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ABSTRACT

Contemporary DRAM systems have maintained impressive
scaling by managing a careful balance between performance,
power, and storage density. In achieving these goals, a
significant sacrifice has been made in DRAM’s operational
complexity. To realize good performance, systems must
properly manage the significant number of structural and
timing restrictions of the DRAM devices. DRAM’s use
is further complicated in many-core systems where the
memory interface is shared among multiple cores/threads
competing for memory bandwidth.

The use of the “Page-mode” feature of DRAM devices
can mitigate many DRAM constraints. Current open-page
policies attempt to garner the highest level of page hits. In
an effort to achieve this, such greedy schemes map sequential
address sequences to a single DRAM resource. This non-
uniform resource usage pattern introduces high levels of
conflict when multiple workloads in a many-core system map
to the same set of resources.

In this paper we present a scheme that provides a careful
balance between the benefits (increased performance and
decreased power), and the detractors (unfairness) of page-
mode accesses. In our Minimalist approach, we target “just
enough” page-mode accesses to garner page-mode benefits,
avoiding system unfairness. We use a fair memory hashing
scheme to control the maximum number of page mode hits,
and direct the memory scheduler with processor-generated
prefetch meta-data.

Categories and Subject Descriptors

B.3.1 [Memory Structures]: Semiconductor Memories—
Dynamic memory (DRAM); B.3.2 [Memory Structures|:
Design styles—cache memories, Primary Memories, Shared
Memory, Interleaved Memories
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1. INTRODUCTION

Since its invention, the DRAM memory subsystem has
proven to be one of the most important system components.
The requirement of a properly designed memory subsystem
is further amplified in the case of chip-multiprocessors where
memory is shared among multiple, concurrently executing
threads. As the memory interface is shared among a
growing number of cores, providing both sustained system
throughput and thread execution fairness is equally critical.
To do so, the memory controller must be able to make an
intelligent selection of requests to execute at any given point.
This selection must carefully balance thread execution speed
and overall throughput, functioning well across a broad
range of memory utilization levels.

To provide an efficient balance between memory density,
request latency, and energy consumption, DRAM designers
have adopted a complex architecture that imposes a number
of structural and timing limitations. One of the most
important components of this system is the Row Buffer
(shown in Figure 1(a)). The row buffer serves two primary
purposes. It acts as an interface between the narrow
external pins and the much wider internal buffer structure
width. Additionally, the row buffer captures the full data
width of the destructive DRAM read access, such that it
can be restored at the completion of the operation. The
row buffer can service multiple data transfers from much
wider DRAM cell access. These row buffer or “page-mode”
accesses can effectively amortize the high cost of the DRAM
cell reads across multiple data transfers, improving system
performance and reducing DRAM power consumption.

Current implementations and proposals tend to be grouped
into two classes with respect to row buffer usage. Leaving
a row buffer open after every access (Open-page policy)
enables more efficient access to the open row, at the
expense of increased access delay to other rows in the same
DRAM array. Open-page policies attempt to gather multiple
requests into each row buffer access by speculatively delaying
the precharge operation in an effort to execute additional
row reads. This enables latency, scheduling, and power im-
provements possible with page-mode accesses. However, as
these policies are applied to the numerous request streams of
a many-core system, priority is given to accesses to already
opened pages, introducing memory request priority inversion
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and potential thread fairness/starvation problems [16, 18,
6, 7]. Closed-page policies avoid the complexities of row
buffer management by issuing a single access for each row
activation. This class of policies provide a consistent fair
latency at the expense of potential page-mode gains.

In this paper, we propose a page-mode policy with
a combination of open/closed properties based on two
important observations. First, page-mode gains, such as
power and scheduling conflict reduction, can be realized
with a relatively small number of page accesses for each
activation. Based on this insight, we adapt the DRAM
address mapping scheme to target this small number of hits,
which enables more uniform bank utilization and prevents
thread starvation in cases of conflict. Secondly, we show
page-mode hits exploit spatial reference locality, of which
the majority can be captured in modern prefetch engines.
Therefore, the prefetch engine can be used to explicitly
direct page-mode operations in the memory scheduler. With
this, the system can essentially guarantee that the target
page hit rate will be met, irrespective of conflicts between
competing execution threads. This insight motivates a less
aggressive open-page policy that can effectively eliminate
the negative aspects of page-mode, such as starvation and
row buffer conflicts, while maintaining most of its gains.
We refer to our policy as “Minimalist”, in that we seek to
achieve only the necessary number of page-mode hits, and
nothing more. Overall in this work we make the following
contributions:

1. Recognize page-mode access gains can be realized with
only a small number of accesses per activation (four with
DDR3 memory).

2. Propose a fair DRAM address mapping scheme that
prevents row-buffer locality starvation and increases bank
level parallelism.

3. Identify that most of the memory operations with “page-
mode” opportunities are the results of memory accesses
generated through prefetch operations. Based on this
insight, we direct the memory controller page-mode
control with prefetch meta-data to enforce a specific
number of page-mode hits.

4. Propose an intuitive criticality-based memory request pri-
ority scheme where demand read and prefetch operations
are prioritized based on the latency sensitivity of each
operation.

2. BACKGROUND

A typical memory controller organization is shown in
Figure 1(b). DRAM chips are optimized for cost, meaning
that technology, cell, array, and periphery decisions are
made giving higher priority to bit-density. This results in
devices and circuits which are slower than standard logic,
and chips that are more sensitive to noise and voltage drops.
A complex set of timing constraints has been developed to
mitigate each of these factors for standardized DRAMs, such
as outlined in the JEDEC DDR3 standard [4]. These timing
constraints result in ”dead times” before and after each
random access; the processor memory controller’s job is to
reduce these performance-limiting gaps through exploitation
of parallelism.

While DRAM devices output only 16-64 bits per request
(depending on the DRAM type and burst settings), inter-
nally, the devices operate on much larger, typically 1KB
pages (also referred to as rows). As shown in Figure 1(a),
each DRAM array access causes all 1KB of a page to be
read into an internal array called Row Buffer, followed
by a “column” access to the requested sub-block of data.
Since the read latency and power overhead of the DRAM
cell array access have already been paid, accessing multiple
columns of that page decreases both the latency and power
of subsequent accesses. These successive accesses are said to
be performed in page-mode and the memory requests that
are serviced by an already opened page loaded in the row
buffer are characterized as page hits.

Two of the most important DRAM timing parameters
that introduce a number of important timing complexities
in DRAM’s operation are the tRC and tRP parameters.
tRC represents the minimum delay between back-to-back
activations of two different rows within the same bank (50ns
in recent DDRx DRAM specifications [4]). As a result, when
a memory controller activates a page, it needs to wait for at
least tRC' time before activating a new page in the same
DRAM bank. When multiple threads access different rows
in the same bank, tRC delay can potentially introduce a
significant latency overhead. tRP delay is known as the
precharge delay, and represent the delay between issuing a
precharge command and actually activating the new page
on the row buffer. In an open-page policy, the memory
controller keeps pages open in anticipation of additional page
hits. In such case, when there is a page conflict, tRP is the
penalty paid to “close” the current page before a new one is
opened.
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Figure 2: Improvements for increased access per activation.

3. MOTIVATION

Due to the reductions in both latency and energy con-
sumption possible with page-mode, techniques to aggres-
sively target page-mode operations are often used. There are
downsides however, which must be addressed. In this section
we explore the nature of page-mode benefits, highlighting
the diminishing returns as the number of page-mode accesses
for each row buffer activation increases.

1. Latency Effects: A read access to an idle DDRx DRAM
device has a latency of approximately 25ns. An access to
an already opened page reduces this latency in half to
12.5ns. Conversely, the accesses to different rows in the
DRAM bank can result in increased latency. Overall,
increases in latency are caused by two mechanisms in
the DRAM. First, if a row is left open in an effort
to service page hits, to service a request to another
page incurs a delay of 12.5ns to close the current page
followed by the latency to open and access the new page.
Secondly, the aforementioned tRC delay has remained
approximately 50ns across the most recent DDRx DRAM
devices. In a system that attempts to exploit page-mode
accesses, the overall effect on loaded memory latency
and program execution speed due to the combination of
these properties can significantly increase the observable
latency.

2. Power Reduction: Page mode accesses reduce DRAM
power consumption by amortizing the activation power
associated with reading the DRAM cell data and storing
them into the row buffer. Figure 2(a) shows the DRAM
power consumption of a 2GBit DDR3 1333MHz DRAM
as the number of row accesses increases. This follows the
power corollary of Amdahl’s law, where page-mode only
reduces the page activation power component. DRAM
power quickly becomes dominated by the data transfer
and background (not proportional to bandwidth) power
components.

3. Bank Utilization: The utilization of the DRAM banks
can be a critical parameter in achieving high scheduling
efficiency. If bank utilization is high, the probability
that a new request will conflict with a busy bank is
greater. As the time to activate and precharge the array
overshadows data bus transfer time, having available
banks is often more critical than having available data bus
slots. Increasing the data transferred with each DRAM
activate, through page-mode, amortizes the expensive
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DRAM bank access, reducing utilization. Figure 2(b)
shows the bank utilization of a DDR3 1333 MHz system,
with two sets of devices (ranks) sharing a data bus at
60% bus utilization. A closed-page policy, with one
access per activate would produce an unreasonably high
bank utilization of 62%. However, the utilization drops
off quickly as the accesses per activate increases. For
example four accesses per activate reduces the bank
utilization to 16%, greatly reducing the probability that
a new request will be delayed behind a busy bank.

. Other DRAM Complexities: Beyond the first order

effects described above, more subtle DRAM timing rules
can have significant effects of DRAM utilization, espe-
cially as the data transfer clock rates increase in every
DRAM generation. Many DRAM parameters do not
scale with frequency due to either constant circuit delays
and/or available device power. One example is the tFAW
parameter. tFAW specifies the maximum number of
activations in a rolling time window in order to limit peak
instantaneous current delivery to the device. Specifically
for the case of 1333MHz DDR3 1KB page size devices, the
tFAW parameter specifies a maximum of four activations
every 30ns. A transfer of a 64 byte cache block requires
3ns, thus for a single transfer per activation tFAW limits
peak utilization to 80% (6ns * 4/30ns). However, with
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Scenario 1: System gives higher priority to workload A. Scenario

2: System gives higher priority to workload B, interrupting workload A. Scenario 3: Minimalist approach,
sequential accesses are executed as 4 blocks per row buffer followed by switching to next memory bank.

only two accesses per activation, tFAW has no effect

(12ns % 4/30ns > 1). The same trend is observed across

several other DRAM parameters, where a single access

per activation results in efficiency degradation, while a

small number of accesses alleviates the restriction.

In summary, based on the above trends, we found that
a relatively small number of accesses to a page to be very
effective in taking advantage of DRAM page-mode for both
scheduling and power efficiency. For example, at four row
accesses per activation, power and bank utilization are 80%
of their ideal values. Latency effects are more complex,
as scheduling policies to increase page hits introduce bank
precharge penalties (through speculatively delaying closing
a bank), making raw latency reductions difficult to achieve.
These effects are described in the following sections.

3.1 Row Buffer Locality in Modern Proces-
sors

In this section we describe our observations regarding
page-mode accesses as seen in current workstation/server
class designs. Contemporary CMP processor designs have
evolved to impressive systems on a chip. Many high perfor-
mance processors (eight in current leading edge designs) are
backed by large last-level caches containing up to 32 MB
of capacity [5]. A typical memory hierarchy that includes
the DRAM row buffer is shown in Figure 3. As a large
last-level cache filters out requests to the memory, row
buffers inherently exploit only spatial locality. Applications’
temporal locality results in hits to the much larger last-level
cache.

Access patterns with high levels of spatial locality, which
miss in the large last level cache, are often very predictable.
In general, speculative execution and prefetch algorithms
can be exploited to generate memory requests with spatial
locality in dense access sequences. Consequently, the latency
benefit of page-mode is diminished.

3.2 Bank and Row Buffer Locality Interplay
With Address Mapping

The mapping of the real memory address into the DRAM
device address (row, column, bank) has a very significant

contribution into memory system behavior. Mapping the
spatial locality of request streams to memory resources is
the dominant concern. Commonly used open-page address
mapping schemes map all DRAM column address bits to the
low order real address directory above the cache offset [19,
11, 18, 6]. This maps each memory page to a sequential
region of real memory. With this approach, very common
linear access sequences reference all data in the row buffer,
minimizing DRAM activates.

As identified by Moscibroda et al. [16], this hashing can
produce interference between the applications sharing the
same DRAM devices, resulting in significant performance
loss. The primary problem identified in that work is due
to the FR-FCFS [19] policy where page hits have a higher
priority than requests with lower page affinity. Beyond
fairness, schemes that map long sequential address sequences
to the same row, suffer from low bank-level parallelism
(BLP). If many workloads with low BLP share a memory
controller, it becomes inherently more difficult to interleave
the requests, as requests from two workloads mapping to
the same DRAM bank will either produce a large number
of bank conflicts, or one of them has to stall, waiting for
all of the other workload’s request to complete, significantly
increasing its access latency.

Figure 4 illustrates an example where workload A gen-
erates a long sequential access sequence, while workload
B issues a single operation mapping to the same DRAM.
With a standard open-page policy mapping, both requests
map to the same DRAM bank. With this mapping, there
are two scheduling options, shown in Scenarios 1 and
2. The system can give workload A higher priority until
all page hits are completed, significantly increasing the
latency of the workload B request (Scenario 1, Figure 4).
Conversely, workload A can be interrupted, resulting in very
inefficient activate to activate commands conflict for request
A4 (Scenario 2, Figure 4), mainly due to the time to load the
new page in the row buffer and the unavoidable tRC timing
requirement between back-to-back activations of a page in
a bank. Neither of these solutions optimize fairness and
throughput. In our proposal we adapt the memory hash to
convert workloads with high row buffer locality (RBL), into
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workloads with high bank-level parallelism. This is shown in
Scenario 3 of Figure 4, where sequential memory accesses are
executed as reading four cache blocks from each row buffer,
followed by switching to the next memory bank. With this
mapping, operation B can be serviced without degrading
the traffic to workload A.

4. MINIMALIST OPEN-PAGE MODE

We base the Minimalist Open-page scheme on the obser-
vation that most of the page-mode gains can be realized
with a relatively small number of page accesses for each
page activation. In addition, address hashing schemes that
map sequential regions of memory to a single DRAM page
result in poor performance due to high latency conflict
cases. The Minimalist policy defines a target number of
page hits that enables a careful balance between the benefits
(increased performance and decreased power), and the
detractors (resource conflicts and starvation) of page-mode
accesses. With this scheme several system improvements
are accomplished. First, through the address mapping
scheme, row buffer starvation is avoided. This alleviates
the memory request priority scheme requirements compared
to prior approaches that must address row-buffer starvation.
In our proposal, the scheduler can focus its priority policy on
memory request criticality, which is important in achieving
high system throughput and fairness.

Through our analysis we found that most of the memory
operations with “page-mode” opportunities are the results
of memory accesses generated through prefetch operations.
Therefore, we use processor’s prefetch engine to provide
request meta-data information which directs the scheme’s
page-mode accesses and request priority scheme. In effect,
this enables the prefetch generated page-mode access to be
done reliably, with back to back scheduling on the memory
bus.

In the remaining of this section we describe the Minimalist
policy in detail. First, we describe the address mapping
scheme that enables bank-level parallelism with the nec-
essary amount of row-buffer locality. This is followed by
the prefetch hardware engine, as this component provides
prefetch request priorities and prefetch-directed page-mode
operation. Finally, we describe the scheduling scheme for
assigning priorities and issuing the memory request to the
main memory.

4.1 DRAM Address Mapping Scheme

The differences between a typical mapping and the one we
use in our proposal are summarized in Figure 5. The basic
difference is that the Row Column access bits that are used
to select the row buffer columns are split in two places. The

first 2 LSB bits (Least Significant Bits) are located right
after the Block bits to allow the sequential access of up to
4 consequent cache lines in the same page. The rest of the
MSB (Most Significant Bits) column bits (five bits in our
case if we assume that 128 overall cache lines are stored
in every row buffer) are located just before the Row bits.
Not shown in the figure for clarity, higher order address
bits are XOR-ed with the bank bits shown in the figure to
produce the actual bank selection bits. This reduces row
buffer conflicts as described by Zhang et al. [21]. The above
combination of bit selection allows workloads, especially
streaming, to distribute their accesses to multiple DRAM
banks; improving bank-level parallelism and avoiding over-
utilization of a small number of banks that leads to thread
starvation and priority inversion in multi-core environments.

4.2 Data Prefetch Engine

To harvest the predictable page-mode opportunities, we
need to utilize an accurate prefetch engine. The engine
targets spatial locality prediction and is able to predict
repeatable address strides. To do so, each core includes
a hardware prefetcher that is able to detect simple access
streams of stride 1, as described by Lee et al. [9]. To
keep bandwidth overhead low and throttle prefetch ag-
gressiveness, our prefetcher uses a prefetch depth distance
predictor to decide how far from the currently accessed
memory address each access stream should be prefetched.
To avoid prematurely fetched data, the prefetcher “ramps
up” gradually to the full depth only when there is confidence
that an access stream is a useful, long access stream. To
dynamically decide on the maximum depth of each access
stream we utilize a structure based on the “Adaptive Stream
Detection” (ASD) prefetcher from Hur et al. [2]. More
specifically, we used the “Stream Length Histograms” (SHL)
from ASD to decide on the depth of each access stream.
Finally, to avoid polluting the caches with unused prefetches,
all the prefetched requests are stored in the LRU position of
our last-level cache until used by executing instructions.

4.2.1 Multi-line Prefetch Requests

Although the presented prefetcher makes decisions on
the granularity of a single cache-line, we utilize multi-line
prefetch operations in our scheme. A multi-line prefetch
operation consists of a single request sent to the memory
controller, to indicate a specific sequence of cache-lines to
be read from a memory page. This policy was initially
introduced in the IBM POWERG design [9]. Multi-line op-
erations reduce the command bandwidth and queue resource
usage. Specifically for our scheme, multi-line operations
can consolidate the accesses to a DRAM in a controlled



burst. That enables the issue of a single request to the
memory controller queue; processing of multi-line requests
that are directed to the same DRAM page together as a
single request in the queue; and, in the end, close the
page after completing all of the prefetches. Consequently,
multi-line requests: a) improve bandwidth use, b) simplify
our priority scheme by executing back-to-back page-related
requests, and ¢) improve our controller efficiency for closing
the DRAM pages.

4.3 Memory Request Queue Scheduling
Scheme

Previous priority-based open-page scheduling proposals
either exhibit unfairness [19], or use request priority as a
fairness enforcement mechanism [18, 6, 7]. For example,
the ATLAS scheme [6] assigns the same priority to all of
the requests of a thread in the memory queue based on
attained service, assuming all requests from a thread are
equally important. We found that in out-of-order execution,
the importance of each request can vary both between and
within applications. This range from requests that are crit-
ical for the performance (e.g. demand-misses) to requests
that can tolerate more latency, such as misses in applications
exhibiting high levels of Memory-level Parallelism (MLP)
and prefetch requests. As we solve fairness (row buffer
starvation) through the address mapping scheme, priority is
directed with each memory request’s instantaneous priority,
based on both the current MLP and metrics available within
the prefetch engine.

4.3.1 DRAM Memory Requests Priority Calculation

In our memory scheduling priority scheme we assign a
different priority to every memory request based on its
criticality to performance. We separate the requests in two
categories: a) Read requests (normal), and b) Prefetches.
Based on each request’s category and its criticality to
performance, the memory controller assigns to them an
initial priority. The priorities assigned for every case are
shown in Table 1. To improve fairness and avoid starvations,
we implemented a time-based dynamic priority scheme. The
scheme assigns an initial priority to every request and as
a request remains in the queue waiting to be serviced, its
priority is gradually increased. We use a priority value
between 0 and 7 for every request. At a time interval
of 100ns, each request’s priority is increased by one. If
the priority of a prefetch request is increased more then
the maximum priority for prefetches (priority of 4 in our
case), the prefetch request is ignored and removed from the
memory controller queue. Intuitively, if a prefetch request
remains for a significant amount of time in the queue, it
is most likely not a useful prefetch because a demand read
request for the same cache line will soon follow and there is
not enough time to service the prefetch. A static version of
this scheme is also used in Lee et al. [10].

Read requests are assigned higher priority than prefetches
since the latency of demand misses is highly correlated to
performance. We used the Memory-level Parallelism (MLP)
information of the core that issued each request to identify
criticality. The MLP information is directly collected from
each core’s Miss Status Holding Registers (MSHR) [8]. The
MSHR tracks of all the outstanding .1 misses being serviced
by the lower levels of memory hierarchy (L2 and main
memory). As a result, the number of entries in each core’s

Table 1: Memory read requests priority assignment

Normal Requests Prefetch Requests
Priority Distance from Priority
MLP level (3bits) Head (3bits)
MLP < 2 .
(Low MLP) 7 0 < Distance < 4 4
2 < MLP < 4 .
(Medium MLP) 6 4 < Distance < 8 3
MLP > 4 .
(High MLP) 5 8 < Distance < 12 2
12 < Distance < 16 1
Distance > 16 0

MSHR which indicate an L2 miss represents the current
MLP of the application. Low MLP means that there is a
small number of L2 outstanding misses and therefore each
one is very important for the execution progress of the
application. Any delay on serving these misses results in
significant performance degradation. As MLP increases,
there are more outstanding misses available but, on the
average case, most of them do not block the progress of
speculative execution on an out-of-order core, making their
latency less important for performance. Our algorithm
statically assigns priorities by classifying the possible levels
of MLP in three categories, as shown in the left part of
Table 1.

Prefetch requests are assigned a priority level lower than
normal requests using prefetch meta-data information sent
by our prefetch engine. Their priority is based on the dis-
tance in cache blocks from the actual consuming instructions
to the prefetch request. Requests with a small distance
have higher priority, since they are more likely to be used
in the near future. As the distance from the head of the
stream increases, the prefetch’s latency is less critical for
performance. The priorities based on this distance are shown
in the right part of Table 1. Finally, if a normal read request
arrives in the memory queue and there is already a prefetch
request in the queue waiting to be serviced, our priority
scheme upgrades the prefetch request to a normal read
request, assigning to it a priority based of the application’s
MLP information, as for the case of normal read requests.

4.3.2 DRAM Page Closure (Precharge) Policy

In general, our Minimalist policy does not speculatively
leave DRAM pages open. If a multi-line prefetch request is
being processed, the page is closed with an auto-precharge
sent along with the read command (In DDRx the auto-
precharge bit indicates to the DRAM to close the page
after the data are accessed [3]). This saves the command
bandwidth of an explicit precharge command. For read
and single line prefetch operations, the page is left open
based on the following principle: the tRC' DRAM parameter
specifies the minimum time between activations to a DRAM
bank. The tRC is relativity long (50ns) compared to the
precharge delay of 12.5ns. Therefore, closing a bank after a
single access does not allow a reactivation of a new page on
the bank until the tRC delay expires. For this reason, we
speculatively leave pages open for the tRC window, as this
provides for a “free” open page interval.



Table 2: Full-system detailed simulation parameters

System Configuration |

8 cores CMP, 2 Memory Controllers

Core Characteristics Clock Frequency

Pipeline

L1 Data & Inst.

Branch Predictor Cache

30 stages / 4-wide fetch

/ decode . R o
4 GHz 198 Reorder Buffer Direct YAGS / indirect associative, '3
Entrics 256 entries cycles access time,

64 Scheduler Entries

64 KB, 2-way

64B blocks

| H/W Prefetcher

H/W stride n with dynamic depth, 32 streams / core (see Section 4.2 for details)

bank access, 64B blocks

L2 Cache Outstanding Best-case Idle DRAM Memory
Requests Memory Latency Bandwidth
16 MB, 8-ways
associative, 12 cycles 16 Requests per Core 65ns 21.333 GB/s

Memory Subsystem Memory Controller

Organization

Controller Resources

DRAM Type

2 Ranks per Controller
8 x 4Gbit DRAM chips
per Rank

32 Read Queue & 32
Write Queue Entries

DDR3 1333MHz 8-8-8

Priority Rules 1 Minimalist Open-page:
Scheduling Rules in Memory Controller Queue

Request

1. Higher Priority Request First: Requests with
higher priority are issue first in our per-request scheme

2. Ready-Requests First: Requests that belong to
the same multiline-prefetch request that is currently
being serviced in a open bank are prioritize over other
requests that are not “ready” for scheduling yet.

3. First-Come First-Served: Older requests issued
first.

4.3.3 Overall Memory Requests Scheduling Scheme

The rules in Priority Rules 1 summarize the per-request
scheduling prioritization scheme that is used in the Mini-
malist Open-page scheme. The same set of rules are used by
all of the memory controllers in the system. As explained
in Section 3.1, the Minimalist address mapping scheme
guarantees memory resource fairness while preventing star-
vation and priority inversion. Therefore, there is no need
for any communication/coordination among the multiple
controllers.

Our scheduling scheme is based on assigning priorities
to each requests individually based on their criticality to
performance. Our first, most important rule, is to schedule
requests with the highest priority first. Our second rule,
namely “Ready-Requests First”, guarantees that between
requests with the same priority, requests that are mapped
to the same temporally opened page are scheduled first. To
clarify, if the controller is servicing the multiple transfers
from a multi-line prefetch request, it can be interrupted
by a higher priority request (assuming the needed bank is
beyond tRC). This guarantees that requests that are very
critical for performance can be serviced with the smallest
latency, enabling our controller to work well in a wide range
of memory bus utilization levels.

4.3.4 Handling Write Operations

The dynamic priority scheme only applies to read requests

Table 3: DRAM simulation parameters

Name Description Value
CL Column Address Strobe (CAS) Delay 8 mem.
cycles
tRCD Row Address to Column Address 12ns
Delay
tRP Row Precharge time 12ns
tRAS Row active time 36.ns
(min.)
tRC row cycle time 48ns
tRFC Refresh row cycle time 300ns
tFAW Four page activates time window 30ns
tREFI Refresh Interval 7.8us
tRTP Read to Precharge delay 7.5ns
tWTR Write to Read delay 7.5ns
Rank to Delay to transition the bus from one
Rank 5ns
Rank to the next
Trans.
8 data
BL Burst Length beats
tRRD Back-to-back row activations to any 7 5ns
bank

as they directly limit the completion of instructions. While
the completion of write requests does not directly affect
an application’s execution progress, the memory bandwidth
consumed by memory writes and their interference with
read requests’ latency are still important components for
performance. To alleviate the pressure of write requests,
we follow an approach similar to the Virtual Write Queue
(VWQ) proposal [20] in the handling of write operations
inside the memory controller. The scheme enables read
requests to be handled separate from write requests avoiding
interactions when possible, while causing minimal intrusion
when the VWQ queues become full.

S. EVALUATION

To evaluate our scheme, we simulated an 8 core CMP
system using the Simics functional model [13] extended
with the GEMS toolset [15]. We used an aggressive out-of-



Table 4: Randomly selected 8-core workload sets from SPEC cpu2006 suite.

% of peak
Exp. # ‘Workload Sets (Core-0 — Core-7) DRAM
bandwidth
1 gce, lbm, lbm, milc, namd, namd, soplex, tonto 45%
2 gee, gec, lesliedd, libquantum, mcf, sjeng, zeusmp, zeusmp 47%
3 bzip2, calculix, GemsFDTD, GemsFDTD, leslie3d, namd, omnetpp, wrf 49%
4 astar, gcc, leslie3d, libquantum, namd, soplex, soplex, tonto 51%
5 cactusADM, GemsFDTD, gromacs, lbm, lbm, mcf, sphinx3, wrf 53%
6 bzip2, GemsFDTD, gobmk, h264ref, leslie3d, leslie3d, sphinx3, xalancbmk 56%
7 dealll, leslie3d, mcf, namd, soplex, sphinx3, tonto, xalancbmk 58%
8 bzip2, calculix, lbm, libquantum, milc, namd, soplex, xalancbmk 60%
9 astar, h264ref, libquantum, libquantum, sphinx3, sphinx3, wrf, xalancbmk 62%
10 astar, bzip2, libquantum, omnetpp, sjeng, sjeng, soplex, xalancbmk 64%
11 astar, h264ref, lbm, lbm, libquantum, namd, omnetpp, soplex 66%
12 gamess, lbm, leslie3d, omnetpp, tonto, wrf, xalancbmk, xalancbmk 68%
13 cactusADM, GemsFDTD, hmmer, libquantum, sphinx3, xalancbmk, xalancbmk, zeusmp 70%
14 calculix, lbm, lbm, libquantum, milc, perlbench, soplex, xalancbmk 73%
15 astar, GemsFDTD, lbm, libquantum, libquantum, perlbench, xalancbmk, zeusmp 75%
16 leslie3d, mcf, sjeng, soplex, sphinx3, sphinx3, xalancbmk, xalancbmk 7%
17 cactusADM, gamess, libquantum, libquantum, mcf, milc, omnetpp, soplex 79%
18 cactusADM, lbm, lbm, lbm, libquantum, mcf, perlbench, xalancbmk 81%
19 Ibm, mcf, milc, milc, omnetpp, perlbench, soplex, xalancbmk 83%
20 cactusADM, gamess, GemsFDTD, mcf, mcf, omnetpp, omnetpp, xalancbmk 85%
21 bwaves, GemsFDTD, leslie3d, leslie3d, mcf, omnetpp, soplex, xalancbmk 87%
22 cactusADM, dealll, gcc, libquantum, omnetpp, omnetpp, xalancbmk, xalancbmk 89%
23 gamess, lbm, mcf, omnetpp, omnetpp, soplex, sphinx3, xalancbmk 92%
24 gamess, lbm, libquantum, mcf, namd, omnetpp, xalancbmk, xalancbmk 94%
25 Ibm, omnetpp, omnetpp, soplex, wrf, xalancbmk, xalancbmk, zeusmp 96%
26 bwaves, gromacs, libquantum, mcf, omnetpp, omnetpp, soplex, xalancbmk 98%
27 bwaves, GemsFDTD, libquantum, libquantum, libquantum, namd, omnetpp, xalancbmk 100%

order processor model from GEMS along with an in-house
detailed memory subsystem model. In addition, we modified
GEMS to add the hardware prefetching engine described
in Section 4.2. Our memory controller model simulates
a detailed DDR3 1333MHz DRAM using the appropriate
memory controller policy for each experiment. Table 2
summarizes the full-system simulation parameters used in
our study, while Table 3 includes the most important DDR3
parameters that we modeled in our toolset.

For our evaluation we utilize a set of multi-programmed
workload mixes from the SPEC cpu2006 suite [1]. We ran-
domly selected 27, 8-core benchmark mixes spanning from
medium bus utilization levels to saturation. To accomplish
this we summed the single core bandwidth requirements of
a large number of randomly selected workloads. We then
selected 27 sets by choosing the total bandwidth target to
span for 45% to 100%. The sets are ordered from lower to
higher bus utilization. The bandwidth range was selected to
evaluate the proposal as the system transitions from medium
load into saturation. Table 4 summarizes the selected
workload sets along with their peak bandwidth use. Note,
DDR DRAM timing constrains limit sustained utilization to
~70%, thus 100% of the peak bandwidth produces a system
beyond memory saturation.

For the evaluation, we fast-forwarded each experiment to
its most representative execution phase; use the next 100M
instructions to warm up the caches and memory controller
structures; and then simulate the set until the slower
benchmark completes 100M instructions. We only use the

statistics gathered for the representative 100M instruction
phase after the warming up period. For each experiment we
present as a speed-up estimation the weighted speedup:

(1)

Throughput_Speedup = Z ( IPC: >

IPCi rr-FcFs

where IPC; rr—rcrs is the IPC of the i-th application
measured in our FR-FCFS baseline system using an open-
page policy memory controller. In addition, to estimate the
execution fairness of every proposal, we utilize the harmonic
mean of weighted speedup, as was previously suggested by
Luo et al. [12]:

Fairness = N (2)

Z IPC; alone
TPC;

where I PCj gione is the IPC of the i-th application when it
was executed standalone on the system. For both metrics,
IPC; represents the IPC of the i-th application running
concurrently with the rest of the applications of a workload
set on the system under study.

Our Minimalist Open-page scheme is compared against
three representative open-page memory controller policies:
a) Parallelism-aware Batch Scheduler (PAR-BS) [18], b)
Adaptive per-Thread Least-Attained-Service memory sched-
uler (ATLAS) [6], and c) First-Ready, First-Come-First-
Served (FR-FCFS) [19] with open-page policy. Description
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Table 5: Description of experiments

Scheme Hash- Request Prefetch
function Priority Drop delay
FR-FCFS Fig. 5.a FR-FCFS 400ns
PAR-BAS Fig. 5.a Batch 400ns
ATLAS Fig. 5.a ATLAS 400ns
Minimalist Hash Fig. 5.b FR-FCFS 400ns
Hosh ooy | Figo5b | 7o Hedest 1 100ns-400ms

of these policies can be found in our related work section
(Section 6). Table 5 summarizes the key differences between
the evaluation results presented in this section.

5.1 Throughput

To evaluate the throughput contributions of our scheme
we evaluated the Minimalist scheme in two stages. The first,
named “Minimalist Hash” is simply the FR-FCFS policy
with the “Proposed Mapping” of Figure 5 replacing the
“Typical Mapping” of the baseline policy. Secondly, the
“Minimalist Hash+Priority” includes the scheduling priority
enhancement described in section 4.3.1. The speedup results
for all policies relative to the baseline FR-FCFS are shown
in Figure 6.

The results can be divided in two categories. In the
majority of the results, “Minimalist Hash” performs similarly
to the PAR-BS and ATLAS. Workload sets 5, 6, 13, and 18
are notable exceptions, where both PAR-BS and ATLAS
significantly outperform “Minimalist Hash”. On the other

hand, the speedup of the same sets is comparable to
the “Minimalist Hash+Priority” policy. These workloads
combinations benefited from the prioritization of newer more
critical requests provided by the PAR-BS, ATLAS, and
“Minimalist Hash+Priority” schemes. Such gains are due
to the combination of high bandwidth workloads where at
least one of the workloads contains high priority demand
misses with low MLP. GemsF DT D is such a workload. Note
that not all workloads sets that include GemsF DT D show
such behavior, as the interactions between workloads are
complicated and difficult to generalize.

An example of such complex interaction was observed
when multiple copies of libquantum benchmark were concur-
rently running on the system. The memory access pattern
of libquantum is very simple as it sequentially accesses a
32MB vector array. This streaming behavior resembles the
pathological example of workload A in Figure 4. That said,
the performance degradation described in Figure 4 does not
always occur when multiple copies of libquantum execute
on a system. We observed cases where the multiple copies
reaches a stable execution phase where all workload copies
sequentially accessed memory in lock-step without bank
conflicts.

Overall, “Minimalist Hash+Priority” demonstrated the
best throughput improvement over the other schemes, achiev-
ing a 10% improvement. This is compared against ATLAS
and PAR-BS that achieved 3.2% and 2.8% throughput
improvements over the whole workload suite. ATLAS and
PAR-BS both improve system performance through priori-
tization of requests waiting to be serviced in the memory
queue. Such significant queueing only occurs when the
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Figure 9: Speedup of targeting 2, 4, and 8 sequential page hits, compared to FR-FCFS

system has completely saturated the memory interface. This
is compared to Minimalist scheme where bank conflicts are
avoided through decreased bank utilization times provided
by the DRAM address mapping. Our evaluation contains
a mixture of medium to high bandwidth utilization, and
therefore for a number of cases, ATLAS and PAR-BS
degenerate to FR-FCFS. In addition, avoiding row buffer
starvation through our address hashing enables the memory
controller priority scheme to operate on a per memory
request critically granularity, compared to a per processor
priority scheme utilized in PAR-BS and ATLAS policies.

5.2 Fairness

Figure 7 shows the fairness improvement of all schemes
relative to FR-FCFS baseline system using the harmonic
mean of weighted speedup. It is important to note that
the throughput gains Minimalist achieves are accompanied
with improvements in the fairness. This is expected as the
throughput gains are realized by alleviating unresolvable
conflict cases associated with row buffer starvation. Es-
sentially, Minimalist matches the throughput gains in cases
without row buffer conflicts while significantly improves
cases where row buffer conflicts exist.

As explained by Kim [6], ATLAS is less fair than PAR-BS,
since ATLAS targets throughput over fairness (interestingly
we saw similar throughput for both algorithms in our
experiments). Minimalist improves fairness up to 15% with
an overall improvement of 7.5%, 3.4% and 2.5% for FR-
FCFS, PAR-BS and ATLAS, respectively.

5.3 Row Buffer Access per Activation

Figure 8 shows the average number of row buffer column
reads for each activation. The observed page-access rate for
the aggressive open-page policies fall significantly short of
the ideal hit rate of 128, with average values of 4.25, 4.64,
and 4.63 for FR-FCFS, PAR-BS, and ATLAS respectively.
The high page hit rate is simply not possible given the in-
terleaving of requests between the eight executing programs.
With the Minimalist scheme, the achieved page-access rate
is close to 3.5, compared to the ideal rate of four.

5.4 Target Page-hit Count Sensitivity

The Minimalist system requires a target number of page-
hits to be selected that indicates the maximum number
of pages hits the scheme attempts to achieve per row
activation. As described in Section 3, for 1333MHz DDR3
DRAM, we found that a good number for page-mode hits
is ~four page hits. To validate this, we evaluated the
performance of two, four, and eight page hits as out target
number. This is implemented as one, two or three column
bits above the cache block in the address mapping scheme
(see Figure 5 where a target of four is shown). The results
of our simulations, shown in Figure 9, verify that a target
number of 4 pages hits provides the best results. Note that
different system configuration may shift the optimal page-
mode hit count.

5.5 DRAM Energy Consumption

To evaluate if the throughput and fairness gains adversely
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Figure 10: DRAM Energy Relative to FR-FCFS

affect the system energy consumption, we estimated the
energy consumption of the various policies. Figure 10
shows the DRAM energy of the PAR-BS, ATLAS, and
Minimalist policies relative to the FR-FCFS policy. To
estimate the power consumption we used the Micron power
calculator [14]. The geometric mean of the relative energy
across all experiments of the policies is approximately
the same as FR-FCFS. PAR-BS, ATLAS and “Minimalist
Hash+Priority” provide a small decrease of approximately
5% to the overall energy consumption. The “Minimalist
Hash” without the priority scheme shows an increase in
energy as it has a similar page-hit rate with the “Minimalist
Hash+Priority” but lower throughput. The energy results
are essentially a balance between the decrease in page-mode
hits (resulting in high DRAM activation power) and the
increase in system performance (decreasing runtime). Note
that decreasing runtime, by increasing performance, has the
effect of decreasing the background power contribution on
energy. Final, the specific results are based on a typical
DDR3 row-buffer size. Assuming a Minimalist policy on
the system, a DRAM device could be designed with much
smaller row-buffers, which would result in energy reductions
for the Minimalist policy as compared to current practices.

6. RELATED WORK

Rixner et al. [19] was the first to describe the First-
Ready First-Come-First-Serve scheduling policy that prior-
itizes row-hit requests over other requests in the memory
controller queue. Their proposal utilizes a combination
of a column centric DRAM mapping scheme, similar to
the one in Figure 5(a), combined with FR-FCFS policy.
However, their approach creates starvation and throughput
deficiencies when applied to multi-threaded systems as
described by Moscibroda et al. [16]. Prior work attempts to
mitigate these problems through memory requests schedul-
ing priority, but is only able to select between the two
suboptimal solutions of Scenario 1 and 2 of Figure 4.
Solutions that bias row buffer hits such as FR-FCFS [19]
map to Scenario 1. Mutlu et al. based their “Stall Time
Fair Memory” (STFM) scheduler [17] on the observation
that giving priority to requests with opened pages can lead
to significant introduction unfairness in the system. As a
solution they proposed a scheme that identifies threads that
are stalled for a significant amount of time and prioritize
them over requests to open-pages. On the average case,

STFM will operate similarly to
Scenario 1 of Figure 4.

The Adaptive per-Thread Least-Attained-Service memory
scheduler (ATLAS) [6] proposal, that tracks attained service
over longer intervals of time, would follow Scenario 2,
where the low bandwidth workload B would heavily penalize
workload A. Following the same logic, Parallelism-aware
Batch Scheduler (PAR-BS) [18] ranks lower the applications
with larger overall number of requests stored in every “batch”
formed in the memory queue. Since streaming workloads
inherently have on average a large number of requests in
the memory queue, they are scheduled with lower priority
and therefore would also follow Scenario 2. The most
recent work, Thread Cluster Memory Scheduler (TCM) [7]
extends the general concept of the ATLAS approach. In
TCM, unfriendly workloads with high row-buffer locality,
that utilize a single DRAM bank for an extended period of
time, are given less priority in the system, such that they
interfere less frequently with the other workloads.

With the Minimalist hashing scheme such fairness prob-
lems are avoided as we limit the source of the unfairness,
that is the row buffer hits per bank. This property is critical
in the difference between the prior open-page work [18,
6, 7, 19] and Minimalist. In Minimalist, the memory
system is inherently fair. Therefore, no invasive priority
policies are introduced, allowing our controller to make good
scheduling decisions without queuing of a significant number
of memory read operations. Such queuing is detrimental
to the observed latency of each individual memory request.
In addition, while prior work has improved the problems
with FR-FCFS, significant complexity is introduced and
the priority selection forces some workloads to experience
significant bank conflict delays. Our scheme is much simpler
and allows us to focus our priority scheme on servicing the
requests that are most critical to program execution.

Lee et al. [10] propose a Prefetch- Aware controller priority,
where processors with a history of wasted prefetch requests
are given lower priority. In our approach, prefetch confidence
and latency criticality are estimated for each request, based
on the state of the prefetch stream combined with the history
of stream behavior. With this more precise per request
information, more accurate decisions can be made. Lin et
al. [11] proposed a memory hierarchy that coordinated the
operation of the existing prefetch engine with the memory
controller policy to improve bus utilization and throughput.
In their hierarchy, the prefetch engine issues requests that

FR-FCFS mapping to



are spatially close to recent demand misses in L2 with the
memory controller sending the requests to memory only
when the memory bus is idle. Their prefetcher relies on
a column-centric address hash which introduces significant
unfairness in the system that is not directly addressed in
their proposal.

7. CONCLUSIONS

In this paper we introduce a Minimalist Open-page mem-
ory scheduling policy. We show that page-mode gains can
be realized with a relatively small number of page accesses
for each page activation. By introducing “just enough”
page-mode accesses per bank, our Minimalist Open-page
policy can drastically reduce the negative aspects of page-
mode, such as starvation and row buffer conflicts, while
maintaining most of its gains. Using this policy, we are
able to build intuitive memory scheduler priority policies
based strictly on age and request criticality. We derive these
request attributes through monitoring program Memory-
level Parallelism (MLP) and request stream information
within data prefetch engine.

Overall our scheme is effective in concurrently improving
throughput and fairness across a wide range of memory
utilization levels. It is particularly effective, compared
to prior work, in improving workload combinations that
contain streaming memory references (throughput increased
by 10% on average). Compared to prior work, thread
based priority information is not needed (or helpful), which
enables workloads with requests of multiple priorities to be
efficiently scheduled. In addition, no coordination between
multiple memory controllers or operating system interaction
is required. This alleviate overall system complexity, en-
abling other components of the system to be optimized.
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