WOA 2005 144

Secure, Trusted and Privacy-aware Interactions ir
Large-Scale Multiagent Systems

Federico Bergenti
Dipartimento di Ingegneria dell'lInformazione
Universitl degli Studi di Parma
Parco Area delle Scienze 181/A, 43100 Parma, Italy
Email: bergenti@ce.unipr.it

Abstract— One of the inherent problems of large-scale, open  2) With guarantees of a desired level of security and trust,

multiagent systems is the lack of mechanisms and tools to guar- exploiting the minimum possible number of trusted
antee legally valid interactions. Agents are supposed to perform parties

crucial tasks autonomously and on behalf of humans; however, . ) ) . .
(i) they are not legal persons on their own, andjii) of a full legal Our study of these issues is concretized in the realizatian o

corpus for the virtual world and its inhabitants is yet to come. model capable of representing a secure, trusted and privacy
Therefore, the ultimate responsible for the actions of an agent gware interaction between two agents. The generalization o
is its developer. In this paper we address an innovative model this model to multi-party interactions is quite straigitfard,

of interaction between agents that leads to an increase of the but it h tive d intion i t of th f thi
level of security and trust in privacy-aware, interaction-intensve utIts exhaustive description Is out of the scope of thisepap

multiagent systems. In particular, after a brief introduction, we Our work is based on the introduction of two closely-
focus in Section 1l on some common problems related to trust related abstractionsyalidation-Oriented OntologiegvVOO9

and security in real-world, liable interactions. In Section Ill, we  and Guarantors A VOO is a signed set containing an ontol-

address these problems and outline some abst_ractlons that we u_seOgy [1] and all runtime tools needed to assert that a pasticul
to guarantee a sound level of security and privacy-awareness in

interactions with third-party (possibly unknown) agents, whethe individual of the world actually belongs to a certain family

human or not. Then, in Section IV we describe the design of an individuals. Guarantors are agents that, in some sensg, pla
API that we implemented to provide developers with a general- the role of middleman in interactions. Guarantors are éaist
purpose, reusable means to realize secure, trusted and privacy py all interacting parties and they are in charge of support-
aware multiagent systems. To conclude, in Section V we briefly ;4 interactions by providing (under their responsib)lisl
discuss our model and outline directions of future development.
necessary VOOs.
This paper is organized as follows: next section describes

. INTRODUCTION some crosscutting problems of two-party interactions and
Agent technology is quickly evolving towards the realinati I mo.t|vates why we need something more that av§1|lable
of complex societies of agents. Just to cite one recent dmml&echmques and tools to guarantee security, trust andgriva

: ; multiagent systems. Section Il briefly describes our maahel
the aims and scope of the IST project CASCOM [4] sho i .
! P broJ 141 Wt{oduces the notions of VOOs and Guarantors. Section IV

how agents are becoming more and more relevant in import h " del and it bstracii b
sectors, e.g., healthcare and personal data managemést. OWS NOW We SUpport our modet and Its new abstractions by
scribing an API that we realized to support developers in

o . e
evolution is not yet matched by an equivalent legal develop-" . . ' .
y y d 9 E—bew everyday work. Finally, Section V briefly discusses ou

ment. The lack of a legal substrate capable of grounding t del t int int ting directi f devel at
interactions between agents ultimately means that eveegcas modet fo point Some Interesting direction of developmett an
to show its wide applicability in real-world scenarios.

of interactions (e.g., see [11]) with other (possibly unknd
third-party agents must be explicitly treated by the depeto Il. PROBLEMS IN TWO-PARTY INTERACTIONS

Mqreover, for a legal point O.f view, the develop_er 1S the The first assumption that we take in the discussion of our
_ult|mate responsible for the f_;lctlons .Of. !ts agents_. Thmn_ model is that, from the point of view of security, trust and
Is then exacerbatg d by the impossibility of tracmg- gll @S ivacy, we can always reduce any two-party interactioréo t
agents perform: if we cannot guarantee traceability [19] ]Ict of signing of a contract. Then, we assume that proposals

the actions of individual agents, no law would be sufficie nd agreements between interacting parties are exchanged i

to pre(\gebnt. ancli punish rg?ndaclicmus agents (Whether: humar}r%r form of individuals of known ontologies. This assumptio
not). viously, traceability does not guarantee that &gen,, s agents to manage the information contained in pro-

EOUld ?]Ot mlsb%hlz_ave;?gyway, i th(_ay dohso, (_)tfgerhagf-:-ntsdvo osals and agreements in a friendly way, e.g., to reasort abou
ave t_ € po§S| |.|ty 0 emonstratmg the misbe .aV|our. . proposals and to assert the formal validity of proposalénatia
Having said this, the ultimate goal of our work is to providg,e constraints of the ontology.

mechanisms and tools to support agents in interacting: All in all, the assumption of modelling interactions as

1) In a secure, traceable and privacy-aware way; and contracts that are individuals of known ontologies is ab-



WOA 2005 145

solutely general and has some remarkable advantages. BheProblem 2. Trusting ldentities
most interesting advantage that we see is the possibility ofT

combining simple ontologies into complex models of P'Oeqal validity. Therefore, the problem of checking the ititées

posals and agreements. We can compose simple OntOIOQJ Mvolved agents is obviously critical. Unfortunatelysianple

mto' cpmplex 'des.cnptlons _Of, .proposals anq agreem.ent's? ﬂHatic control of identities by means of certificates [6],if7in-
avoiding duplication of definitions and possible ambigs adequate because, e.g., certificates can be revoked or&eys c
The second advantage that we see in our working assurg-stolen. This inadequacy should not be surprising bedause
tion is that it greatly simplifies the creation and validatios yery common also in human interactions. The identificatio
of proposals and agreements. The creation of a proposaiSagents in a secure, trusted and privacy-aware multiagent
reduced to the creation of one or more individuals of knowgystem can be performed only through a set of runtime tools
ontologies, with properties set accordingly to given valugapable of validating certificates, and thus realizing ated
(potentially specified in external policies). Controllithe gqurce of identification.
suitability of a proposal simply reduces to checking whete  The problem of checking identities is closely related to the
candidate proposal actually belongs to the family of adibiss e resentation of identities. The identification code & ahly
proposals described in the referenced ontology. means that we have to validate the identity of a legal person
Finally, ontologies expressed in common formats are eas{lyhysical or not). Therefore, one of the very basic issues
mapped into human readable documents for a subsequ@at we have to tackle is how to represent identities in an
inspection of the agreements that software agents may hagent-processable way. In our model, we decided to design
autonomously signed. an ontology describing legal persons and their attributes a
to associate this ontology with a set of general-purposks too
for addressing the majority of problems related to idergific
tion. The connection between this ontology and its tools is

Ontologies seem to be a suitable means for describing agré&inforced by the necessity of a common trusted signer.
ments, but any attempt to use them in real-world scenarioslt is worth noting that in order to fully exploit the possiiyl
immediately encounters a problem: How an agent could tr@t having runtime tools capable of providing some sort of
a new ontology? Suppose that a seller of bandwidth requi@éarantees regarding sensible tasks on an ontology, beth th
to negotiate agreements with potential customers using @mtology and its associated tools must have the same levels
ontology available in some public repository. This ontglogOf trust and security. Let us consider these two examples to
may model some property as being “required by local lawsetarify this point.

How could customers trust this requirement if they have 1) Case 1. Trusted ontology - Untrusted too&uppose that
no trust relationship with the seller that pointed it to thi§wo negotiating agents trust the same ontology (i.e., thest t
ontology? Could a customer (in some sense) validate tH publisher of the ontology) but they use untrusted sesvic
ontology to decide whether to trust it or not? to perform validations. They exchange proposals until an

Another facet of this problem occurs in the case of agdreement is reached and they mutually check their idestiti
ontology that is partially non-disclosed. Let us suppost tihe using an untrusted tool. Since they do not trust the identity
aforementioned seller creates its ontology and splitadtiwo Verification tool, they can both suppose that they are sggnin
parts: a public part describing valid proposals and agreésne @n agreement with an unknown party.
and a private part used to model the policies that it employs t 2) Case 2. Untrusted ontology - Trusted todBuppose
enforce bandwidth reservations, i.e., the policies thatsiés that we have an identity-verification tool that receives in
to reason on proposals. This last part contains backgroufgut an ontology and an identity, and verifies the identity
knowledge on the marketing strategies of the seller and itils@ database. What happens if someone gives formally valid
vital not to disclose this knowledge to potential compesito (compliant with the ontology), but legally void identity'm8e
In this case, a full fledged reasoning on the ontology could B¢ given identity matches the record in the database of
done only by accessing the whole ontology, and only partigentities, the tool would return an affirmative answer, but
reasoning is possible for customers. this identity is legally void and therefore unusable in agn

Moreover, we have to take into account a third (very seriou§)'mal agreements.
facet of this problem: there is no way to validate the adhegen _
of the ontology to real-world laws, without involving highl ~ These two examples show that both ontology and runtime

specialized jurists. Obviously, no potential customer licae  t00IS must be trusted and secure. If any of the two has not a
in the position of performing this sort of validation. suitable level of trust and security, the combined use afithe

mill not result in a secure and trusted interaction.

he ultimate aim of our model of interaction is to guarantee

A. Problem 1. Trusting Ontologies

In the end, all these exemplified facts of the same proble
i.e., trusting the ontology, show that trust cannot be given
to an ontology per se: it must be accorded to its signer.
Ontologies used to model formal agreements and contract§he analysis of the two-party interaction outlined in the
must be provided by trusted and liable signers. previous section allows to introduce two abstractions that

IIl. TRUST, CONTRACTS AND GUARANTORS



WOA 2005 146

we can generally use to model secure, trusted and privacy- contractc; i.e., a certain granted value that it renounces

aware interaction between two agents. These closelyerelat to, when signing contraat;

abstractions, namely Validation-Oriented Ontologies Q&D 3) P.. is the penalty of the contract, i.e., the value that

and Guarantors, are briefly described in this section. agent X receives if the contract fails because of the
The problem of defining trust has been addressed in many other party.

different ways [15]. While we recognize the importance of The contract gives to its signers the absolute security of
cognitive models [5] to quantify trust, we start from theeceiving the stated values, i.e.:

definition given in [9] to provide a probabilistic interpagion 1) if the contract is respected, ageXtreceivesR, , with
of trust. In particular, if“Trust is the subjective probability probability one; ’

by which an individual, A, expects that another individual, 2) if the contract fails because of agéntagentX receives
B, performs a given action on which its welfare depends” P., with probability one.

It is reasonable_t.o model Urust in terms of an estimation fnother assumption that we take concerns the order between
the real probability by which B would perform the targe

. . . ) . eward, investment and penalty in a subjective evaluaiiés.
action. Many factors contribute to this estimation [11]3]i1 : . P y )
. ; are interested in contracts whose parameters are ordered as
nonetheless we use a blackbox approach, in which trust

modelled as a random variable in an interifal ., p .]. The féows:
only assumption that we take is that such an estimation is a
reasonable approximation of the real value of the quantity. This inequality expresses the fact that contracts are advan
Our probabilistic model of trust is out of the scope of thisageous but risky. This, in turn, implies that an agent signs
paper, and we simply enumerate the quantities that we expii contract in the hope that it would be respected by the

Pc,m < Ic,.r < Rc,m (1)

in our treatment: other signer, since in case of failure it would experience th
1) pr., the probability that the informatioh provided by following loss:
agentX is correct; I, — Py 2

2) ez, the probability that agenk” would adhere to all pyrthermore, each agent does not consider its own failure
the obligations stated in contract _ probability, since it will only consider contracts that iarc
3) teay, the level of trust agenX has in agent” with  reasonably respect; nevertheless the uncertainty abeotier
respect to contraat; . ~ signer remains.
4) Pa,z, the minimum value of trust in an estimation, i.e., Taking this probabilistic model that we briefly described
the lower bound of the probability distribution functionhere and that is subject for an in-depth investigation iatare
of trust; _ _ ~__ paper, we can provide a probabilistic description of a two-
5) Po,e, the maximum level of trust in an estimation, i-€.party interaction. From the point of view of security, trust
the upper bound of the probability distribution functionyng” privacy, such an interaction can take advantage of the
of trust. presence of a Guarantor that plays (in some sense) the role of
Since trust expresses the estimate of a probability, itdarcl middleman in the interaction. In order to provide a syntheti
thatp, andp, are both between zero and one. The assumptidescription of the aims and scope of the notion of Guarantor,
that p, > p, is not restrictive. we need to introduce another accessory abstraction, namely
As stated in the previous section, we assume that aftlidation-Oriented Ontology.
interactions between two agents can be reduced, from théd Validation-Oriented Ontology(VOO) is a signed set
point of view of trust and privacy, to the action of signingcontaining:
a contract. While it is reasonable to think of a number of 1) An ontology that models a domain;

different (and very complex) contracts [2], we adopt a very 2) A set of runtime tools capable of asserting properties of
simple contract model. It involves only two signers, andsit i individuals of this ontology.

totally described by two triples, one known to each signggntime tools are intended to provide a means for validating

Each triple, that we caBubjective evaluationf the contract, agsertions on the domain described by the ontology without
is made of aeward, aninvestmentnd apenalty This triple  yoqyiring a full-fledged reasoning on the domain. As we have

summarizes the contract, and its effects, for the agent tohwhgeen in the previous section, this is essential from thetsin
the triple belongs. Being subjective values, it is not puissi ;e of security and trust for real-world applications.

to assess any mathematical relation between values of tWeyne very important advantage of the introduction of VOOs
different subjective evaluations, even though they redethe s that they reduce the amount of distributed trust, sinca in

same contract. _ _ ~ single signed object lay both the semantic description infjth
The subjective evaluation of contracggiven by agentX' is  gnd a set of related actions.

written as follows: Moreover, VOOs promote software reuse and help stan-

1) R., is the reward that agemX receives upon successdardization, since many ontology-related tasks are pewdr
of contractc; from external bodies (the tools of VOO) in a standard, well-
2) 1., indicates the investment that ageAt makes in defined, trusted and secure way. It is worth noting that the



WOA 2005 147

concrete technology used to realize the tools of the VOO is2) A certified public key whose private key is provided only
not mandatory: they could be Web or Grid services [8], as  to trusted tools;
well as RMI invocations, as long as they are projected and3) A certified set of services that could access the Guaran-
signed together with their ontology. In this way it is possib tor's database and whose use could be detected by the
to achieve platform independence by including in the VOO a  tools’ user.
description of the invocation procedure of its tools.

VOOs are not sufficient to address all issues related to re
world agreements because we need to trust both the VOO and ]
the signer of the VOO, as discussed in the previous sectionTh€ abstractions of VOOs and Guarantors must be ade-
In fact, if we go back to the human world, the proper wa§luately supported by some development tools in order to
to stipulate contracts is through a notary public. This feaysp implement them correctly in real-world MASs. This is the
because only legal person trusted by the State can perfd@ason why we developed an API for JADE capable of
critical tasks (e.g., querying databases containing pyiva providing a direct support to developers in the realizatdbn
critical information). This is the reason why we introduc§€cure and trusted MASs. _
the abstraction of Guarantor, and we say that an agent is d " APl we developed focuses primary on the double-
Guarantor for an interaction between two other agents if §uarantor model, because it is general enough to subsume the
can sign a VOO that the two other agents can use in th&ipgle-Guarantor model, but it is simple enough to allowran i
interaction. depth evaluation and study. Furthermore the double-Gt@ran

We can be more precise in this definition by rephrasing th&odel is probably the most frequent case. _
auditing principle of [2] for a validation case: We designed our A_PI to .match a set of fund.amgntal require-

ments, that resulted in strict development guidelines.

If Role 1 cannot witness the truthfulness of an assertionl) Privacy. All communications must be encrypted and
about Role 2, another Role 3 should testify the condition of  directed to trusted parties. I
Role 2 if the party playing Role 2 is not trusted by the party 2) Traceability and sgcunty. Invocations mvolymg tools
playing Role 1. This document must be received by Role 1 VOOs must be signed by the caller, while responses
before the execution of its primary activity, and the party ~ from such tools must be signed, directly or indirectly, by

playing Role 3 should be trusted by the party playing Role @ Guaraqtor. The API transparently chec.ks this property
1. and provides a transparent tracing service that logs all

invocations and responses.

According to this principle, we suppose that both agents3) .Locality_. The number of trusFe_d parties .involved in any
involved in a two-party interaction trust a common agent, |nteraqt|on must be kept atmlnlmum. This means that an
playing Role 3, that we call Guarantor. This agent is suppose ~ OPeration performed by a given Guarantor in a mutual
to be responsible for the exactness of the information plevi recognition case, must be delegated upwards and not
by itself and by its tools. Unlike other agents, the Guaranto _ délegated immediately to the other Guarantor's tools.
of the interaction can easily check ontologies, tools ametot ~ 4) Transparency. The invocation procedures of VOO tools
Guarantors, to provide tools that can operate on other Guara ~ MUSt be transparent to the user, i.e., the user is not
tors’ certificates, ontologies, etc. Therefore, the inticttbn of directly involved in the use of the tools that the VOO

‘IaY. AN API| FOR SECURE, TRUSTED AND PRIVACY-AWARE
COMMUNICATIONS

the Guarantor allows agents to put their trust in a singléyent provides. o
thus simplifying greatly the decisions related to accogdim 5) Ease of use. The APl must provide high level procedures
revoking trust. to perform common tasks, as well as low level, more

specific procedures devoted to fine-grained (and less
common) tasks.

6) Standardization. Information exchange, including cer-
tificates and proposals, must be performed using well-

In summary, in our model the Guarantor is responsible for
the following tasks:

1) Provide identity certificates;
2) lz\r/\?;/}de signed ontologies compliant with real-world known formats.
3) Provide signed runtime tools for its ontologies and/o-l;hese gU|d§I|ne§ are completed_ with the following use cases
e . o and result in a first set of requirements that we used in the
certifying external tools under its responsibility.

. . . . ] realization of our API.
Then, if we remember that identity certificates are provided The design of the API is split into two viewsi) a client

signed instances of concepts of an ontology, and if we go bagky, that shows the classes that a client agent can use to

to the previous definition of VOO, these three responsiedit 5ccess the services of the security and privacy subsystein, a

of the Guarantor can reduce to a single responsibiitgvide  (jj) 5 Guarantor view that describes the components that the

VOOs Guarantors use to implement their functionality. Such giew
The Guarantor takes the responsibility of catalyzing thettr 5re connected through ti@uarantorinterface, that plays the

of an interaction in various ways, e.g., through: logical role of a remote interface that Guarantors implemen
1) A signed list of trusted tools; and that client exploit by means of proxies.



WOA 2005 148

public interface Guarantor {

publ i ¢ Sessi onToken signen(Gredentials c) throws SignCnFail ed: ) Once a client is authenticated with a Guarantor, it can
publ i c bool ean si gnOf f (Sessi onToken st); /* true on successful sing-offs */ K
publ ¢ Cbj ect direct | vosati o perform two kinds of requests:
;f;{;‘;g;:gf: Tro oo e 1) Direct requests, i.e., requests for services whose out-
), SPrectl) parameters come is used by the client itself;
publ i ¢ e egatf anToken cr eat eDel egati onToken( 2) Indirect requests, i.e., requests that are performed on
ool et oresor et or dd behalf of some other client.
. Direct requests are performed simply throughdirectinvoca-
public Object indirectlnvocation( . . .
Di stri but edTi mestanp dts, tion() method. These are ordinary requests for services except
Del egati onToken dt, . . .
Obj ect[] paraneter s for the following two constraints:
);
} 1) Parameters and result value are transported on a secure
public interface ServiceDel agationDescriptor { Channel,
public Certificate delegator(); . . .
public Certificate del egated(); 2) The Guarantor is responsible for tracing the request to
public Iong getNumber Of I nvocations(); /* max nunmber of invocations */ guarantee non-repudiability;
public long getDeadline(); /* in nillis fromgeneration tine */ . . . .y . .
} 3) The client is responsible for providing a distributed
public interface Token { _ timestamp to allow for traceability of complex interac-
public String getCanonical String(); /* Ulencoded */ .
public long getExpirationDate(); /* in millis fromgeneration time */ t|onS

}

public interface SessionToken extends Token {}

The directinvocation() method is the only mechanism that
Guarantors offer to have services performed in this wayeOth
methods of the Guarantor interface (or of any of its subelg)ss
Fig. 1. Client view of the API are not guaranteed to respect the aforementioned coristrain
All in all, the directinvocation()method plays the role of the
Dynamic Invocation Interface of CORBA objects, or of the

Itis worth noting that the client view represents a manqatop/lethod.invoke()nethod of Java reflection. It is the preferred

interface, on the contrary, the Guarantor view is only a suff®y to handle secure services.Indirect requests are aadieleg

gestion of a possible internal design of Guarantors. Otsijou nechanisms that allows a client (A, delegated) to have a

client view plays a substantially more important role insthiS€rvice performed on behalf of another client (B, delegator
This process is made of the following steps:

public interface Del egationToken extends Token {}

design.
1) Client A requests the Guarantor to grant indirect recuest
. to client B;
A. Client View 2) If the Guarantor can honour this request, it will accept
For the sake of clarity and readability, Figure 1 colleces th requests from B and serve them as if they were requested
interfaces of the client view in terms of Java interfaces. by A;

The central interface of the client view is Guarantor. It 3) The Guarantor stops serving indirect requests from B if
encapsulates all methods that Guarantors expose to clients the delegation has expired, e.g., because the maximum
Such methods are accessed remotely through an encrypted Number of requests from B is reached.
channel and they are available after an initial mutual recoghe first step of this process is performed when A invokes the
nition phase through thsignOn() method. Client wishing to createDelegationToken@nethod on the Guarantor interface.
use the services of a Guarantor, invoke this method and pa&és method needs the following parameters:
their credentials. The type of requested credentials dipen 1) A ServiceDescriptor that identifies which service(s) of
the Guarantor: simple username/password may be sufficient the Guarantor the client is willing to delegate;
in certain cases, or more complex X.509 certificates may be2) A DelegationDescriptor that provides the Guarantor with
needed in other cases. Guarantors will provide their specifi all information needed to actually perform the delega-
subclass of interface Credentials to have clients provige t tion, e.g., who is the delegated client, for how long the
required information. delegation will last.

If the Guarantor intends to serve the client that issued tifethe Guarantor can grant the delegation of the service to
signOn()request, it will respond with &essionTokethat the B, the return value otreateDelegationToken(s a globally
client will use for subsequent invocations on the Guarantalinique token that identifies the delegation. The delegdieatc
interface. ASessionTokeis a particular sort ofToken Just like B will use this token to finally access the services of the
all tokens, it has an expiration date and it can be convertedGuarantor through a call timdirectinvocation() This method
a canonical string. has exactly the same meaning and constraints oflifeetin-

signOn() requests are invoked on some kind of secunmcation()method, except for the fact that it can be invoked
channel, e.g., HTTPS, and subsequent services are reduebtedelegated clients that are not currently authenticatitd w
on the same secure channel. A client can issue request tfeg Guarantor.
services until the client itself signs off (through thignOff() If a Guarantor needs additional, application-specific rinfo
method) or until the session expires. mation, to grant indirect requests, it can provide its owb-su



WOA 2005 149

public interface SensitiveDataStore {

publ i c SessionToken si gnOn(Credenti al c? tturows Si gnOnFai | edExcept i on; X One of the principa| interfaces that build the Guarantowvie
publ i c bool ean si gnOf f (Sessi onToken st); /* true on successful sing-offs */ . . . A i
. . X X of the architecture iSensitiveDataStoreThis is an abstract
public Resul t Set query_(Sesm onToken st, QueryStatenent q) /* result set */ . )
throws 111 egal Sessi onToken, 111 egal Stat emrent; ) . view of a data store that is meant to allow for a seamless
public long insert(SessionToken st, InsertStatenment o) /* nunber of additions */ L. ) 3
h 1 | ionToken, 111 | H
publ :crlozﬁg unglae(szzzls:jgng'uEZn st, e?;\di :IS!e:z:rem 0) /* nunber of updates */ treatment Of SenS|tlve data It IS Worth rememberlng thatﬁv
h 1 | i ken, 111 | H
puh\:crlozﬁglde\eglae(sgizls?zlf)roign Ist,eg:\z:t&e:z:mm 0) /* nunber of deletions */ Natlon n the European Communlty adopted IaWS to prOVIde
h I | Sessi ken, |11 I St H mm']
publ :crgzil Ieanegraeat 2?‘822!?02'?'%'% :?,a Oee‘;?re“;tn;t ement o) /* creations */ guarantees to CI'[IZGI’IS regardlng the treatment Of them
throws 111 egal SessionToken, |I1|egal Statenent; data
R ove. 111 egar Seasi onToken, 111 egal thernanmr o 9 Leermar) Such laws are all rooted in a note of the European Com-
mission and they all contain strict technical requiremehat
PPl ubl < vord trace ndi redt I nvacat i on databases of sensitive data must follow. As an example, the
Dot egat i onToken der following are examples of the requirements of the Italiam la
gj ec:[] palrfmeters, On prlvacy
)| ec resu .
)
publ i ¢ voi d traceDirect | nvocati on( 1) The password of the manager of the data store must be
Di stributedTi meStanp dts, .
Servi cabusaripor . of 8 alphanumerical characters, at least;
j ec paraneters,
, Colect result 2) The password of the manager of the data store must be
y changed every 3 months;
3) If any access credential to the data store has not been
Fig. 2. Guarantor view of the API used for more than 3 months, it must be revoked.

Any implementation of theSensitiveDataStorenterface will

classes of class&erviceDescriptoandDelegationDescriptor Wrap existing technologies for storing data, e.g., JDBC or
interfaces. JNDI, and it will add the support for any requirement to
Indirect requests is the preferred way to allow a third parfj@ke it compliant with a particular legislation (at a partar
having a service done without explicitly requesting sévesit ime). Any SensitiveDataStorallows a direct management
data. For example, let's consider a buyer A and a seller Bf the data it contains thought methods: query, insert, up-

Normally, the seller will request the details of As creditcta date, delete and create. These are wrapper to the underly-
in order to: ing storing technology and their statement parameters are

- . concrete subclasses that provide all necessary inform#tio

1) Check the val|d_|ty of the credit card; concretely perform requesfed operations. Not zri)lll such oalsth

2) Perform the withdrawal of the exact amount of thg o o\yavs permitted to allow for accommodating different

requested payment. levels of management of the data store, e.g., query may be

B would be able to perform exactly such operations if buyeilways possible, but creation and deletion of database tabl
A would instruct its bank (the Guarantor) to serve this twpossible only when the Guarantor is not online. Any attempt
requests from B as if they were issued by A itself. Thisf violating such application-specific constraints willngeate
approach has the great advantage of allowing A to buy froam InvalidStatemenexception.

B without revealing any sensitive information. The deleat  \ethodssetUserNameForNotificationsig used to instruct

token that allows B to perform the withdrawal is & Sort ofye gata store to actively provide information on complianc

anonymized view of the sensitive data of A. Formally, thig,, example, a particular data store may decide to notify the

delegation token is @ne-time passwordor logical access manager of any credential that no longer complies with laws,

control. or it may decide to notify the administrator of any clean-up
of old data. This unusual behaviour oS&nsitiveDataStoris

B. Guarantor View needed to allow data stores suspending operations on arsessi

The Guarantor view of the architecture describes howV¢en, for some reason, the session does no longer comply with
Guarantor may implement a general-purpose infrastrudture laws. So, for example, a properly implemented sensitiva dat
providing its services with requested level of security argfore would stop functioning when the password of the person
privacy. This architecture is not mandatory because evdfycharge is more than 3 months old.

Guarantor may decide its own optimized approach to provideThe second interface that may be used to design Guarantors
services. Anyway, the quality of Guarantors in performing InvocationTracer This interface provides all methods for
tasks related to security and privacy, e.g., the globaluengss tracing direct and indirect requests served or rejectedhby t

of the generated tokens, or the correct tracing of invonatio Guarantor. Such requests are stored iSemsitiveDataStore

are important metrics for clients to put trust of Guarantorthat would save all (context) information regarding redsies
Therefore, the Guarantor view is highly recommended aslitis worth noting that the invocatioistributedTimeStamp
helps clients estimating the reputation of Guarantorsuféi@ property allow to correlate logs of different Guarantomsd a
shows the Java interfaces that make the Guarantor view of therefore it allows backword tracing the execution of compl
architecture. actions.



WOA 2005 150

V. DISCUSSION [11] Jennings, N. R., Parsons, S., Sierra, C. and FaratinAlRomated
. . . . Negotiation in Procs. of the5!™ Intl Conference on the Practical
The central focus of this paper is on the motivated introduc- appjication of Intelligent Agents and Multi-Agents SystenAAM-
tion of two abstractions, VOOs and Guarantors, that we can 2000, Manchester, UK.

use to provide general-purpose mechanisms to realizeeseddfl Martin, D., Paolucci, M., Mcllraith, S., Burstein, MMcDermott, D.,
d trusted MASs. Th d of th bstracti hould b McGuinness, D., Parsia, D., Payne, T., Sabou, M., SolankiSkMnivasan,
ana truste S. € need o ese apstractions shou eN., and Sycara, K.Bringing Semantics to Web Services: The OWL-S

clear if we go back to the very general issues related to Approachin Procs. of thel** Int'l Workshop on Semantic Web Services

security and trust that we identified for two-party interas. Sr‘sdAweb Process Composition (SWSWPC 2004), July 2004, San Diego

Obviously, the intro_dUCtion of these a_bStraCtionS is ncﬁ_tIT13] Marsh, S.Formalising Trust as a Computational Concepth.D. diss.,
only way we can think to tackle such issues, but we believe Department of Mathematics and Computer Science, Universisfiding,

that our approach has two interesting properties: Stirling, UK, 1994.
PP g prop [14] Meyer, B., Object Oriented Software Construction, Second Edjtion

1) Concentrated trust. Guarantors are sorts of trust cdaly Prentice-Hall, NJ, 1997.

that we use to keep trust concentrated on the minimd%]Terl:lDS\{VAP, AtDSfinition_tof TfruMst folr Cdonéptlllting vliithks%;fl Nz%t\glgrks
number of parties. From the point of view of interacting, WL v otk t”F')\:’Gjr/sm m@éﬂéf‘g/ 004 o PReary 2005.

agents, this is good because the number of operatigng Poggi, A., Tomaiuolo, M., Vitaglione, GDo Agents Need Certificates?

related to according or revoking trust is minimized. Distributed Authorization to Improve JADE Securifyy Procs. of the
s ] . . 6t" Intl Workshop on Trust, Privacy, Deception, and Fraud ineAt
2) Pragmatic interactions. The strict coupling between an Societies, AAMAS 2003, July 2003, Melbourne, Australia.

ontology and a set of tools capable of performings] Racer Web sitét t p: / / wa. st s. t u- har bur g. de/
general-purpose, critical tasks on the individuals of ~r.f.moeller/racer/

. . . 9] Szomszor, M., and Moreau, LRecording and reasoning over data
this Ontomgy (I'e" the idea of VOO) guarantees th% provenance in web and grid servicaa Procs. of the Int'l Conference

possibility of performing secure and trusted interactions on Ontologies, Databases and Applications of Semantics (XEED3),
also to agents with minimal reasoning capabilities. LNCS 2888, November 2003, Catania, Italy.

In conclusion, we believe that the introduction of VOOs
and Guarantors provides a solid ground for the concrete
development of trusted and secure MASs. Many issues related
to these properties are encapsulated by these abstraatidns
we believe that their in-depth study can lead to a better nde
standing of the subtle behaviours of these complex systams i
real-world situations.

ACKNOWLEDGEMENTS

This work is partially supported by project CASCOM (FP6-
2003-1ST-2/511632). The CASCOM consortium is formed by
DFKI (Germany), TeliaSonera AB (Sweden), EPFL (Switzer-
land), ADETTI (Portugal), URJC (Spain), EMA (Finland),
UMIT (Austria), and FRAMeTech (ltaly). This article repsrt
on joint work that is being realised by the consortium. The
authors would like to thank all partners for their contribos.

REFERENCES

[1] Baader, F., Calvanese, D., McGuinness, D., Nardi, D.d d&atel-
Schneider, P.F., (Eds.he Description Logic Handbook: Theory, Im-
plementation and Application€ambridge University Press, 2003.

[2] Bons, R.W.H.,Designing Trustworthy Trade Procedures for Open Elec-
tronic Commerce Ph.D. Dissertation, 1997, EURIDIS and Faculty of
Business Administration, Erasmus University.

[3] Casati, F., Shan, E., Dayal, U.,, and Shan, M.-Service-Oriented
Computing: Business-Oriented Management of Web Servicesimu-
nications of the ACM, 46:10, October 2003.

[4] CASCOM Web siteht t p: // ww. i st -cascom org

[5] Castelfranchi, C., and Falcone, R. Principles of TrestMAS: Cognitive
Anatomy, Social Importance, and Quantification. In Procegsliof The
International Conference of Multi-agent Systems (ICMAR)-79, 1998.

[6] Ellison, C., SPKI RequirementdETF RFC 2692, September 1999.

[7] Ellison, C., Frantz, B., Lampson, B., Rivest, R., Thomas,&hd Ylonen,
T., SPKI Certificate TheorylETF RFC 2693, September 1999.

[8] Foster, I., Kesselman, C., and Tuecke, Bhe Anatomy of the Grid:
Enabling Scalable Virtual Organizationgt’l Journal of Supercomputer
Applications, 15(3), 2001.

[9] Gambetta, D. (Ed.)Trust: Making and Breaking Co-operative Relatipns
Basil Blackwell, Inc., UK, 1985.

[10] JENA Web siteht t p: //j ena. sour cef or ge. net



