Checksum-Aware Fuzzing Combined with Dynamic Taint Analysis
and Symbolic Execution

TIELEI WANG and TAO WEI, Peking University
GUOFEI GU, Texas A&M University
WEI ZOU, Peking University

Fuzz testing has proven successful in finding security vulnerabilities in large programs. However, tradi-
tional fuzz testing tools have a well-known common drawback: they are ineffective if most generated inputs
are rejected at the early stage of program running, especially when target programs employ checksum mech-
anisms to verify the integrity of inputs. This article presents TaintScope, an automatic fuzzing system using
dynamic taint analysis and symbolic execution techniques, to tackle the above problem. TaintScope has sev-
eral novel features: (1) TaintScope is a checksum-aware fuzzing tool. It can identify checksum fields in
inputs, accurately locate checksum-based integrity checks by using branch profiling techniques, and bypass
such checks via control flow alteration. Furthermore, it can fix checksum values in generated inputs using
combined concrete and symbolic execution techniques. (2) TaintScope is a taint-based fuzzing tool working
at the x86 binary level. Based on fine-grained dynamic taint tracing, TaintScope identifies the “hot bytes” in
a well-formed input that are used in security-sensitive operations (e.g., invoking system/library calls), and
then focuses on modifying such bytes with random or boundary values. (3) TaintScope is also a symbolic-
execution-based fuzzing tool. It can symbolically evaluate a trace, reason about all possible values that can
execute the trace, and then detect potential vulnerabilities on the trace.

We evaluate TaintScope on a number of large real-world applications. Experimental results show that
TaintScope can accurately locate the checksum checks in programs and dramatically improve the effective-
ness of fuzz testing. TaintScope has already found 30 previously unknown vulnerabilities in several widely
used applications, including Adobe Acrobat, Flash Player, Google Picasa, and Microsoft Paint. Most of these
severe vulnerabilities have been confirmed by Secunia and oCERT, and assigned CVE identifiers (such as
CVE-2009-1882, CVE-2009-2688). Vendor patches have been released or are in preparation based on our
reports.

Categories and Subject Descriptors: D.2.5 [Software Engineering]: Testing and Debugging—7Testing tools
and symbolic execution

General Terms: Security, Languages

Additional Key Words and Phrases: Vulnerability detection, checksum-aware fuzzing, taint analysis,
symbolic execution

ACM Reference Format:

Wang, T., Wei, T., Gu, G., and Zou, W. 2011. Checksum-aware fuzzing combined with dynamic taint analysis
and symbolic execution. ACM Trans. Inf. Syst. Secur. 14, 2, Article 15 (September 2011), 28 pages.

DOI = 10.1145/2019599.2019600 http://doi.acm.org/10.1145/2019599.2019600

This work is supported by the National Natural Science Foundation of China under the grant No. 61003216
and the project “Mobile Internet Mal-behavior Detection Platform based on Cloud Computing (2010)”
granted by the National Development and Reform Commission InfoSec Foundation.

Author’s address: T. Wang, T. Wei, and W. Zou (corresponding author), Laboratory of Internet Security Tech-
nology and Institute of Computer Science and Technology, Peking University, Beijing, China, 100871; email:
zou_-wei@pku.edu.cn; G. Gu, Department of Computer Science and Engineering, Texas A&M University.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights
for components of this work owned by others than ACM must be honored. Abstracting with credit is permit-
ted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component of
this work in other works requires prior specific permission and/or a fee. Permissions may be requested from
the Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.

© 2011 ACM 1094-9224/2011/09-ART15 $10.00

DOI 10.1145/2019599.2019600 http://doi.acm.org/10.1145/2019599.2019600

ACM Transactions on Information and System Security, Vol. 14, No. 2, Article 15, Publication date: September 2011.

15:2 T. Wang et al.

1. INTRODUCTION

As a well-known software testing technique, fuzz testing or fuzzing [Miller et al. 1990]
has proven successful in finding bugs and security vulnerabilities in large software.
The idea behind fuzzing is very simple: generating malformed inputs and feeding them
to an application; if the application crashes or hangs, a potential bug/vulnerability is
detected.

A number of severe software vulnerabilities have been revealed by fuzzing tech-
niques [Miller et al. 1990; Oehlert 2005; Sutton et al. 2007]. For example, with the
help of fuzzing tools, “Month of Browser Bugs” (http:/browserfun.blogspot.com) and
“Month of Kernel Bugs” (http://projects.info-pull.com/mokb) published bugs in various
browsers and kernels on a daily basis for the month of July and November in 2006.

Since exhaustive enumeration of an application’s input space is typically infeasi-
ble, there are two main approaches to obtain malformed inputs: data mutation and
data generation [Oehlert 2005]. Mutation-based fuzzing tools generate test cases by
randomly modifying well-formed inputs. However, most inputs from such blind mod-
ifications will be dropped at an early stage of program running if the target program
employs a checksum mechanism to verify the integrity of inputs. The effectiveness of
these fuzzing tools is heavily limited by checksum-based integrity checks.

Recently, symbolic execution and constraint-solving-based whitebox fuzzing sys-
tems and unit testing tools (such as KLEE [Cadar et al. 2008], SAGE [Godefroid
et al. 2008a], SmartFuzz [Molnar et al. 2009], EXE [Cadar et al. 2008], CUTE [Sen
et al. 2005], DART [Godefroid et al. 2005]) can treat all program inputs with sym-
bolic values, gather input constraints on a program trace and generate new inputs
that can drive program executions along different traces. These systems are able to
provide good code coverage and have proven to highly improve the effectiveness of
traditional fuzzing tools. However, since many complex checksum algorithms such as
cryptographic hash functions are not invertible [Stallings 2005], current symbolic ex-
ecution engines and constraint solvers still cannot accurately generate and solve the
constraints that describe the complete process of these checksum algorithms. In a
word, such whitebox fuzzing systems cannot automatically generate inputs that sat-
isfy the checksum-based integrity constraints.

For the fuzzing tools (such as SPIKE! and Peach?) that construct malformed input
data from predefined format specifications, the cost of generating production rules is
expensive, especially when the format specifications are undocumented and the source
code of the application is not available. Recently, several protocol reverse engineer-
ing techniques [Caballero et al. 2007; Comparetti et al. 2009; Cui et al. 2008; Lin
et al. 2008; Wondracek et al. 2008] are proposed to automatically extract input for-
mat specification (even protocol state machine) and translate them into fuzzing spec-
ifications. However, they are not able to reverse engineer the checksum algorithms
or locate the checksum check points. Thus, the constructed input according to such
reverse-engineered protocol specification still can be rejected by integrity checks. In
addition, none of such systems explicitly discuss how to bypass checksum checks for
fuzzing.

This article presents TaintScope, a checksum-aware fuzzing system based on dy-
namic taint analysis and symbolic execution. The key idea behind TaintScope is that
the taint propagation information during program execution can be used to detect and

ISPIKE. Spike Fuzzing Platform. http:/www.immunitysec.com/resourcesfreesoftware.shtml.
2Peach. Fuzzing Platform. http:/peachfuzz.sourceforge.net/.

ACM Transactions on Information and System Security, Vol. 14, No. 2, Article 15, Publication date: September 2011.

Checksum-Aware Fuzzing Combined with Dynamic Taint Analysis and Symbolic Execution 15:3

bypass checksum-based integrity checks, and to direct malformed test case generation.
TaintScope can further fix checksum fields in malformed test cases by using dynamic
symbolic execution. Specifically, TaintScope has the following features.

First, TaintScope is a checksum-aware fuzzing tool. TaintScope can locate program
branches corresponding to checksum related tests. Then, TaintScope can enforce the
alteration of the target program’s execution at located checksum test points, even if
the input test cases violate checksum checks. We call this checksum-aware fuzzing.
Checksum-aware fuzzing can prevent generated test cases from being prematurely
dropped, and this feature is helpful to trigger subtle errors in the rest of the program.
For the crashed test cases, TaintScope can fix their checksum fields using dynamic
symbolic execution. Instead of treating all input bytes as symbolic values, TaintScope
only treats the checksum fields in test cases as symbolic values (i.e., leaves the major-
ity input bytes as concrete values), and collects trace constraints on checksum fields.
Original complex trace constraints are simplified to simple constraints. By solving
such simple constraints, TaintScope can repair generated test cases.

Second, TaintScope implements taint-based fuzzing [Ganesh et al. 2009; Zalewski
2007]. Based on fine-grained taint analysis at the byte level, TaintScope is able to accu-
rately identify which input bytes can flow into security-sensitive points (e.g., memory
allocation function malloc (), string manipulation function strcpy ()). We refer to such
input bytes as hot bytes. Given a well-formed input, instead of blindly modifying the
whole input, TaintScope focuses on modifying hot bytes with random values or bound-
ary values.

Third, TaintScope also partially implements whitebox fuzzing [Godefroid et al.
2008a; Molnar et al. 2009], complementary to taint-based fuzzing. The main advan-
tages of whitebox fuzzing are: (1) it can automatically generate inputs that explore
different paths, and (2) it can reason all possible input values on a trace to identify
vulnerabilities. In this article, TaintScope mainly exploits the second advantage; that
is, given an execution trace, TaintScope treats hot bytes in an original input as sym-
bolic values and then uses offline dynamic symbolic execution to discover vulnerabili-
ties on the trace. We refer to it as symbolic-execution-based fuzzing. Since TaintScope
reasons about all possible hot bytes, it can detect some subtle vulnerabilities.

We evaluate TaintScope on a number of real-world applications. Experimental re-
sults show that our method can accurately locate the checksum checks in programs.
TaintScope has already found 30 previously unknown vulnerabilities in several widely
used applications from, among others, Microsoft, Google and Adobe. We have reported
our findings to the vendors. Most of these vulnerabilities have been confirmed by
Secunia and oCERT, and assigned CVE identifiers (such as CVE-2009-1882, CVE-
2009-2688). Vendor patches have been released or are in preparation based on our
reports.

The main contributions of this article can be summarized as follows: (i) We pro-
pose checksum-aware fuzzing, a novel heuristic technique to overcome the checksum
problem for fuzz testing; (i) We implement taint-based and symbolic-execution-
based fuzzing methods at binary program level and successfully combine them with
checksum-aware fuzzing; (iii) TaintScope detects 30 previously unknown vulnerabili-
ties in several widely used applications.

The rest of this article is organized as follows. Section 2 explains the problem we
address and presents an overview of our system. Section 3 details our checksum-aware
fuzzing approach and Section 4 presents how to generate test cases and detect vulner-
abilities on an execution. Section 5 describes the implementation details and Section 6
reports the evaluation results. Section 7 and Section 8 discuss limitations in the cur-
rent implementation and related work, respectively. Finally, Section 9 concludes the
article.

ACM Transactions on Information and System Security, Vol. 14, No. 2, Article 15, Publication date: September 2011.

15:4 T. Wang et al.

Magic Num
FileSize
Width

Height >

Row 0
Row 1

Checksum

Fig. 1. Input format example.

2. OVERVIEW
2.1. Problem Scope and Terminologies

Checksums® are a common way to check the integrity of data and are widely used in
network protocols (e.g., TCP/IP) and many file formats (e.g., ZLIB [Deutsch and Gailly
1996], PNG [Boutell 1997]). There are many sophisticated checksum algorithms used
in practice, such as Adler-32, the CRC (cyclic redundancy checks) series, and MD5. In
this article, we focus on checksums that are designed to protect against mainly acci-
dental errors that may have been introduced during transmission or storage, instead
of those designed to protect against intentional data alteration such as keyed crypto-
graphic hash algorithms. We leave the latter as future work.

In general, the basic pattern to check the integrity of an input is to recompute a
new checksum of the input and compare it with the checksum attached in the input.
A mismatch indicates a corrupted input. For ease of representation, we use C, and D
to represent raw data in the checksum field and the rest of input data protected by the
checksum field, respectively.

Without loss of generality, we assume that the checksum check condition is equiv-
alent to the condition P: Checksum(D) == T(C,), where Checksum() denotes the com-
plete process of checksum algorithms and 7'() denotes the transformation function that
is used to transform C, before integrity checks. For instance, the attached checksums
are stored as octal numbers in the Tar format?, or stored as hexadecimal numbers in
the Intel HEX format®. These raw data C, need to be converted into proper forms be-
fore being used in integrity checks. 7'() is used to describe the transformation process.

We assume that there are special branch predicates in the program, corresponding
to integrity checks P. The predicate P is always true/false with well-formed instances,
whereas the predicate is always false/true with malformed instances. One of our goals
is to accurately locate potential integrity check points in a binary program rather than
identify the checksum algorithm themselves.

2.2. Motivating Example and System Overview

As a motivating example, Figure 1 shows an input format example. This input for-
mat presents a common image format: the MagicNum field declares the file format; the
FileSize field indicates the real size of an input image; and the Width and Height fields
represent the width and the height of an input image. In this format, image data are

3Checksum. From Wikipedia. http:/en.wikipedia.org/wiki/Checksum.
4TAR. The gnu version of the tar archiving utility. http://www.gnu.org/software/tar/.
5Intel HEX. From Wikipedia. http:/en.wikipedia.org/wiki/Inte]_ HEX.

ACM Transactions on Information and System Security, Vol. 14, No. 2, Article 15, Publication date: September 2011.

Checksum-Aware Fuzzing Combined with Dynamic Taint Analysis and Symbolic Execution 15:5

1 void decode_image(FILE* fd){

2 e

3 int length = get_length(fd);

4 int recomputed_chksum = checksum(fd, length);
5 int chksum_in_file = get_checksum(fd);
6 if (chksum_in_file != recomputed_chksum)

7 error();

8 int Width = get_width(£fd);

9 int Height = get_height(fd);

10 if (Width==0 || Height==0)

11 error();

12 int size = Width*Height*sizeof (int);

13 int* p = malloc(size);

15 for(i=0; i<Height;i++){// read ith row to p
16 read_row(p + Width*i, i, fd);

Fig. 2. Vulnerable code snippet.

Checksum . Checksum
Identification :> Fuzzing :> Fixing :> Samples

Fig. 3. TaintScope system overview.

stored in row-major order. Note that the format ends with a checksum field. A four-
byte checksum is calculated on the preceding image content in the file for integrity
protection.

Figure 2 shows an example code that parses inputs from the example format. The
code first recomputes a checksum of an input file (line 4), reads the checksum stored
in the file (line 5), and then compares the two values (line 6). If the two values
mismatch, the code raises an error and exits immediately. Next, the code reads the
Width and Height fields. After simple checks (line 10), the code allocates memory of
size “Width*Height*sizeof (int)”. Finally, the code reads image data row by row into
the allocated buffer. However, a specially crafted image containing large width and
height values can cause an integer overflow in the above expression (line 12) lead to
an insufficient memory allocation at line 13. A heap overflow will eventually occur
when the code reads image data into memory.

Traditional fuzzing methods such as randomly modifying a well-formed input file
are unlikely to find such integer overflow vulnerability in Figure 2. Because a simple
modification breaks the integrity of the original input, the failed integrity check at line
6 will cause most generated test cases to be rejected. Furthermore, even if there was
no integrity check at line 6, traditional fuzzing methods would also be too inefficient.
In this example, only eight bytes (the Width and Height fields) in an input file are key
factors to trigger the integer overflow vulnerability; however, blind modifications need
to explore the whole input space. The probability of exactly modifying the Wwidth and
Height fields is very low.

In contrast, TaintScope leverages taint propagation information during program
execution to detect checksum checks and produce malformed inputs by taint-based
fuzzing and symbolic-execution-based fuzzing. The high-level overview of TaintScope
is shown in Figure 3. We use the program in Figure 2 to illustrate the basic workflow
of TaintScope. Note that TaintScope neither depends on the source code nor on the
input format specification.

Checksum Identification. TaintScope first runs the target program with well-formed
and malformed inputs to locate the divergence points among these execution runs.
The intuition is that checksum-based integrity checks behave like a classifier. While
all well-formed inputs pass the integrity checks, most malformed inputs fail to pass

ACM Transactions on Information and System Security, Vol. 14, No. 2, Article 15, Publication date: September 2011.

15:6 T. Wang et al.

because of integrity violations. We present the details of the checksum check point
identification approach in Section 3.1.

Fuzzing. Once a checksum check point is located, TaintScope can modify the program
by enforcing a control flow alteration at the check point to force the program to accept
all inputs regardless of checksum check failures.

TaintScope implements taint-based fuzzing (see Section 4.1) to generate malformed
inputs, and implements symbolic-execution-based fuzzing (see Section 4.2) to inspect
execution traces and detect potential vulnerabilities on the traces.

In this example, taint-based fuzzing will focus on modifying the input bytes that flow
into the function malloc. Since the checksum check has been disabled, the generated
test cases are most likely to trigger the integer overflow.

The symbolic-execution-based fuzzing first records the execution trace of the tar-
get program under test on a well-formed input, then symbolically replays the trace
and collects trace constraints on hot bytes. Symbolic-execution-based fuzzing uses a
solver to check if collected trace constraints are insufficient to avoid vulnerabilities at
security-sensitive operations. If the solver can produce a concrete solution to prove the
constraints are insufficient, the symbolic-execution-based fuzzing creates a new input
according to the solution to trigger the vulnerability.

In this example, collected trace constraints are Width!=0 && Height!=0, and the
constraint on line 6 is ignored due to the control flow alteration. Before invoking
the memory allocation function at line 13, since size is a symbolic value, TaintScope
checks whether an integer overflow could occur in the calculation of size. Because the
solver can find a solution (e.g., Width=0x80000001, Height=0x4), TaintScope directly
generates a new input to trigger the integer overflow issue.

Checksum Fixing. For the test cases that crash the programs with control flow alter-
ation, TaintScope needs to fix checksum fields in the test cases. Otherwise, the test
cases cannot pass the checksum checks in the original program and trigger the vulner-
abilities. Note that we do not apply checksum fixing in the previous phase for every
fuzzing test case because the fixing is relatively time-consuming. It makes more sense
to perform a delayed repair on only a small number of malformed test cases that actu-
ally cause the program to crash.

To pass the checksum check, the test case should satisfy the trace condition
Checksum(D) == T(C,). If both the raw data in the checksum fields C, and the rest
of the data D are symbolic values, for complex checksum algorithms such as MD5,
this constraint cannot be solved. However, TaintScope only treats the bytes in C, as
symbolic values. Thus, Checksum(D) is a runtime determinable constant value. The
complex constraint can be simplified to a simple one, which can be solved with cur-
rent solvers such as Z3%. Finally, TaintScope fixes the checksum field according to the
solver’s solution. If the fixed test case can still cause the original program to crash, a
potential vulnerability is detected.

3. CHECKSUM-AWARE FUZZING

Checksums are a simple error-detection scheme. The integrity of input data can be
checked by recomputing a new checksum and comparing it with the checksum value
stored in the input data. In general, checksum checks have three features.

First, since a checksum is usually used to protect a considerable number of contigu-
ous bytes, the recomputed checksum value most likely depends on many input bytes.
Meanwhile, the input checksum itself is usually a few bytes. Similar to Caballero

673. Z3 SMT Solver. http://research.microsoft.com/en-us/um/redmond/project/z3/.

ACM Transactions on Information and System Security, Vol. 14, No. 2, Article 15, Publication date: September 2011.

Checksum-Aware Fuzzing Combined with Dynamic Taint Analysis and Symbolic Execution 15:7

et al. [2010], we use taint degree to represent the number of input bytes that a value
depends on. If the taint degree of a value is larger than a predefined threshold, we call
it high-taint-degree; otherwise, we call it low-taint-degree. Furthermore, if the num-
ber of taint labels associated with the processor flags register (i.e., eflags register)
exceeds a predefined threshold value, the conditional jump instruction that is affected
by the flags register is called a high-taint-degree branch. Usually, a checksum check
is a high-taint-degree branch and there are a high-taint-degree value (i.e., the recom-
puted checksum value) and a low-taint-degree value (i.e., the input checksum value)
involved.

Second, checksum checks behave like a classifier: While all well-formed inputs pass
the integrity checks, most malformed inputs fail to pass because of integrity violations.
Thus, we assume that there are special branch predicates in the program, correspond-
ing to integrity checks. When the program runs with well-formed inputs, these branch
predicates are always True/False; however, when the program runs with malformed
inputs, these branch predicates are always False/True.

Third, checksum computation often does not produce any side effects on the rest of
execution if an input passes the checksum test [Caballero et al. 2010]. In other words,
input checksum values are only used in checksum checks. Thus, for any input, check-
sum constraints can always be satisfied by choosing a right input checksum value.

Based on the observations above, our checksum-aware fuzzing approach consists of
three key phases: locating checksum checks (Section 3.1), modifying and testing the
program (Section 3.2), and repairing checksum fields (Section 3.3).

3.1. Locating Checksum Check Points and Checksum Fields

In this section, we describe how to locate checksum check points in a program and
identify checksum fields in well-formed inputs.

3.1.1. Identifying High-Taint-Degree Branches. Given a well-formed input, Taint-Scope
locates high-taint-degree branches based on fine-grained dynamic taint analysis. To
this end all input data is tainted. TaintScope assigns each input byte a unique label.
TaintScope identifies the source of taint data by intercepting relevant system calls.
For example, for file tainting on Linux systems, TaintScope intercepts system calls
such as open, mmap, read, 1seek, and close. When the specified file is successfully
opened, TaintScope records the returned file descriptor £d. Each time the system reads
from file descriptor f£d, TaintScope scans the input buffer, and assigns each byte in the
input buffer with its offset in the file. According to the return value of read and 1seek,
TaintScope updates the file offset. A closed fd is not tracked any more.

TaintScope tracks the propagation of taint labels throughout the execution of the
program according to data dependence relationships. All values written by an in-
struction are marked with the union of all taint labels associated with values used
by the instruction. Note that the flags register is also considered. For example, as-
sume that the taint labels associated with registers eax and ebx are {0x6, 0x7} and
{0x8, 0x9}, respectively, after the execution of instruction “ADD eax, ebx”, the taint
labels on eax would be {0x6, 0x7, 0x8, 0x9}; since instruction ADD also affects the
flags register, the taint labels on the flags register are updated to {0x6, 0x7, 0x8,
0x9}. For another example, assume the taint label associated with ecx is {0x100}
and 0x8000000 is the base address of an untainted array, after the execution of this
instruction “MOV eax, [0x8000000+ecx*4]”,the eax would be associated with {0x100}.
Currently, TaintScope does not consider control-flow dependencies.

Before the execution of each conditional jump instruction, TaintScope checks the
taint labels associated with the flags register and determines whether the conditional

ACM Transactions on Information and System Security, Vol. 14, No. 2, Article 15, Publication date: September 2011.

15:8 T. Wang et al.

jump instruction is a high-taint-degree branch. If so, TaintScope logs the conditional
jump instruction and the input bytes it depends on.

3.1.2. Locating Divergence Points. Based on the high-taint-degree branch identifica-
tion technique, TaintScope first runs the program with several well-formed inputs and
identifies the always-taken and always-not-taken high-taint-degree branches. Specif-
ically, TaintScope builds two sets P; and Py, where P1/P¢ includes the high-taint-
degree conditional jump instructions that are always-taken/always-not-taken among
all executions.

Next, TaintScope runs the program with some malformed inputs and also builds
the always-taken and always-not-taken high-taint-degree branch sets P} and P|,. For
each well-formed input, we randomly modify a byte each time that can affect condi-
tional jump instructions in the set P; U Py to generate malformed inputs. TaintScope
particularly tracks the propagation of the modified byte. Even if a conditional jump
instruction is executed multiple times during a single run, TaintScope only takes into
account the action of the conditional jump instruction when it is affected by the modi-
fied byte.

The reason that we need to specially track the modified bytes is to deal with input
formats containing multiple checksum fields that are used to protect different parts of
an input. For example, a PNG format image consists of many chunks, and each chunk
has a CRC checksum. Even if we modify the bytes in the last chunk, other chunks
can still pass the checksum checks. Therefore, the conditional jump instruction corre-
sponding to the checksum check point has different actions in an execution. However,
TaintScope only focuses on the action affected by the modified byte. This means that
only the action of checksum test failure is noted.

Finally, TaintScope computes the set (P1 N Py) U (Po N P)). The conditional jump
instructions in (P1 N Py) U (Po N P)) behave completely different when the target pro-
gram runs with well-formed inputs and malformed inputs. TaintScope outputs such
instructions as checksum check points.

A special case is when the checksum value is longer than 4 bytes (in 32-bit ar-
chitectures). In this case, the program will most likely use multiple checks that are
corresponding to multiple branches to compare the checksum in the input with the
recomputed one. For example, an MD5 checksum is 16 byte long and the program may
use four 32-bit comparisons or a memcmp-like operation to perform the check.

Intuitively, the multiple branches are most likely corresponding to compound
Boolean conditions (i.e., conditions using logical operators such as and and or). The
control flow graphs formed by such branches have special features and can be iden-
tified by means of 2-way branches structuring algorithms [Cifuentes 1994; Wei et al.
2007]. Based on control flow analysis, we can structure the corresponding branches to
a compound conditional [Wei et al. 2007]. Once a branch in a compound conditional is
considered as a checksum check, we will further check other branches in the compound
conditional. If these branches perform checks on adjacent high-taint-degree memory
locations, we take the whole compound conditional as a checksum test.

Moreover, a memcmp-like operation may translate into a string comparison instruc-
tion preceded by a repeat string operation prefix (e.g., rep cmps). In this case, our tool
can accurately locate the checksum test point. However, a memcmp-like operation more
likely translates into a complicated loop. TaintScope currently does not deal with this
case, but in the future we can explore the side-condition identification method proposed
by Caballero et al. [2010].

3.1.3. Identifying Checksum Fields. Based on the observation that the recomputed
checksum value is usually a high-taint-degree value and the input checksum value

ACM Transactions on Information and System Security, Vol. 14, No. 2, Article 15, Publication date: September 2011.

Checksum-Aware Fuzzing Combined with Dynamic Taint Analysis and Symbolic Execution 15:9

is a low-taint-degree value, we use a method similar to Tupni [Cui et al. 2008] to iden-
tify checksum fields in well-formed inputs.

Specifically, for the conditional jump instructions in the set (P1NPy) U (PoNP)), our
tool backwards inspects instructions that can be used to perform a comparison (such as
test, sub and cmp) and directly or indirectly affect these conditional jump instructions.
Once an instruction uses a high-taint-degree value and a low-taint-degree value, the
input bytes that the low-taint-degree value depends on are considered a checksum
field.

Furthermore, since input checksums are not used any more once an input passes the
test, our tool will rerun the program with well-formed inputs and specially track the
identified checksum fields. Only when the identified checksum fields do not participate
in any constraints after checksum check points, we ensure that we can enforce a control
flow alteration at the identified checksum check points.

3.2. Binary Program Modification and Fuzzing

In this phase, TaintScope modifies the original program by enforcing a control flow
alteration at the checksum check point. The goal of the modification is to disable the
checksum test functionality in the program.

TaintScope implements an ELF/PE file format parser and directly locates and mod-
ifies the checksum check points in the raw binary file. If the conditional jump instruc-
tion is always-taken for well-formed inputs (e.g., “jcc NormalExecution”), TaintScope
uses a direct jump instruction (e.g., “jmp NormalExecution”)to replace the conditional
jump instruction; otherwise, if the conditional jump instruction is always-not-taken for
well-formed inputs (e.g., “jcc checksumErr”), TaintScope uses nop instructions to over-
ride the conditional jump instruction. The modified program will “accept” all kinds of
input regardless of checksum test failures.

Furthermore, TaintScope will run the modified program with the malformed inputs
and monitor for crashes. We discuss test case generation and vulnerability detection
methods in Section 4.

3.3. Repairing Test Cases Using Combined Concrete and Symbolic Execution

For the malformed inputs that can crash the modified program, TaintScope needs to
fix checksum fields in them so that they can pass the checksum check in the original
program.

TaintScope implements offline dynamic symbolic execution [Godefroid et al. 2008a];
that is, it records the execution trace and then symbolically evaluates the execution
trace to generate a correct checksum value for the malformed input.

Tracing. TaintScope first runs the original program with the malformed input, and
records the execution trace. For each executed instruction, the recorded information
includes the addresses and values of memory locations the instruction accesses, the
values of modified registers, and the instruction’s address.

The effects of some interesting system calls are also logged. For example, for the
file read system calls that read data from the input file into a memory buffer, the
recorded information includes the file position, the starting address of the buffer, and
the number of bytes read. This information will be used to build initial symbolic values
during the replay phase.

Replay. Next, TaintScope symbolically evaluates the execution trace, gathers trace
constraints on checksum fields, and generates a new input with a correct checksum
value.

ACM Transactions on Information and System Security, Vol. 14, No. 2, Article 15, Publication date: September 2011.

15:10 T. Wang et al.

TaintScope maintains a symbolic memory environment, which records a map M
from concrete addresses/registers to symbolic expressions, and a set of symbolic path
conditions. Initially, there are no symbolic values in the symbolic memory environ-
ment. When the input data in the checksum field are read into memory, TaintScope
creates a symbolic value (i.e., an 8-bit vector) for each input byte, and inserts the map-
pings from the concrete addresses to bit vectors into the map M.

For an N bytes memory read operation from a concrete address a, TaintScope looks
up the concrete addresses a, a+1, ... and a+N-1 in M and returns a concatenated bit-
vector M [a+N-1]@...@M [a]. N bytes memory writes to a concrete address are handled
similarly.

Although other dynamic symbolic execution tools such as Cadar et al. [2008]
and Elkarablieh et al. [2009] can reason about symbolic pointers, memory-object-
specific information such as a memory object’s starting address and size is required.
Without source code and debug information, we can collect heap objects information
at runtime by monitoring memory allocation functions. However, recovering informa-
tion about local variables (i.e., local structures and arrays) and global preallocated
variables at the x86 binary level is very challenging [Balakrishnan and Reps 2010],
because the binary code does not contain bounds for individual variables. BitScope
[Brumley et al. 2007] can deal with symbolic addresses at the x86 binary level, but
it needs to use a solver to determine the range of possible values of each symbolic
address.

Currently, TaintScope only handles global array reads that contain a symbolic index.
TaintScope uses a simple approach to infer the sizes of global arrays. TaintScope first
uses the IDA Pro? commercial disassembler to analyze the program, and implements
an IDA Pro plug-in to export all global variables identified by IDA Pro. The size of
a global variable is the space between current variable and the following variable.
TaintScope builds bit vector arrays for identified global arrays. For a memory read
from a symbolic address, if the concrete address of the symbolic address points to
a global array, TaintScope creates an array read expression. We leave full symbolic
pointer reasoning as future work.

Since TaintScope only treats the checksum fields as symbolic values and leaves the
majority input bytes as concrete values, the collected trace constraints are essentially
equal to a simple one ¢ == T(C,), where ¢ is a runtime determinable constant value.
Solving the constraints will generate a correct checksum field for the malformed in-
put. We can re-run the program with the fixed input. If the program still crashes, a
potential vulnerability is detected.

4. TEST CASE GENERATION AND VULNERABILITY DETECTION

To more effectively test the modified program and identify vulnerabilities on execu-
tion traces, TaintScope implements taint-based fuzzing and symbolic-execution-based
fuzzing techniques.

4.1. Taint-Based Fuzzing

Unlike traditional fuzzing tools that blindly change parts of a well-formed input, taint-
based fuzzing [Ganesh et al. 2009] specially focuses on modifying the input bytes that
affect the values used in security-sensitive operations.

Based on the fine-grained dynamic taint analysis, TaintScope can identify hot bytes
in a well-formed input. TaintScope considers input bytes that can pollute the argu-
ments of memory allocation functions (e.g., malloc, realloc) and string functions (e.g.,

"IdaPRO. www.hex-rays.com/idapro/idadown.htm.

ACM Transactions on Information and System Security, Vol. 14, No. 2, Article 15, Publication date: September 2011.

Checksum-Aware Fuzzing Combined with Dynamic Taint Analysis and Symbolic Execution ~ 15:11

1. int x, y;

2. x = read_16bits();

3. y = read_16bits();

4. if (x>0 && y>0 && x*y*4>x && x*y*4>y*4){
5 p = malloc(xxy*4);

6 if (p==NULL) return O;

Fig. 4. Pseudocode for the vulnerability CVE-2010-2170.

strcpy, strcat) to be hot bytes. Analysts can also configure TaintScope to check other
functions. Hot bytes that can influence memory allocation functions are set to small,
large or negative integer values; hot bytes that flow into string functions are partially
replaced by special strings (e.g., format directives %n, %p) or a long random string. For-
mat directives are closely related to format string vulnerabilities and long strings may
cause buffer overflow issues.

Taint-based fuzzing can dramatically reduce the size of the mutation space because
usually only a small portion of input data is hot bytes. Due to the similarity to well-
formed inputs, generated test cases satisfy many primitive constraints and have a
high probability to test code within the entire program. In addition, since extreme
values in generated test cases may directly affect the arguments of system calls or
other important APIs, such malformed test cases have a high probability to trigger
potential vulnerabilities.

On the other hand, taint-based fuzzing has an important limitation. Since taint-
based fuzzing does not consider trace conditions, it cannot guarantee that new inputs
can still reach the security-sensitive operations.

4.2. Symbolic-Execution-Based Fuzzing

TaintScope partially implements whitebox fuzzing [Godefroid et al. 2008a; Molnar
et al. 2009]. In general, whitebox fuzzing can create new inputs to explore different
paths (i.e., test case generation) and detect vulnerabilities on a single trace (i.e., vul-
nerability discovery). TaintScope mainly exploits the vulnerability discovery feature,
which is referred as symbolic-execution-based fuzzing in this article. Once a vulnera-
bility is detected, symbolic-execution-based fuzzing can directly construct a test case
to trigger the vulnerability.

As a complementary technique to taint-based fuzzing, we use the code snippet in
Figure 4 to show the advantage of symbolic-execution-based fuzzing. The code per-
forms complicated checks on variables x and y at line 4. Although well-formed inputs
can pass the validation, a subtle integer overflow exists when calculating x*y*4. In
other words, even if a path is executed multiple times, some subtle vulnerabilities may
be still hidden. It is very hard for taint-based fuzzing to produce such corner test cases
that can pass the validation checks and trigger the vulnerability at the same time.

Given an execution trace, TaintScope can reason about all possible values that
the path could be run with and check if trace constraints properly validate inputs.
Specifically, TaintScope extends offline dynamic symbolic execution technique used in
checksum repairing to vulnerability detection. TaintScope treats hot bytes as symbolic
values and collects trace constraints on hot bytes. When meeting security-sensitive
operations, TaintScope creates a predicate to describe the security property of the op-
erations, and checks whether the trace constraints and the predicate are satisfiable.
If the solver can find a concrete solution to prove that some input values can pass the
constraints and violate a security property, TaintScope will create a new input accord-
ing to the solution. If the new input can cause the program to crash, TaintScope finds
a vulnerability.

ACM Transactions on Information and System Security, Vol. 14, No. 2, Article 15, Publication date: September 2011.

15:12 T. Wang et al.

Specifically, TaintScope can detect integer overflow and buffer overflow issues. To
detect integer overflow vulnerabilities, TaintScope employs a similar method used in
IntScope [Wang et al. 2009a]. If the size argument of memory allocation functions is
a symbolic arithmetic expression, TaintScope emits a predicate that forces the arith-
metic expression to overflow, and then uses the solver to check whether the predicate
is satisfiable under a given set of collected trace constraints. A solution means an in-
put likely to cause an integer overflow. SmartFuzz [Molnar et al. 2009] can also detect
integer bugs at the binary program level based on type inference. While SmartFuzz
checks whether each arithmetic expression could overflow, TaintScope only checks the
arithmetic expressions used in security-sensitive operations.

In practice, we find that memory allocation functions will return NULL if the size
argument is too large. A NULL pointer check can usually detect memory allocation
errors and avoid the program crash. If the program does not crash, the integer overflow
vulnerability cannot be monitored. Thus, TaintScope checks whether the symbolic
arithmetic expression could overflow and the calculation result could be less than a
threshold value at the same time. The threshold value is chosen empirically.

To detect buffer overflow issues, TaintScope employs the method similar to
Elkarablieh et al. [2009]. In general, for heap objects, TaintScope monitors memory al-
location functions to obtain their sizes and starting addresses information; TaintScope
uses the sizes of stack frames to approximate the bounds of local objects. Similar
to Elkarablieh et al. [2009], TaintScope checks whether a symbolic address is confined
in a proper range.

5. SYSTEM IMPLEMENTATION

We have implemented a prototype of TaintScope, which can run on both Windows and
Linux systems. We introduce the implementation details in this section.

Taint Analysis and Tracing. TaintScope implements fine-grained taint analysis on top
of the PIN [Luk et al. 2005] binary instrumentation platform. TaintScope intercepts
low-level system calls and identifies the system calls relevant to input data.

TaintScope makes use of instruction instrumentation to track the propagation of
taint data. By routine instrumentation, TaintScope is able to check the context of
specified APIs before the execution of such APIs.

TaintScope can record an execution trace. To reduce the size of the trace file, all
executed instructions’ native codes are logged only once and stored in a separate file.
For example, assume the instruction xor ebx, ebx (native code 0x33 0xFF) is executed
multiple times, the native code is logged only once. Hence, the size of the trace file
is roughly proportional to the number of recorded instructions. Also, TaintScope can
only log the trace after input data are read into memory or ignore the instructions in
some GUI libraries that do not affect the propagation of the input data. To support
multithreaded applications, TaintScope builds separate trace files for each thread.

Dynamic Symbolic Execution and Constraint Solving. Because it is a significant challenge
to directly evaluate x86 instructions due to the complexity of the x86 instruction
set [Molnar et al. 2009; Brumley et al. 2007], TaintScope uses the VEX library in
Valgrind package [Nethercote and Seward 2007] to convert each x86 instruction in
the trace file into VEX intermediate representation (IR) and then performs dynamic
symbolic execution on the VEX IR. We have ported the VEX library to the Windows
platform.®

8We can provide the VEX library running on Windows systems on demand.

ACM Transactions on Information and System Security, Vol. 14, No. 2, Article 15, Publication date: September 2011.

Checksum-Aware Fuzzing Combined with Dynamic Taint Analysis and Symbolic Execution ~ 15:13

A single x86 instruction will be converted into a VEX block that contains a list of
VEX statements (i.e., IRStmt). A VEX statement is an operation with side-effects,
such as register writes, memory stores, and assignments to temporaries. VEX state-
ments contain VEX expressions (i.e., IRExpr), which represent constants, register
reads, memory loads, or arithmetic operations. We refer readers to [Nethercote and
Seward 2007] for more detailed information about VEX IR.

The shortcoming of VEX IR is that a single x86 instruction may be converted into
multiple IR statements. For instance, the instruction “adc esi, edx” will expand to
16 VEX statements. In addition, a few infrequently used x86 instructions cannot be
transformed by VEX library, such as “1s1, STMXCSR”. We just ignore these instructions.

We use Z3? as our solver. When input data are read into memory, TaintScope uses
Z3_mk_const to create bit-vectors variables (i.e., symbolic values). Z3 provides rich
APIs to build complex bit-vector arithmetic operations and also supports sign-sensitive
relational operations (signed/unsigned comparisons).

6. EVALUATION

In this section, we present our evaluation results. In Section 6.1 we present the ex-
periment setup. In Section 6.2 we evaluate the effectiveness of our checksum check
point identification approach. In Section 6.3, we evaluate the accuracy of checksum
field identification and the capability of repairing checksum fields for given test cases.
In Section 6.4, we evaluate the efficiency of our taint analysis and measure the portion
of hot bytes in well-formed inputs. Section 6.5 gives a case study of our symbolic-
execution-based fuzzing and shows how to apply our symbolic-execution-based fuzzing
to Adobe Flash Player. In Section 6.6, we show the vulnerabilities we detected in sev-
eral widely used applications.

6.1. Experiment Setup

We apply TaintScope to a large number of real-world applications, which are summa-
rized in Table I. The “OS” column in Table I indicates the operating system that the
applications run on.

For applications running on the Windows platform, our experiments are conducted
on a machine with Intel Core 2 Duo CPU at 3.0 GHz and 3.25GB memory, running
Windows XP Professional SP3; for applications on the Linux platform, our experiments
are conducted on a machine with Intel Core 2 Duo CPU at 2.4 GHz and 4.0GB memory,
running Fedora Core 10.

6.2. Checksum Check Points Identification

In this section, we evaluate the effectiveness of our checksum check point identification
method.

File formats and checksum algorithms. We choose six known file formats,' as shown in
the “Format” column in Table II. These six file formats employ different checksum
algorithms to calculate checksum values.

— PNG, a popular image format with lossless compression, supports two main types
of integrity-checking. First, PNG images are divided into logical data chunks, and
each chunk has an associated CRC stored with it. The integrity of an image can be
easily tested without decoding the image. Second, compressed data streams within

9See footnote 6.
10Note that TaintScope does not depend on knowing either file formats or checksum algorithms.

ACM Transactions on Information and System Security, Vol. 14, No. 2, Article 15, Publication date: September 2011.

15:14 T. Wang et al.

Table I. A List of Applications Used in Our Experiment

Category Application Version 0S
Google Picasa 3.1.0 Windows
Image Viewer Adobe Acropat 9.1.3 WiI:ldOWS
ImageMagick 6.5.2-7 Linux
Microsoft Paint 5.1 Windows
MPlayer SVN-28979 Linux
Media Player Gstreamer 0.10.15 Linux
Adobe Flash Player 10.0.45 Windows
Winamp 5.552 Windows
Web Browser Amaya 11.1 Windows
Dillo 2.1.1 Linux
Network Tool Snort 2.84.1 Linux
Tepdump 4.0.0 Linux
libtiff 3.8.2 Linux
XEmacs 21.4.22 Linux
wxWidgets 2.8.10 Linux
Other ClamAV 0.95.2 Linux
GNU Tar 1.22 Linux
objcopy 2.17 Linux
Open-vediff 0.6 Linux

PNG are stored in the zlib format [Deutsch and Gailly 1996]. Zlib format stores an
Adler32 checksum value of uncompressed data.

— PCAP'!,| a widely used format for dumping network packet traces, is supported by
many packet analyzers, such as Tecpdump, Snort, and Wireshark. Although a PCAP
file itself does not contain checksum fields, when parsing a PCAP file, packet ana-
lyzers need to check the checksums in TCP/UDP packets in the PCAP file.

—CVD™ is an acronym for ClamAV Virus Database. A CVD file has a 512-bytes
header structure, which stores an MD5 checksum value of the whole CVD file. When
loading a CVD file, ClamAV first checks the integrity of the CVD file.

— VCDIFF (Generic Differencing and Compression Data Format) [Korn et al. 2002] is
a general, efficient and portable data format suitable for delta encoding. Given
a “source file” and a “target file,” the VCDIFF format is used to describe the
delta file. During computing the delta file, the input files are partitioned into
chunks. Open-vcdiff project!® extends the standard VCDIFF format and attaches
an Adler32 checksum of the delta data for each chunk. Since the VCDIFF format
encodes unsigned integer values using a variable-sized format, Adler32 checksums
do not have a fixed length in a delta file.

— Tar'* archive format is widely used in Unixlike systems. A tar archive file is the
concatenation of one or more files. Each file in a “tar” package is preceded by a 512-
byte header that contains a checksum value for the whole header. The checksum
value is calculated by taking the sum of the unsigned byte values of the header block
and stored as octal numbers followed by a NULL character and a space character.

HPCAP. Next Generation Dump File Format. www.winpcap.org/ntar/draft/PCAP-DumpFileFormat.html.
12CVD. ClamAV Virus Database. http:/clamav.net/doc/latest/html/node54.html.

130pen-VCDiff. An encoder/decoder for the VCDIFF format. http://code.google.com/p/open-vediff/.

14See footnote 4.

ACM Transactions on Information and System Security, Vol. 14, No. 2, Article 15, Publication date: September 2011.

Checksum-Aware Fuzzing Combined with Dynamic Taint Analysis and Symbolic Execution 15:15
Table II. High-Taint-Degree Branches Identification Results
| Executable | Format | Checksum | |W| | HTDBS | HTDB16 | HTDB24 | HTDB32

PicasaPhotoViewer PNG CRC 3 1,079 881 544 544
Acrobat 3 16,472 10,537 10,537 10,537
Snort PCAP TCP/IP 3 2 2 1 1
Tepdump 3 8 2 1 1
sigtool CVD MD5 1 39 39 32 2
vediff VCDIFF Adler32 3 19 1 1 0
GNU Tar Tar Archive Tar 3 34 34 28 5
objcopy Intel HEX Intel HEX 3 38 23 23 23

We report the number of well-formed inputs we used (|W|) and the number of high-taint-degree branches
(HTDB) with threshold values of 8, 16, 24, and 32.

—Intel HEX' is a text format, with each line containing hexadecimal values encod-
ing a sequence of data and a checksum value of the data. The checksum value is
calculated by adding together the hex-encoded bytes, then leaving only the least
significant byte of the result, and finally making a two’s complement.

Evaluation Methodology. We test eight applications, as shown in the first column
in Table II. These eight applications can process file formats mentioned above.
Specifically,

— We input PNG images to two “closed source” image manipulation applications,
Picasa and Acrobat, and apply TaintScope to locate potential CRC check points
in the two applications.

— We input PCAP files to Tcpdump and Snort. The well-formed PCAP files are ob-
tained by capturing network traffic from our local machine. We specify “-v tcp -r”
options, which enable Tcpdump and Snort to read TCP packets from a saved PCAP
file and perform packet integrity checks such as verifying the IP header and TCP
checksums.

— With the “--info” option, sigtool included in the ClamAV package can verify the
integrity of a given CVD file and display detailed information about the file. The
well-formed CVD file used in our experiment is daily.cvd in ClamAV package.

—For the VCDIFF format, we test the application Open-vcdiff. By specifying
-checksum option, we first use Open-vcdiff to create three delta files. Then, we
apply TaintScope to locate the checksum check point when Open-vcdiff decodes
these delta files.

— For the Tar Archive format, we test GNU Tar. We first use GNU Tar to create three
well-formed tar archives. Then, we apply TaintScope to locate checksum checks
when GNU Tar extracts files from the tar archives.

— For the Intel HEX format, we test GNU objcopy, which can copy the contents of an
object file to another. In particular, GNU objcopy can translate an object file into
another object file in a different format. We apply TaintScope to locate checksum
checks when GNU objcopy translates an Intel HEX object file into other formats.

Experimental Results. The first step of our method is to run the target programs with
well-formed inputs and identify high-taint-degree branches. Table II summarizes the

15See footnote 5.

ACM Transactions on Information and System Security, Vol. 14, No. 2, Article 15, Publication date: September 2011.

15:16 T. Wang et al.

Table Ill. Divergence Point Identification Results

Executable | M| [cCP8 | CCP16 | CCP24 | CCP32
PicasaPhotoViewer 9 1 1 1 1
Acrobat 9 1 1 1 1
Snort 9 2 2 1* 1*
Tepdump 9 2 2 1* 1*
sigtool 3 1 1 1 1
vediff 9 1 1 1 0*
GNU Tar 9 1 1 1 1
objcopy 9 1 1 1 1

Detected? | | V | v | Miss 2 | Miss 3

We report the number of malformed inputs (|M|) and the number of
checksum check points (CCP) identified with threshold values of 8,
16, 24, and 32. A * sign means that a checksum check point is missed.

results. The fourth column (|W|) shows the number of well-formed inputs we use for
each program. We measure the number of high-taint-degree branches (HTDB) with
the threshold values of 8, 16, 24 and 32, as shown in the rightmost four columns in
Table II.

In general, with the increasing of the threshold value, the number of high-taint-
degree branches is decreasing. For the PNG format, TaintScope identifies a large
number of high-taint-degree branches. The main reason is that image data in PNG
format is compressed. Any byte in the decompressed data stream may depend on the
entire compressed data. Any check on the decompressed data causes a high-taint-
degree branch.

Next, TaintScope runs the target programs with malformed test cases and locates
the divergence point among all executions. Table III summarizes the results. The
second column (|M]|) presents the number of malformed inputs we used. We measure
the number of located checksum check points (CCP) with the threshold values of 8, 16,
24 and 32, as shown in the rightmost four columns in Table III.

Manual inspection reveals that TaintScope can accurately locate the checksum
check points with the threshold values 8 and 16. For Acrobat, TaintScope accurately
locates the CRC check point in a binary file ImageConversion.api. Due to the integrity
check failure, Acrobat refuses to decompress image data in malformed PNG images
and exits immediately. Thus, TaintScope does not locate the Adler32 checksum points.

However, TaintScope misses some checksum check points if we set the threshold
value to 24 and 32. The * signs in Table III mean that TaintScope misses a checksum
check point. For instance, Tcpdump and Snort first verify the IP header checksum
when parsing an IP packet. Since the IP Header checksum is computed on the header
fields [Postel 1981], the taint-degree of IP checksum check point is 20 bytes. Both the
threshold values 24 and 32 are too large. Similarly, the threshold value 32 causes that
TaintScope misses the checksum point in vediff. In our system, we have chosen 16 as
the threshold value by default because it well balances the coverage and efficiency of
our algorithm.

The time cost of this phase mainly depends on how many test cases we use and the
time spent on each test case. According to our experience, several well-formed test
cases and malformed test cases are enough to locate the checksum check points in
target programs. In general, processing a test case usually needs a few minutes (see
Table V). We will report the performance of our taint analysis in Section 6.4. Overall,
this phase can typically be done in tens of minutes.

ACM Transactions on Information and System Security, Vol. 14, No. 2, Article 15, Publication date: September 2011.

Checksum-Aware Fuzzing Combined with Dynamic Taint Analysis and Symbolic Execution 15:17

Table IV. Checksum Fields Identification and Fixing Results

| Executable | File Format | # Checksums | Checksum Length | Repaired? | Time (s) |
. Acrobat. PNG 4 4 J 41
PicasaPhotoViewer 106
Tepdump PCAP 8 2 N 58
vediff VCDIFF 1 5 Vv 9
tar Tar Archive 3 8 Vv 226
objcopy Intel HEX 4 2 Vv 121

6.3. Checksum Fields Identification and Repairing

We further evaluate the accuracy of checksum field identification and the capability of
repairing checksum fields for malformed test cases. We test six applications and file
formats. The results are shown in Table IV.

The third column in Table IV presents the number of checksum fields identified by
TaintScope in an input; the fourth column means the size (in bytes) of each checksum
field identified by TaintScope.

Manual inspection reveals that TaintScope accurately identifies the number and
the size of checksum fields in each well-formed instance. For example, TaintScope
identifies four 4-byte checksum fields in a PNG image. We use 010editor'®, a hex
editor with binary templates, to parse the PNG image for verification. The output of
010editor indicates that there are four chunks (e.g., IHDR, PLTE, IDAT, and IEND) in the
PNG image and each chunk has a 4-byte CRC checksum field. TaintScope identifies
eight 2-byte checksum fields in the well-formed PCAP file. For verification, we use
Wireshark!” to parse the PCAP file: there are four TCP packets, and each TCP packet
has an IP checksum field and a TCP checksum field.

The fifth column in Table IV indicates that TaintScope can automatically generate
valid checksum fields for given test cases. The experiments proceed as follows. First,
we deliberately alter the bytes in checksum fields in such well-formed inputs to gen-
erate malformed ones. Note that here we modify checksum fields instead of regular
data fields. The reason is that we want to show TaintScope can generate correct/valid
checksums for which we have ground truth (the original ones). Next, we input these
malformed inputs to the corresponding applications, and use TaintScope to record and
replay the execution traces. TaintScope treats the bytes in checksum fields as sym-
bolic values. After symbolically re-executing the traces, TaintScope generates new test
cases. In our experiments, these new generated test cases are identical with those
original well-formed ones, that is, TaintScope generates correct checksum fields.

The sixth column in Table IV shows the time (in seconds) TaintScope takes to replay
recorded traces and solve path constraints. In our experiments, the time spent on
fixing a given test case ranges from tens of seconds to several minutes.

In short, TaintScope can accurately identify checksum fields and automatically gen-
erate valid checksum fields for given test cases.

6.4. Hot Bytes Identification

In this set of experiments, we evaluate the performance of the fine-grained taint analy-
sis and measure the portion of hot bytes in well-formed inputs. Specially, our previ-
ous research [Wang et al. 2009a] found that many integer overflow vulnerabilities are

16010editor. The text/hex editor. http://www.sweetscape.com/010editor/.
1"Wireshark. Network Protocol Analyzer. http:/wireshark.org/.

ACM Transactions on Information and System Security, Vol. 14, No. 2, Article 15, Publication date: September 2011.

15:18 T. Wang et al.

Table V. Hot Bytes Identification Results
Executable Input Format | Input Size (Bytes) | # Hot Bytes #x86 Inst | Run Time

TIFF 5,778 18 191,759,211 2mb53s

2,020 18 82,640,260 1m30s

Display PNG 5,149 9 19,051,746 1mb4s
1,250 29 47,246,043 1m8s

JPEG 6,617 11 48,983,897 1m13s

6,934 9 48,823,905 1mlls

GIF 3,190 14 304,993,501 1m25s

6,529 43 536,938,567 2mb57s

PicasaPhoto PNG 2,730 18 712,021,776 5m16s
Viewer.exe 1,362 16 660,183,239 4m8s
BMP 3,174 8 310,909,256 1m21s

7,462 19 468,273,580 2m35s

BMP 1,440 6 658,370,048 4m25s

3,678 6 663,923,080 5m2s

Acrobat.exe PNG 770 21 297,492,758 3m8s
1,250 12 354,685,431 4m31s

JPEG 1,012 13 328,365,912 4ml4s

2,356 4 356,136,453 4m36s

closely related to memory allocation functions. Thus, we measure how many input
bytes can flow into memory allocation functions.

Table V shows the results of the evaluation on ImageMagick, Google Picasa, and
Acrobat. We input well-formed images (including the PNG, TIF, JPEG, BMP, and GIF
formats) to the three applications. Note that well-formed images are obtained either
from the Internet (using Google Image Search) or our local disks.

The “Input Format” and “Input Size” columns in Table V represent the format and
size of well-formed images, respectively. We measure the trace length and performance
overhead, as shown in the two rightmost columns. The performance overhead is ac-
ceptable. In most cases, taint analysis takes several minutes for a well-formed image.

We also count the number of hot bytes in well-formed input data, as shown in the
“Hot Bytes” column. The size of well-formed inputs is roughly in the range from 1,000
to 7,000 bytes, but the number of hot bytes is less than 50. The reason is that mem-
ory allocations during displaying an image usually depend on only a few fields in the
image, such as the width, length, and color depth fields.

TaintScope can further modify such bytes to generate malformed inputs. As we can
see in Table V, only a small portion of input data are hot bytes. Thus, taint-based
fuzzing can dramatically reduce the mutation space.

6.5. Symbolic-Execution-Based Fuzzing Case Study

This section presents a case study that uses the symbolic-execution-based fuzzing to
find vulnerabilities in Adobe Flash Player. Our experiment results are encouraging:
we detect 3 previously unknown vulnerabilities in Adobe Flash Player.

Adobe claims!® that Adobe Flash Player is the world’s most pervasive software plat-
form reaching 99% of Internet-enabled desktop in markets. Since Adobe Flash Player
is heavily-fuzzed and a mature production, it is very hard for traditional fuzzing tools

18 AdobeFlash. Flash Player penetration. http:/www.adobe.com/products/player_census/flashplayer/.

ACM Transactions on Information and System Security, Vol. 14, No. 2, Article 15, Publication date: September 2011.

Checksum-Aware Fuzzing Combined with Dynamic Taint Analysis and Symbolic Execution ~ 15:19

to detect previously unknown vulnerabilities. For instance, we use the MiniFuzz'® tool
from Microsoft to fuzz Adobe Flash Player. After 24 hours, MiniFuzz does not find
any vulnerability. Even with taint-based fuzzing, we still do not detect vulnerabilities
in Adobe Flash Player. However, our symbolic-execution-based fuzzing successfully
discovers 3 previously unknown vulnerabilities in Adobe Flash Player.

The input format of Adobe Flash Player (traditionally called “ShockWave Flash”)
SWF?° is a partially open repository for various text, video, audio and graphic formats.
A SWF file consists of a series of tagged data blocks, and the DefineBits tag and several
of its variations are used to define image characters with JPEG compression or PNG
compression. We find three previously unknown vulnerabilities in the code for parsing
the DefineBits tag and its variations. An attacker may exploit these vulnerabilities to
execute arbitrary code.

Testing Methodology. First, we choose four PNG images and four JPEG images and use
SWFTools?! to convert them to eight SWF files. TaintScope identifies one checksum
check point when Adobe Flash Player processes the SWF files created from PNG im-
ages. TaintScope modifies Adobe Flash Player to disable the checksum check. For the
SWF files created from JPEG images, TaintScope does not identify checksum checks.

Next, TaintScope runs the modified Adobe Flash Player with these SWF files and
logs the execution traces. Then, TaintScope replays each recorded trace, treats the hot
bytes as symbolic values and performs offline dynamic symbolic execution. TaintScope
detects vulnerabilities using the techniques described in section 4.2. We set a 5-minute
timeout for constraint solving. If Z3 cannot response a query in 5 minutes, TaintScope
treats the query as unsatisfiable.

In practice, we find that offline dynamic symbolic execution is very slow and the
number of instructions in a trace is very large. We do not negate constraints one by
one to generate new inputs that can explore different program paths.

Results. TaintScope inspects 8 traces in 24 hours, and each trace consumes roughly
3 hours. However, the results are encouraging. TaintScope successfully discovers three
previously unknown vulnerabilities and creates several crashing files.

Figure 4 shows the pseudocode for a new vulnerability we detect (CVE-2010-2170)
in Adobe Flash Player. Many other related trace constraints are not shown. Variables
x and y store two 16 bits values from input SWF files. The developers seem to be
aware of potential integer overflow problems and enforce several strict checks in line
4 which reject many malformed inputs. In addition, arbitrarily too large x*y*4 will
cause memory allocation failure that can be caught by Adobe Flash Player, resulting
in the integer overflow problem in line 5 still invisible. TaintScope successfully detects
the vulnerability and generates a crashing file. For example, x=0xfffa and y=0x4002
can trigger the integer overflow issue. In particular, there is a checksum check before
the memory allocation. TaintScope repairs the checksum field in the crashing file and
confirms the issue.

Table VI reports the statistics over all test runs. The first column presents the av-
erage input SWF file size in bytes (the number in parentheses is the mean number of
hot bytes). Note that only the hot bytes are treated as symbolic values. The second col-
umn shows the average trace length (the number of x86 instructions). Although there
are millions of x86 instructions on each trace, only a small portion are symbolically
evaluated, as shown in the third column. We also report the average number of VEX

19MiniFuzz. File Fuzzer. http://www.microsoft.com/security/sdl/getstarted/tools.aspx.
20SWF. The SWF File Format. http://www.adobe.com/devnet/swfl.
21SWFTools. SWF manipulation and generation utilities. http:/www.swftools.org/.

ACM Transactions on Information and System Security, Vol. 14, No. 2, Article 15, Publication date: September 2011.

15:20 T. Wang et al.

Table VI. Symbolic-Execution-Based Fuzzing Statistics Results

Input Size x86 Instrs Symbolic Instrs | VEX Stmts | Constraints | Time(s)
51,485.6 (16) | 95,771,481.2 4,318,044.4 29,739,150.2 357,414.5 9,678.7

IR statements in the fourth column. The fifth column reports the average number of
collected trace constraints and the rightmost column presents the mean time spent in
offline dynamic symbolic execution for a trace.

Observations. With the growth of the number of initial symbolic inputs, dynamic
symbolic execution becomes very slow and the memory consumption increases rapidly.
During the propagation of input data, more and more x86 instructions are symbol-
ically executed. In our experiment, if we mark all input bytes as symbolic values,
TaintScope aborts after collecting hundreds of thousands of trace conditions because
of running out of memory.

The other reason that causes dynamic symbolic execution to be expensive is the
wide use of encoded integers in the SWF format. To save space, a 32-bit integer can be
encoded in 1-5 bytes depending on the value. A large number of complex operations
(such as bitwise AND and XOR) are involved during the decoding process, leading to
the exponential growth of symbolic expressions.

Only marking hot bytes as symbolic values can significantly alleviate these prob-
lems. Even so, the number of collected trace constraints is very large. First, some
hot bytes were used as loop bounds and each loop iteration condition were collected.
Second, many nonsymbolic trace conditions are also included. In our current imple-
mentation, any expression that includes a symbolic factor is considered a symbolic
expression. For example, “x+1-x” is treated as a symbolic value. Although the Z3
solver provides an API Z3_simplify to simplify an expression, we find the simplifica-
tion may cause very heavy time overhead especially for complex symbolic expressions.
Instead, we only take the simple but fast heuristic strategy to determine whether an
expression is symbolic or not. Thus, the collected trace constraints may include many
nonsymbolic predictions.

6.6. Fuzzing Results

As a fuzzing system, TaintScope has already detected 30 severe vulnerabilities in
widely used applications and libraries, such as Microsoft Paint, Adobe Acrobat,
Adobe Flash Player, Google Picasa, ImageMagick, and Libtiff. Table VII summa-
rizes our results. The “#Vulns” column shows the number of vulnerabilities in each
application. If TaintScope locates the checksum checks, it modifies the program to dis-
able them. Otherwise, TaintScope directly performs taint-based fuzzing or symbolic-
execution-based fuzzing. The “Checksum-aware” column indicates whether detecting
the vulnerabilities requires disabling checksum checks.

We manually analyze the causes of most vulnerabilities and identify five vulnerabil-
ity types: buffer overflow, integer overflow, double free, null pointer dereference, and
infinite loop. According to our vulnerability reports, Secunia?’ and oCERT?? have con-
firmed and published security advisories for most of these vulnerabilities and vendors
have also released corresponding patches. The “Advisory” column shows the advisory
identifier information. CVE-xxxxs represent CVE (Common Vulnerabilities and Expo-
sures) identifiers and SAxxxxs are security advisories from Secunia. Since a CVE or
Secunia identifier may cover multiple vulnerabilities, the number of vulnerabilities in

228ecunia. Secunia Web site. http:/secunia.com/.
230CERT. Open Source Computer Emergency Response Team. http:/www.ocert.org/.

ACM Transactions on Information and System Security, Vol. 14, No. 2, Article 15, Publication date: September 2011.

Checksum-Aware Fuzzing Combined with Dynamic Taint Analysis and Symbolic Execution ~ 15:21

Table VII. Vulnerabilities Detected by TaintScope

| Package | Vuln-Type | # Vulns | Checksum-aware? | Advisory Rating
Microsoft Paint Int-Overflow 1 N CVE-2010-0028 | Moderate
Google Picasa Infinite loop 1 N N/A N/A
Int-Overflow 1 SA38435 Moderate
Adobe Acrobat Infinite loop 1 N CVE-2009-2995 | Extremely
Int-Overflow 1 N CVE-2009-2989 | Extremely
Adobe Flash Player | Int-Overflow 3 N CVE-2010-2170 | Extremely
Y CVE-2010-2171 | Extremely
ImageMagick Int-Overflow 1 N CVE-2009-1882 | Moderate
CamlImage Int-Overflow 3 Y CVE-2009-2660 | Moderate
LibTIFF Int-Overflow 2 N CVE-2009-2347 | Moderate
wxWidgets Buf-Overflow 2 N CVE-2009-2369 | Moderate
Double Free 1 Y
IrfanView Int-Overflow 1 N CVE-2009-2118 | High
GStreamer Int-Overflow 1 Y CVE-2009-1932 | Moderate
Dillo Int-Overflow 1 Y CVE-2009-2294 | High
Int-Overflow 3 Y CVE-2009-2688 | Moderate
XEmacs
Null-Deref 1 N N/A N/A
MPlayer Null-Deref 2 N N/A N/A
PDFlib-lite Int-Overflow 1 Y SA35180 Moderate
Amaya Int-Overflow 2 Y SA34531 High
Winamp Buf-Overflow 1 N SA35126 High
Total 30

Table VII does not match the number of identifiers. For example, the identifier CVE-
2009-2688 contains three vulnerabilities in XEmacs and the identifier CVE-2010-2171
contains two vulnerabilities in Adobe Flash Player.

The rightmost column shows the Secunia’s severity rating for the vulnerabilities.
“High” is typically used for remotely exploitable vulnerabilities and “Moderate” is typ-
ically used for vulnerabilities that require user interaction. Considering that some
vulnerabilities are still in the process of being fixed and/or may be easily exploitable,
we do not provide detailed information about these vulnerabilities at this time.

Adobe Acrobat can create PDF files from images. TaintScope constructs images (in
two different formats) which can cause Adobe Acrobat to crash or consume 100% CPU.
According to our report and the crashing test case, Secunia has confirmed the memory
corruption vulnerability and contacted the vendor. The vendor asked Secunia to post-
pone the publication of the advisory until a fix is available. We have also confirmed
the infinite loop in a binary file named ImageConversion.api and already sent the PoC
(proof of concept) image to Adobe PSIRT (Adobe Product Security Incident Response
Team). Adobe has published a security bulletin for the two vulnerabilities and released
patches.?*

Microsoft Paint has been included in all versions of Microsoft Windows.
TaintScope discovered an integer overflow in gdiplus.dll which causes an erroneous
memory allocation in the Paint program when Paint opens a malformed JPEG image.

24 Apsb09-15. Adobe Security Bulletins. http:/www.adobe.com/support/security/bulletins/apsb09-15.html.

ACM Transactions on Information and System Security, Vol. 14, No. 2, Article 15, Publication date: September 2011.

15:22 T. Wang et al.

509 wxPNGHandler::LoadFile(wxImage *image,
...//ignore the CRC checks

575 for (i = 0; i < height; i++){

577 if ((lines[i]l=(unsigned char*)malloc(width*4))

== NULL){
579 for (unsigned int n = 0; n < ij; n++)
580 free(lines[n]); //first time free()
581 goto error;
621 error:

630 if (lines)

631 {
632 for (unsigned int n = 0; n < height; n++)
633 free(lines[n]); //second time free()

Fig. 5. A double free vulnerability in wxPNGHandler::LoadFile() in wxWidgets 2.8.10.

Successful exploitation may allow execution of arbitrary code. Microsoft has published
a security bulletin MS10-00525 according to our report.

TaintScope also discovers an integer overflow and an infinite loop in Google Picasa.
We first sent the infinite loop information to the Google Security Team, however, after
the initial contact, we have not heard back from Google for months. Recently, we found
the infinite loop issue has been fixed in its new version. The integer overflow occurs in
PicasaPhotoViewer.exe when processing JPEG files, which finally causes a heap buffer
overflow.

Many detected vulnerabilities in Table VII require disabling checksum checks. As
an example, we present the double free vulnerability?® in wxWidgets, a popular open
source cross-platform GUI toolkit. The double free vulnerability can be exploited to
potentially execute arbitrary code via a specially crafted PNG file. A basic func-
tionality of wxWidgets is to load images in a variety of formats. Specifically, the
“wxPNGHandler: :LoadFile ()” function in wxWidgets is responsible for loading an im-
age in the PNG format. This function first checks the CRC checksum values in a PNG
image, and then processes the image data row by row. Figure 5 shows the source code
snippet of the function. Note that 1ines[n] may be freed twice at lines 580 and 633 if
the function malloc at line 577 returns a NULL pointer.

TaintScope accurately locates the CRC checksum check points in wxWidgets and
the checksum fields in PNG images. Meanwhile, TaintScope identifies the hot bytes
in well-formed PNG images which can affect the variable “width” used in line 577.
In fact, the variable “width” corresponds to the width field in a PNG image. At the
fuzzing phase, TaintScope modifies the hot bytes to some extremal values and alters
the execution flows at the checksum check points. Several malformed test cases trigger
the double free vulnerability in the function wxPNGHandler: :LoadFile (). At the phase
of repairing test cases, TaintScope first records the execution trace with a malformed
PNG image, and reexecutes the trace using dynamic symbolic execution. By solving
the trace constraints, TaintScope successfully generates a valid checksum value for
the malformed PNG image. The new PNG image can pass initial checksum checks
in wxWidgets and trigger the double-free vulnerability. Since the width field in a PNG
image is protected by checksum values, we believe the vulnerability cannot be detected
by random modification.

For more details on the published vulnerabilities in Table VII, we refer the read-
ers to Secunia?’. For instance, Secunia has developed exploits and PoC code for the

25MS10-005. Microsoft security bulletin.
http://www.microsoft.com/technet/security/Bulletin/256MS10-005.mspx.

268A35292. wxWidgets Double Free Vulnerabilities. http:/secunia.com/advisories/35292/.
27See footnote 22.

ACM Transactions on Information and System Security, Vol. 14, No. 2, Article 15, Publication date: September 2011.

Checksum-Aware Fuzzing Combined with Dynamic Taint Analysis and Symbolic Execution ~ 15:23

vulnerabilities in Gstreamer?® and Winamp?? (only available for certain types of vendors
and governments).
In summary, our experiments show the following.

— TaintScope can accurately locate the checksum check points in programs and per-
form checksum-aware fuzzing.

— Only a small portion of input data are hot bytes. Thus, taint-based fuzzing can
dramatically reduce the mutation space.

— While taint-based fuzzing provides a quick test on target programs, symbolic-
execution-based fuzzing carefully inspects an execution trace and nicely comple-
ments taint-based fuzzing.

— Dynamic symbolic execution is slow, but it is powerful. Based on offline dynamic
symbolic execution, TaintScope can find subtle vulnerabilities and fix checksum
fields.

— TaintScope successfully detects dozens of vulnerabilities in real-world programs.

7. DISCUSSION

In this section, we discuss the limitations in the current implementation of TaintScope.

First, TaintScope currently cannot deal with secure integrity check schemes, such
as keyed cryptographic hash algorithms or digital signature, which are designed to
protect against intentional data alteration. Although TaintScope can locate and bypass
such checks at the checksum-aware fuzzing phase, it is impossible for TaintScope to
automatically generate test cases with valid digital signatures. From software testing
point of view, some vulnerabilities could be hidden behind such complex application
defenses (e.g., digital signatures). We suggest the software developers disable such
defense mechanisms at testing phase. We leave the full study of this problem as future
work.

Second, the effectiveness of TaintScope may be limited when all input data are
encrypted. After data decryption, the complex data dependency relationships will
heavily influence hot bytes detection and checksum identification. A possible miti-
gation strategy is to configure TaintScope to track the decrypted data only. Recent
research such as ReFormat [Wang et al. 2009b], Dispatcher [Caballero et al. 2009] and
BitFuzz [Caballero et al. 2010] already shows some promising results to locate encryp-
tion/decryption routines. Such techniques could be combined with TaintScope to detect
the vulnerabilities when the target program processes the decrypted data.

Third, a program may utilize multi-layered checksum checks. In this case, we could
iteratively apply TaintScope to locate the checksum check points one by one. We leave
this as future work.

In addition, due to the complexity of the x86 instruction set, the current taint analy-
sis in TaintScope does not instrument all kinds of x86 instructions. TaintScope also
ignores the control flow dependencies. However, previous work [Clause and Orso 2009]
reveals that tracking control flow dependencies may make too much noise. Extending
TaintScope to track control flow propagation (similar to [Egele et al. 2007] and DY-
TAN [Clause et al. 2007]) and improving data flow propagation are left as future work.

8. RELATED WORK

Traditional Fuzzing. Miller et al. [1990] first proposed the concept of fuzzing. Their
simple tool generated streams of random characters, sent them to target programs,

288A35205. GStreamer Good Plug-ins PNG Processing Integer Overflow Vulnerability.
http://secunia.com/advisories/35205/.
295A35126. Winamp MP4 Processing Buffer Overflow Vulnerabilities. http:/secunia.com/advisories/35126/.

ACM Transactions on Information and System Security, Vol. 14, No. 2, Article 15, Publication date: September 2011.

15:24 T. Wang et al.

and was able to crash 25-33% of the utility programs on UNIX systems. Since then,
a wide range of fuzzing tools have been developed. Sutton et al. [2007] presented an
overview of fuzzing techniques and tools. Traditionally, there are two main ways to
get malformed inputs: data generation and data mutation [Oehlert 2005]. The for-
mer (e.g., Spike®’, Peach?!, SNOOZE [Banks et al. 2006]) generates malformed inputs
based on predefined specifications and the latter (e.g., FileFuzz32) mutates well-formed
inputs. However, the common drawback of traditional fuzzing techniques is that most
malformed inputs are prematurely dropped. To improve the effectiveness of fuzzing
tools, the following two categories of new techniques are proposed.

Symbolic-execution-based white-box fuzzing/unit testing. This technique has been widely
implemented in numerous tools, such as CUTE [Sen et al. 2005], DART [Godefroid
et al. 2005], SAGE [Godefroid et al. 2008a], SmartFuzz [Molnar et al. 2009], EXE
[Cadar et al. 2008], and KLEE [Cadar et al. 2008]. In general, based on code instru-
mentation or program tracing, these tools replace concrete input data with symbolic
values, collect and solve the constraints on execution traces and guide input error
detection and generation. When testing applications with highly-structured inputs,
such as compilers and interpreters, Godefroid et al. [2008b] and Majumdar and Xu
[2007] proposed a variation technique which employs input symbolic grammar spec-
ifications. These tools have proven to highly improve the effectiveness of traditional
fuzzing tools. They successfully detected serious bugs in GNU coreutils [Cadar et al.
2008], large shipped Windows applications [Godefroid et al. 2008a; 2008b], and Linux
file systems [Cadar et al. 2008].

Automatic generation of test cases with correct checksum fields but without know-
ing checksum algorithm is a great challenge. For simple checksum algorithms such
as integer addition, existing dynamic symbolic execution systems such as Replayer
[Newsome et al. 2006] are able to automatically generate correct checksums. How-
ever, as shown in Newsome et al. [2006], the checksum computation significantly in-
creases the complexity of the collected symbolic formula. Furthermore, previous stud-
ies [Brumley et al. 2008; Sharif et al. 2008] have revealed that current dynamic sym-
bolic execution engines and constraint solvers cannot accurately generate and solve
the constraints that describe the complete process of complex checksum algorithms.
Newsome et al. [2006] also proposed a reasonable scheme to deal with complex check-
sum algorithms, that is, iteratively constraining some of the input variables to have
the concrete values and then simplifying and solving the trace constraints. Instead,
TaintScope directly leaves all bytes concrete except those in the checksum fields, which
significantly reduces the complexity of the trace constraints.

The closest work to ours is BitFuzz [Caballero et al. 2010]. Besides the checksum
problem, BitFuzz can also deal with some encoding functions (such as decryption and
decompression) if BitFuzz can identify their inverse functions (such as encryption and
compression). While BitFuzz focuses on test case generation to explore the execution
space, TaintScope uses offline dynamic symbolic execution to detect vulnerabilities on
a single trace. In the future, we will also utilize BitFuzz’s approach to overcome the
encoding function problems.

Taint-analysis-based fuzzing. BuzzFuzz [Ganesh et al. 2009] is a taint-based fuzzing
tool. To track taint information, BuzzFuzz needs to instrument an application’s
source code. The instrumented code is responsible for identifying input data that can

30See footnote 1.
31See footnote 2.
32F{leFuzz. From iDefense Labs: http://www.labs.idefense.com/software/fuzzing.php.

ACM Transactions on Information and System Security, Vol. 14, No. 2, Article 15, Publication date: September 2011.

Checksum-Aware Fuzzing Combined with Dynamic Taint Analysis and Symbolic Execution ~ 15:25

influence the values at system calls. However, modern applications make extensive
use of third-party libraries. BuzzFuzz cannot instrument such libraries if source code
is unavailable, leading to the loss of taint information. In contrast, TaintScope directly
works on binary executables and can monitor the execution of all libraries. In addition,
TaintScope can bypass checksum checks in programs.

Flayer [Drewry and Ormandy 2007] is a taint tracing tool with the ability to redirect
the execution flows through the modification of conditional jump instructions. Flayer
is based upon functionality from Memcheck [Nethercote and Seward 2007] and marks
input data only with 0/1 label. Thus, Flayer cannot accurately track the impact of
input data on an application’s execution. Execution flow alteration is also used in
analyzing malware behavior, for instance, exploring multiple execution paths [Moser
et al. 2007], and forcing sampled execution to identify various kernel rootkit behaviors
[Wilhelm and Chiueh 2007].

Corpus Distillation®® is a feedback-driven fuzzing system that uses a code cover-
age heuristic to select and mutate input samples. In particular, to overcome check-
sum problems, Corpus Distillation designed the subinstruction profiling method, that
is, comparison instructions (such as immediate comparison and rep cmps) are bro-
ken into bit-sized chunks and the coverage score of these instructions depends on the
“depth” of comparison. Based on the subinstruction profiling, Corpus Distillation is
able to generate correct CRC checksums in PNG files without the requirement of con-
straint solving. However, due to the lack of fine-grained taint tracking and checksum
field identification, to pass the checksum checks, Corpus Distillation has to mutate all
bits in an input sample until it reaches checksum fields, which may heavily limit its
efficiency.

Moreover, Corpus Distillation and TaintScope can benefit from each other. While
TaintScope’s checksum check points locating and bypassing techniques can be used in
Corpus Distillation to improve the sub-instruction profiling method, the code-coverage-
based input sample selection and mutation technique in Corpus Distillation can also
be used in the fuzzing phase of TaintScope.

Many protocol reverse-engineering tools (such as Prospex [Comparetti et al. 2009],
Tupni [Cui et al. 2008], AutoFormat [Lin et al. 2008], Polyglot [Caballero et al. 2007],
Discoverer [Cui et al. 2007]) can be used to guide fuzzing tests. These tools can ex-
tract format specifications for input data by analyzing network traffic, monitoring the
execution of a program while it processes input data, or analyzing binary executables
directly. The extracted protocol specifications can be further translated into fuzzing
specifications. However, none of these systems explicitly discussed how to bypass
checksum checks.

In addition, Kang et al. [2009] proposed a trace matching algorithm to locate the
divergence point between two similar traces. This algorithm could also potentially be
applied to locate checksum check points in programs. Johnson et al. [2011] proposed
differential slicing method, which can be used to diagnose why malformed inputs cause
the program to crash and analyze the fuzzing results.

Finally, there are a significant amount of vulnerability detection studies based on
static analysis. We refer the readers to StaticAnalysis®* for further references. In par-
ticular, [Wang et al. 2009b] and [Cova et al. 2006] are two binary analysis tools which
can identify integer overflow vulnerabilities or insecure uses of sensitive C library calls
in binary executables. While TaintScope is mainly a dynamic fuzzing tool, it could also
benefit from the advances in this line of work. For example, TaintScope uses similar

33Making Software Dumber. http:/taviso.decsystem.org/making_software_dumber.pdf.
34StaticAnalysis. List of tools for static code analysis.
http://en.wikipedia.org/wiki/List_of_tools_for_static_code_analysis.

ACM Transactions on Information and System Security, Vol. 14, No. 2, Article 15, Publication date: September 2011.

15:26 T. Wang et al.

heuristics in [Wang et al. 2009b] to specially monitor the size arguments of memory
allocation functions and has discovered many integer overflow bugs.

9. CONCLUSIONS

This article presents TaintScope. First, TaintScope can locate checksum-based in-
tegrity checks in programs, then enforce execution flow alterations at located check-
sum check points to make malformed input to pass the checksum checks. Second,
TaintScope has two ways to produce malformed inputs, taint-based fuzzing and
symbolic-execution-based fuzzing. Taint-based fuzzing focuses on modifying hot bytes
in a well-formed instance, which dramatically reduces the mutation space. Symbolic-
execution-based fuzzing uses offline dynamic symbolic execution to collect trace con-
straints on hot bytes, which can find subtle vulnerabilities on the trace. Finally,
TaintScope can automatically fix the checksum fields in malformed test cases using
combined concrete and symbolic execution.

We apply TaintScope to 19 real-world applications. Experimental results show that
TaintScope can accurately locate the checksum checks in programs and dramatically
improve the effectiveness of fuzz testing. TaintScope has already identified 30 previ-
ously unknown vulnerabilities in several widely used applications.

REFERENCES

BALAKRISHNAN, G. AND REPS, T. 2010. Wysinwyx: What you see is not what you execute. ACM Trans.
Program. Lang. Syst. 32, 23:1-23:84.

BANKS, G., COVA, M., FELMETSGER, V., ALMEROTH, K., KEMMERER, R., AND VIGNA, G. 2006. SNOOZE:
toward a Stateful NetwOrk prOtocol fuzZEr. In Proceedings of the Information Security Conference
(ISC). Springer.

BOUTELL, T. 1997. PNG Specification. RFC 2083, Internet Engineering Task Force.

BRUMLEY, D., HARTWIG, C., KANG, M. G., LIANG, Z., NEWSOME, J., POOSANKAM, P., SONG, D., AND YIN,
H. 2007. Bitscope: Automatically dissecting malicious binaries. Tech. rep. CMU-CS-07-133, Carnegie
Mellon University.

BRUMLEY, D., WANG, H., JHA, S., AND SONG, D. 2007. Creating vulnerability signatures using weakest
preconditions. In Proceedings of the 20th IEEE Computer Security Foundations Symposium (CSF’07).
IEEE Computer Society, Los Alamitos, CA, 311-325.

BRUMLEY, D., POOSANKAM, P., SONG, D., AND ZHENG, J. 2008. Automatic patch-based exploit genera-
tion is possible: Techniques and implications. In Proceedings of the IEEE Symposium on Security and
Privacy (SP’08). IEEE Computer Society, Los Alamitos, CA, 143-157.

CABALLERO, J., YIN, H., LIANG, Z., AND SONG, D. 2007. Polyglot: Automatic extraction of protocol message
format using dynamic binary analysis. In Proceedings of the 14th ACM Conference on Computer and
Communications Security. ACM, New York, NY, 317-329.

CABALLERO, J., POOSANKAM, P., KREIBICH, C., AND SONG, D. 2009. Dispatcher: Enabling active botnet
infiltration using automatic protocol reverse-engineering. In Proceedings of the 16th ACM Conference
on Computer and Communications Security. ACM, New York, NY, 621-634.

CABALLERO, J., POOSANKAM, P., MCCAMANT, S., BABIC, D., AND SONG, D. 2010. Input generation via
decomposition and re-stitching: Finding bugs in malware. In Proceedings of the 17th ACM Conference
on Computer and Communication Security. ACM, New York. NY.

CADAR, C., DUNBAR, D., AND ENGLER, D. 2008. Klee: Unassisted and automatic generation of high-
coverage tests for complex systems programs. In Proceedings of the 8th USENIX Conference on Op-
erating Systems Design and Implementation (OSDI’'08). USENIX Association, Berkeley, CA, 209-224.

CADAR, C., GANESH, V., PAWLOWSKI, P. M., DILL, D. L., AND ENGLER, D. R. 2008. Exe: Automatically
generating inputs of death. ACM Trans. Info. Syst. Sec. 12, 2, 1-38.

CIFUENTES, C. 1994. Reverse compilation techniques. Ph.D. thesis, Queensland University of Technology,
Australia.

CLAUSE, J. AND ORSO, A. 2009. Penumbra: Automatically identifying failure-relevant inputs using dy-

namic tainting. In Proceedings of the 18th International Symposium on Software Testing and Analysis
(ISSTA09). ACM, New York, NY, 249-260.

ACM Transactions on Information and System Security, Vol. 14, No. 2, Article 15, Publication date: September 2011.

Checksum-Aware Fuzzing Combined with Dynamic Taint Analysis and Symbolic Execution ~ 15:27

CLAUSE, J., L1, W., AND ORSO, A. 2007. Dytan: A generic dynamic taint analysis framework. In Proceedings
of the International Symposium on Software Testing and Analysis (ISSTA07). ACM, New York, NY,
196-206.

COMPARETTI, P. M., WONDRACEK, G., KRUEGEL, C., AND KIRDA, E. 2009. Prospex: Protocol specifica-
tion extraction. In Proceedings of the 30th IEEE Symposium on Security and Privacy (SP09). IEEE
Computer Society, Los Alamitos, CA, 110-125.

CoOVA, M., FELMETSGER, V., BANKS, G., AND VIGNA, G. 2006. Static detection of vulnerabilities in x86
executables. In Proceedings of the 22nd Annual Computer Security Applications Conference (ACSAC’06).
IEEE Computer Society, Los Alamitos, CA, 269-278.

Cui, W., KANNAN, J., AND WANG, H. J. 2007. Discoverer: Automatic protocol reverse engineering from
network traces. In Proceedings of 16th USENIX Security Symposium (SS’07). USENIX Association,
Berkeley, CA, 1-14.

Cui, W., PEINADO, M., CHEN, K., WANG, H. J., AND IRUN-BRIZ, L. 2008. Tupni: Automatic reverse engi-
neering of input formats. In Proceedings of the 15th ACM Conference on Computer and Communications
Security (CCS’08). ACM, New York, NY, 391-402.

DEUTSCH, P. AND GAILLY, J.-L. 1996. ZLIB compressed data format specification version 3.3. RFC 1950,
Internet Engineering Task Force.

DREWRY, W. AND ORMANDY, T. 2007. Flayer: Exposing application internals. In Proceedings of the 1st
USENIX Workshop on Offensive Technologies (WOOT 07). USENIX Association, Berkeley, CA, 1-9.
EGELE, M., KRUEGEL, C., KIRDA, E., YIN, H., AND SONG, D. 2007. Dynamic spyware analysis. In
Proceedings of the USENIX Annual Technical Conference (ATC’07). USENIX Association, Berkeley, CA,

1-14.

ELKARABLIEH, B., GODEFROID, P., AND LEVIN, M. Y. 2009. Precise pointer reasoning for dynamic test
generation. In Proceedings of the 18th International Symposium on Software Testing and Analysis
(ISSTA09). ACM, New York, NY, 129-140.

GANESH, V., LEEK, T., AND RINARD, M. 2009. Taint-based directed whitebox fuzzing. In Proceedings of
the 31st International Conference on Software Engineering (ICSE’09). IEEE Computer Society, Los
Alamitos, CA, 474-484.

GODEFROID, P., KLARLUND, N., AND SEN, K. 2005. Dart: Directed automated random testing. In Pro-
ceedings of the ACM SIGPLAN Conference on Programming Language Design and Implementation
(PLDIo5). ACM, New York, NY, 213-223.

GODEFROID, P., KIEZUN, A., AND LEVIN, M. Y. 2008a. Grammar-based whitebox fuzzing. In Proceedings
of the ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI’08).
ACM, New York, NY, 206-215.

GODEFROID, P., LEVIN, M., AND MOLNAR, D. 2008b. Automated whitebox fuzz testing. In Proceedings of
the 15th Annual Network and Distributed System Security Symposium.

JOHNSON, N., CABALLERO, J., CHEN, K. Z., MCCAMANT, S., POOSANKAM, P., REYNAUD, D., AND SONG,
D. 2011. Differential slicing: Identifying causal execution differences for security applications. In
Proceedings of the 32nd IEEE Symposium on Security and Privacy (Oakland’11).

KANG, M. G., YIN, H., HANNA, S., MCCAMANT, S., AND SONG, D. 2009. Emulating emulation-resistant
malware. In Proceedings of the 2nd Workshop on Virtual Machine Security (VMSec).

KORN, D., MACDONALD, J., MOGUL, J., AND VO, K. 2002. The VCDIFF generic differencing and compres-
sion data format. RFC 3284, Internet Engineering Task Force.

LIN, Z., JIANG, X., XU, D., AND ZHANG, X. 2008. Automatic protocol format reverse engineering through
context-aware monitored execution. In Proceedings of the 15th Annual Network and Distributed System
Security Symposium.

LUK, C.-K., COHN, R., MUTH, R., PATIL, H., KLAUSER, A., LOWNEY, G., WALLACE, S., REDDI, V. J., AND
HAZELWOOD, K. 2005. Pin: Building customized program analysis tools with dynamic instrumentation.
In Proceedings of the ACM SIGPLAN Conference on Programming Language Design and Implementa-
tion (PLDI). ACM, New York, NY, 190-200.

MAJUMDAR, R. AND XU, R.-G. 2007. Directed test generation using symbolic grammars. In Proceedings
of the 6th Joint Meeting on European Software Engineering Conference and the ACM SIGSOFT Sym-
posium on the Foundations of Software Engineering (ESEC-FSE Companion’07). ACM, New York, NY,
553-556.

MILLER, B. P., FREDRIKSEN, L., AND BRYAN, S. 1990. An empirical study of the reliability of UNIX utilities.
Comm. ACM 33, 12, 32-44.

MoBB. 2006. http://browserfun.blogspot.com.
MOoKB. 2006. Month of Kernel Bugs. http:/projects.info-pull.com/mokb/.

ACM Transactions on Information and System Security, Vol. 14, No. 2, Article 15, Publication date: September 2011.

15:28 T. Wang et al.

MOLNAR, D., L1, X. C., AND WAGNER, D. A. 2009. Dynamic test generation to find integer bugs in x86
binary linux programs. In Proceedings of the 18th USENIX Security Symposium.

MOSER, A., KRUEGEL, C., AND KIRDA, E. 2007. Exploring multiple execution paths for malware analysis.
In Proceedings of the IEEE Symposium on Security and Privacy (SP’07). IEEE Computer Society, Los
Alamitos, CA, 231-245.

NETHERCOTE, N. AND SEWARD, J. 2007. Valgrind: A framework for heavyweight dynamic binary instru-
mentation. In Proceedings of the ACM SIGPLAN Conference on Programming Language Design and
Implementation (PLDI'07). ACM, New York, NY, 89-100.

NEWSOME, J., BRUMLEY, D., FRANKLIN, J., AND SONG, D. 2006. Replayer: Automatic protocol replay by
binary analysis. In Proceedings of the 13th ACM Conference on Computer and Communications Security
(CCS’06). ACM, New York, NY, 311-321.

OEHLERT, P. 2005. Violating assumptions with fuzzing. IEEE Sec. Priv. 3, 2, 58—62.

POSTEL, J. 1981. Internet protocol. RFC 791, Internet Engineering Task Force.

SEN, K., MARINOV, D., AND AGHA, G. 2005. Cute: A concolic unit testing engine for c. In Proceedings of the
10th European Software Engineering Conference Held Jointly with 13th ACM SIGSOFT International
Symposium on Foundations of Software Engineering (ESEC/FSE-13). ACM, New York, NY, 263-272.

SHARIF, M., LANZI, A., GIFFIN, J., AND LEE, W. 2008. Impeding malware analysis using conditional code
obfuscation. In Proceedings of the 15th Annual Network and Distributed System Security Symposium.

STALLINGS, W. 2005. Cryptography and Network Security 4th Ed. Prentice-Hall, Inc., Upper Saddle River,
NJ, USA.

SUTTON, M., GREENE, A., AND AMINI, P. 2007. Fuzzing: Brute Force Vulnerability Discovery. Addison-
Wesley Professional.

WANG, T., WEI, T., LIN, Z., AND ZoU, W. 2009a. IntScope: Automatically detecting integer overflow vul-
nerability in X86 binary using symbolic execution. In Proceedings of the 16th Annual Network and
Distributed System Security Symposium.

WANG, Z., JIANG, X., CUI, W., WANG, X., AND GRACE, M. 2009b. Reformat: Automatic reverse engineer-
ing of encrypted messages. In Proceedings of the 14th European Conference on Research in Computer
Security (ESORICS’09). Springer-Verlag, Berlin, 200-215.

WEI1, T., MAO, J., Zou, W., AND CHEN, Y. 2007. Structuring 2-way branches in binary executables. In
Proceedings of the 31st Annual International Computer Software and Applications Conference (COMP-
SAC’07). IEEE Computer Society, Los Alamitos, CA, 115-118.

WILHELM, J. AND CHIUEH, T.-C. 2007. A forced sampled execution approach to kernel rootkit identifica-
tion. In Proceedings of the 10th International Conference on Recent Advances in Intrusion Detection
(RAID’07). Springer-Verlag, Berlin, 219-235.

WONDRACEK, G., MILANI COMPARETTI, P., KRUEGEL, C., AND KIRDA, E. 2008. Automatic network pro-
tocol analysis. In Proceedings of the 15th Annual Network and Distributed System Security Symposium
(NDSS08).

ZALEWSKI, M. 2007. Bunny-the-fuzzer: Instrumented c code security fuzzer.
http://code.google.com/p/bunny-the-fuzzer/.

Received August 2010; revised January 2011, March 2011; accepted April 2011

ACM Transactions on Information and System Security, Vol. 14, No. 2, Article 15, Publication date: September 2011.

