actor ref is not really di-
rectly pointing at the remote actor. Instead, there
is a local proxy actor on side A which is managed by
the communication layer. The proxy holds an ID
chosen by the side B for the proxied actor, which
is opaque (unlike in the Worker setup where the
corresponding data was the actor’s path, which is
not opaque). When a message is sent to this proxy
on side A, the proxy’s message handler pickles the
message, sends it through the WebSocket connec-
tion, asking side B that it be delivered to the actor
whose ID is stored in the proxy. On side B, an
actor listens to messages on the WebSocket, and
dispatches messages to local actors by looking up
the ID in a dictionary it maintains. That actor is
called the connection proxy.

The connection proxy is the only actor that can
send messages to the WebSocket, and read mes-
sages from it. It also has a custom pickler reg-

istry which is able to pickle and unpickle actor refs.
When an actor ref is first pickled on side A, the con-
nection proxy chooses a new unique ID for it, stores
the mapping from ID to local actor ref in a map,
and sends that ID in the pickle, with a flag saying
it is an actor ref on A’s side. The receiving side
B then creates a local proxy storing that ID, and
also stores the mapping from ID to proxy (in an-
other map). The local proxy is created as a child of
B’s connection proxy. The second time B receives
a foreign actor ref with the same ID, it reuses the
same proxy.

Returning to the general case of pickling an ac-
tor ref on side A: if a mapping for that actor ref al-
ready exists in the ID-to-local-proxy map, it means
it is actually an actor on B’s side, and the pickle
contains the ID chosen by B. If it is present in
the other map, then A had already chosen an ID
for that actor ref, and its sends the same ID to B.
Otherwise, a new ID is chosen and stored in the
map.

5.1 Connection establishment

Now that we understand how the communication
layer works in steady state, let us describe the con-
nection establishment protocol. We follow the gen-
eral rule that Web clients initiate connection to
Web servers, and not the other way around. The
server must offer a WebSocket entry point under a
certain URL, that the client will be able to connect
to. When a new connection arrives on that connec-
tion, the server needs to choose a new or existing
actor to be the entry point for the connection. The
connection establishment protocol will send an ac-
tor ref to that entry point to the client, so that it
can start communicating with the server. Further
actor refs can be exchanged through the messages
and senders.

The protocol is the following:

1. On the client, an actor A wants to initiate
a connection. It creates a new actor of class
ClientProxy, specifying the WebSocket URL
it wants to connect to.

2. The client proxy opens a WebSocket connec-
tion to the given URL.

3. Upon WebSocket connection creation on the
server, it creates or chooses an actor E which

6



is going to be the entry point.

4. The server creates an actor of class
ServerProxy, specifying the handle of
the WebSocket connection as well as an actor
ref to E.

5. The server proxy sends a Welcome(E) message
to the client, which involves pickling the actor
ref to E.

6. The client proxy receives that message, which
involves unpickling the actor ref to E and
hence creating a local proxy for E.

7. The client proxy replies to the initiating actor
A with a WebSocketConnected(LocalE) mes-
sage.

From there, the initiating actor A holds an actor
ref to the local proxy of E, and can therefore send
arbitrary messages to E. The steady state behavior
is applied from there.

5.2 Death watch notifications

To support death watch notifications across the
WebSocket, when pickling a local actor ref, the
connection proxy on side A also starts watching
that actor ref. When it receives a Terminated mes-
sage for a local actor ref, it looks up its associated
ID and notifies side B. Side B then simply stops
its local proxy, which is a child of the connection
proxy. This will in turn send Terminated messages
to all the actors that watched the proxy, thereby
correctly forwarding the death watch notification.

5.3 Connection loss

When the connection is broken, the connection
proxies on both sides receive a notification from
the underlying WebSocket implementation. They
do not try to do anything fancy by themselves. In-
stead they simply stop, which also involves stop-
ping all the local proxies because they are children
of the connection proxy. This will correctly trigger
any death watch notifications to be sent due to the
connection loss.

The connection proxy also closes explicitly the
WebSocket connection if it is stopped externally.
Hence, the connection proxy is stopped if and only
if the WebSocket connection is closed or broken,

which is an event the application can listen to by
watching the connection proxy. It can then take ap-
propriate action depending on the use case, which
might involve trying to reopen the connection.

This strategy is in accordance with Akka’s phi-
losophy of “Let it crash”.

5.4 Security concerns

When a client and directly send messages to a
server’s actors, it becomes necessary to think about
security issues. The server certainly does not want
an arbitrary client to send arbitrary messages to ar-
bitrary actors, since the client can easily be imper-
sonated. It is therefore important to think about
security concerns.

Our approach to security is the following: a side
B can only ever talk to an actor x on side A if
A send an actor ref to x in a message it sent to
B (including as sender information). Actor refs to
actors not sent explicitly to B cannot be forged by
B, nor by any other side C. In particular, side C
cannot forge an actor ref to an actor on side A that
was sent to side B but not to side C.

The application of these safety rules directly fol-
lows from the opaque ID management. Since IDs
are “scoped” by connection, and only actor refs sent
to B are ever assigned an ID in the “scope” of con-
nection B, B can never forge an actor ref that was
not sent to it.

6 Evaluation and conclusion

We evaluated our design and implementation using
two focused tests and one larger application. The
two focused tests test the Web Worker communi-
cation and the fault handling features of Akka, re-
spectively. The latter is in fact an import from the
Akka documentation.

The larger application puts everything together
in a Chat implemented in Play+Akka on the server
and Akka/JS on the client. It exercises heavily the
client-server communication layer, as well as other
small features: receive timeouts, become(), the Ask
pattern. It provides auto-reconnect based on top of
death watch notifications.

The chat features multiple rooms and private
chats between 2 persons. In the implementation
of the private chat, client communicate “directly”

7



between each other, because they end up holding
actor refs which represents (through 2 local proxies)
an actor on the other client! This is all transparent.

Although some features of Akka core have not
yet been ported, like the event stream, we believe
Akka/JS is a very successful prototype. Akka/JS
helps a lot in dealing with failures of the connec-
tion and the auto-reconnect mechanism, because
its philosophy assumes things will crash and it pro-
vides effective ways of managing failures, rather
than avoiding failure handling. It also provides
an easy way to leverage Web Workers, and hence
multi-core processors in Web pages needing heavy
computations.

References

[1] Akka. URL: http://akka.io/

[2] HTML Structured Clone Algo-
rithm. URL: http://www.w3.org/

TR/html5/infrastructure.html#

safe-passing-of-structured-data

[3] HTML Timers Specification. URL:
http://www.whatwg.org/specs/web-apps/

current-work/multipage/timers.html

[4] HTML Web Workers Specification. URL:
http://www.whatwg.org/specs/web-apps/

current-work/multipage/workers.html

[5] Promises/A+ Specification. URL:
http://promises-aplus.github.io/

promises-spec/

[6] Scala Futures and Promises. URL:
http://docs.scala-lang.org/overviews/

core/futures.html

[7] Scala.js, a Scala to JavaScript compiler. URL:
http://www.scala-js.org/

[8] Miller H., Haller P., Burmako E. and Oder-
sky M.: Instant Pickles: Generating Object-
oriented Pickler Combinators for Fast and Ex-
tensible Serialization. In Proceedings of the 2013
ACM SIGPLAN International Conference on
Object Oriented Programming Systems Lan-
guages & Applications, pp. 183-202 (2013)

8


