
Secure, Trusted and Privacy-aware Interactions in
Large-Scale Multiagent Systems

Federico Bergenti
Dipartimento di Ingegneria dell’Informazione

Universit̀a degli Studi di Parma
Parco Area delle Scienze 181/A, 43100 Parma, Italy

Email: bergenti@ce.unipr.it

Abstract— One of the inherent problems of large-scale, open
multiagent systems is the lack of mechanisms and tools to guar-
antee legally valid interactions. Agents are supposed to perform
crucial tasks autonomously and on behalf of humans; however,
(i) they are not legal persons on their own, and(ii) of a full legal
corpus for the virtual world and its inhabitants is yet to come.
Therefore, the ultimate responsible for the actions of an agent
is its developer. In this paper we address an innovative model
of interaction between agents that leads to an increase of the
level of security and trust in privacy-aware, interaction-intensive
multiagent systems. In particular, after a brief introduction, we
focus in Section II on some common problems related to trust
and security in real-world, liable interactions. In Section III, we
address these problems and outline some abstractions that we use
to guarantee a sound level of security and privacy-awareness in
interactions with third-party (possibly unknown) agents, whether
human or not. Then, in Section IV we describe the design of an
API that we implemented to provide developers with a general-
purpose, reusable means to realize secure, trusted and privacy-
aware multiagent systems. To conclude, in Section V we briefly
discuss our model and outline directions of future development.

I. I NTRODUCTION

Agent technology is quickly evolving towards the realization
of complex societies of agents. Just to cite one recent example,
the aims and scope of the IST project CASCOM [4] show
how agents are becoming more and more relevant in important
sectors, e.g., healthcare and personal data management. This
evolution is not yet matched by an equivalent legal develop-
ment. The lack of a legal substrate capable of grounding the
interactions between agents ultimately means that every aspect
of interactions (e.g., see [11]) with other (possibly unknown)
third-party agents must be explicitly treated by the developer.
Moreover, for a legal point of view, the developer is the
ultimate responsible for the actions of its agents. This situation
is then exacerbated by the impossibility of tracing all actions
agents perform: if we cannot guarantee traceability [19] of
the actions of individual agents, no law would be sufficient
to prevent and punish mendacious agents (whether human or
not). Obviously, traceability does not guarantee that agents
could not misbehave; anyway, if they do so, other agents would
have the possibility of demonstrating the misbehaviour.

Having said this, the ultimate goal of our work is to provide
mechanisms and tools to support agents in interacting:

1) In a secure, traceable and privacy-aware way; and

2) With guarantees of a desired level of security and trust,
exploiting the minimum possible number of trusted
parties.

Our study of these issues is concretized in the realization of a
model capable of representing a secure, trusted and privacy-
aware interaction between two agents. The generalization of
this model to multi-party interactions is quite straightforward,
but its exhaustive description is out of the scope of this paper.

Our work is based on the introduction of two closely-
related abstractions,Validation-Oriented Ontologies(VOOs)
andGuarantors. A VOO is a signed set containing an ontol-
ogy [1] and all runtime tools needed to assert that a particular
individual of the world actually belongs to a certain familyof
individuals. Guarantors are agents that, in some sense, play
the role of middleman in interactions. Guarantors are trusted
by all interacting parties and they are in charge of support-
ing interactions by providing (under their responsibility) all
necessary VOOs.

This paper is organized as follows: next section describes
some crosscutting problems of two-party interactions and
it motivates why we need something more that available
techniques and tools to guarantee security, trust and privacy in
multiagent systems. Section III briefly describes our modeland
introduces the notions of VOOs and Guarantors. Section IV
shows how we support our model and its new abstractions by
describing an API that we realized to support developers in
their everyday work. Finally, Section V briefly discusses our
model to point some interesting direction of development and
to show its wide applicability in real-world scenarios.

II. PROBLEMS IN TWO-PARTY INTERACTIONS

The first assumption that we take in the discussion of our
model is that, from the point of view of security, trust and
privacy, we can always reduce any two-party interaction to the
act of signing of a contract. Then, we assume that proposals
and agreements between interacting parties are exchanged in
the form of individuals of known ontologies. This assumption
allows agents to manage the information contained in pro-
posals and agreements in a friendly way, e.g., to reason about
proposals and to assert the formal validity of proposals against
the constraints of the ontology.

All in all, the assumption of modelling interactions as
contracts that are individuals of known ontologies is ab-

WOA 2005 144



solutely general and has some remarkable advantages. The
most interesting advantage that we see is the possibility of
combining simple ontologies into complex models of pro-
posals and agreements. We can compose simple ontologies
into complex descriptions of proposals and agreements, thus
avoiding duplication of definitions and possible ambiguities.

The second advantage that we see in our working assump-
tion is that it greatly simplifies the creation and validation
of proposals and agreements. The creation of a proposal is
reduced to the creation of one or more individuals of known
ontologies, with properties set accordingly to given values
(potentially specified in external policies). Controllingthe
suitability of a proposal simply reduces to checking whether a
candidate proposal actually belongs to the family of admissible
proposals described in the referenced ontology.

Finally, ontologies expressed in common formats are easily
mapped into human readable documents for a subsequent
inspection of the agreements that software agents may have
autonomously signed.

A. Problem 1. Trusting Ontologies

Ontologies seem to be a suitable means for describing agree-
ments, but any attempt to use them in real-world scenarios
immediately encounters a problem: How an agent could trust
a new ontology? Suppose that a seller of bandwidth requires
to negotiate agreements with potential customers using an
ontology available in some public repository. This ontology
may model some property as being “required by local laws.”
How could customers trust this requirement if they have
no trust relationship with the seller that pointed it to this
ontology? Could a customer (in some sense) validate the
ontology to decide whether to trust it or not?

Another facet of this problem occurs in the case of an
ontology that is partially non-disclosed. Let us suppose that the
aforementioned seller creates its ontology and splits it into two
parts: a public part describing valid proposals and agreements,
and a private part used to model the policies that it employs to
enforce bandwidth reservations, i.e., the policies that ituses
to reason on proposals. This last part contains background
knowledge on the marketing strategies of the seller and it is
vital not to disclose this knowledge to potential competitors.
In this case, a full fledged reasoning on the ontology could be
done only by accessing the whole ontology, and only partial
reasoning is possible for customers.

Moreover, we have to take into account a third (very serious)
facet of this problem: there is no way to validate the adherence
of the ontology to real-world laws, without involving highly
specialized jurists. Obviously, no potential customer would be
in the position of performing this sort of validation.

In the end, all these exemplified facts of the same problem,
i.e., trusting the ontology, show that trust cannot be given
to an ontology per se: it must be accorded to its signer.
Ontologies used to model formal agreements and contracts
must be provided by trusted and liable signers.

B. Problem 2. Trusting Identities

The ultimate aim of our model of interaction is to guarantee
legal validity. Therefore, the problem of checking the identities
of involved agents is obviously critical. Unfortunately, asimple
static control of identities by means of certificates [6], [7] is in-
adequate because, e.g., certificates can be revoked or keys can
be stolen. This inadequacy should not be surprising becauseit
is very common also in human interactions. The identification
of agents in a secure, trusted and privacy-aware multiagent
system can be performed only through a set of runtime tools
capable of validating certificates, and thus realizing a trusted
source of identification.

The problem of checking identities is closely related to the
representation of identities. The identification code is the only
means that we have to validate the identity of a legal person
(physical or not). Therefore, one of the very basic issues
that we have to tackle is how to represent identities in an
agent-processable way. In our model, we decided to design
an ontology describing legal persons and their attributes and
to associate this ontology with a set of general-purpose tools
for addressing the majority of problems related to identifica-
tion. The connection between this ontology and its tools is
reinforced by the necessity of a common trusted signer.

It is worth noting that in order to fully exploit the possibility
of having runtime tools capable of providing some sort of
guarantees regarding sensible tasks on an ontology, both the
ontology and its associated tools must have the same levels
of trust and security. Let us consider these two examples to
clarify this point.

1) Case 1. Trusted ontology - Untrusted tools:Suppose that
two negotiating agents trust the same ontology (i.e., they trust
the publisher of the ontology) but they use untrusted services
to perform validations. They exchange proposals until an
agreement is reached and they mutually check their identities
using an untrusted tool. Since they do not trust the identity
verification tool, they can both suppose that they are signing
an agreement with an unknown party.

2) Case 2. Untrusted ontology - Trusted tool:Suppose
that we have an identity-verification tool that receives in
input an ontology and an identity, and verifies the identity
in a database. What happens if someone gives formally valid
(compliant with the ontology), but legally void identity? Since
the given identity matches the record in the database of
identities, the tool would return an affirmative answer, but
this identity is legally void and therefore unusable in signing
formal agreements.

These two examples show that both ontology and runtime
tools must be trusted and secure. If any of the two has not a
suitable level of trust and security, the combined use of them
will not result in a secure and trusted interaction.

III. T RUST, CONTRACTS AND GUARANTORS

The analysis of the two-party interaction outlined in the
previous section allows to introduce two abstractions that

WOA 2005 145



we can generally use to model secure, trusted and privacy-
aware interaction between two agents. These closely-related
abstractions, namely Validation-Oriented Ontologies (VOOs)
and Guarantors, are briefly described in this section.

The problem of defining trust has been addressed in many
different ways [15]. While we recognize the importance of
cognitive models [5] to quantify trust, we start from the
definition given in [9] to provide a probabilistic interpretation
of trust. In particular, if“Trust is the subjective probability
by which an individual, A, expects that another individual,
B, performs a given action on which its welfare depends”,
it is reasonable to model trust in terms of an estimation of
the real probability by which B would perform the target
action. Many factors contribute to this estimation [11], [13];
nonetheless we use a blackbox approach, in which trust is
modelled as a random variable in an interval[pa,x, pb,x]. The
only assumption that we take is that such an estimation is a
reasonable approximation of the real value of the quantity.

Our probabilistic model of trust is out of the scope of this
paper, and we simply enumerate the quantities that we exploit
in our treatment:

1) pk,x, the probability that the informationk provided by
agentX is correct;

2) pc,x, the probability that agentX would adhere to all
the obligations stated in contractc;

3) tc,x,y, the level of trust agentX has in agentY with
respect to contractc;

4) pa,x, the minimum value of trust in an estimation, i.e.,
the lower bound of the probability distribution function
of trust;

5) pb,x, the maximum level of trust in an estimation, i.e.,
the upper bound of the probability distribution function
of trust.

Since trust expresses the estimate of a probability, it is clear
thatpa andpb are both between zero and one. The assumption
that pb ≥ pa is not restrictive.

As stated in the previous section, we assume that all
interactions between two agents can be reduced, from the
point of view of trust and privacy, to the action of signing
a contract. While it is reasonable to think of a number of
different (and very complex) contracts [2], we adopt a very
simple contract model. It involves only two signers, and it is
totally described by two triples, one known to each signer.
Each triple, that we callsubjective evaluationof the contract,
is made of areward, an investmentand apenalty. This triple
summarizes the contract, and its effects, for the agent to which
the triple belongs. Being subjective values, it is not possible
to assess any mathematical relation between values of two
different subjective evaluations, even though they refer to the
same contract.

The subjective evaluation of contractc given by agentX is
written as follows:

1) Rc,x is the reward that agentX receives upon success
of contractc;

2) Ic,x indicates the investment that agentX makes in

contractc; i.e., a certain granted value that it renounces
to, when signing contractc;

3) Pc,x is the penalty of the contract, i.e., the value that
agent X receives if the contract fails because of the
other party.

The contract gives to its signers the absolute security of
receiving the stated values, i.e.:

1) if the contract is respected, agentX receivesRc,x with
probability one;

2) if the contract fails because of agentY , agentX receives
Pc,x with probability one.

Another assumption that we take concerns the order between
reward, investment and penalty in a subjective evaluation.We
are interested in contracts whose parameters are ordered as
follows:

Pc,x ≤ Ic,x ≤ Rc,x (1)

This inequality expresses the fact that contracts are advan-
tageous but risky. This, in turn, implies that an agent signs
a contract in the hope that it would be respected by the
other signer, since in case of failure it would experience the
following loss:

Ic,x − Pc,x (2)

Furthermore, each agent does not consider its own failure
probability, since it will only consider contracts that it can
reasonably respect; nevertheless the uncertainty about the other
signer remains.

Taking this probabilistic model that we briefly described
here, and that is subject for an in-depth investigation in a future
paper, we can provide a probabilistic description of a two-
party interaction. From the point of view of security, trust
and privacy, such an interaction can take advantage of the
presence of a Guarantor that plays (in some sense) the role of
middleman in the interaction. In order to provide a synthetic
description of the aims and scope of the notion of Guarantor,
we need to introduce another accessory abstraction, namely
Validation-Oriented Ontology.

A Validation-Oriented Ontology(VOO) is a signed set
containing:

1) An ontology that models a domain;
2) A set of runtime tools capable of asserting properties of

individuals of this ontology.

Runtime tools are intended to provide a means for validating
assertions on the domain described by the ontology without
requiring a full-fledged reasoning on the domain. As we have
seen in the previous section, this is essential from the point of
view of security and trust for real-world applications.

One very important advantage of the introduction of VOOs
is that they reduce the amount of distributed trust, since ina
single signed object lay both the semantic description of thing
and a set of related actions.

Moreover, VOOs promote software reuse and help stan-
dardization, since many ontology-related tasks are performed
from external bodies (the tools of VOO) in a standard, well-
defined, trusted and secure way. It is worth noting that the

WOA 2005 146



concrete technology used to realize the tools of the VOO is
not mandatory: they could be Web or Grid services [8], as
well as RMI invocations, as long as they are projected and
signed together with their ontology. In this way it is possible
to achieve platform independence by including in the VOO a
description of the invocation procedure of its tools.

VOOs are not sufficient to address all issues related to real-
world agreements because we need to trust both the VOO and
the signer of the VOO, as discussed in the previous section.
In fact, if we go back to the human world, the proper way
to stipulate contracts is through a notary public. This happens
because only legal person trusted by the State can perform
critical tasks (e.g., querying databases containing privacy-
critical information). This is the reason why we introduce
the abstraction of Guarantor, and we say that an agent is a
Guarantor for an interaction between two other agents if it
can sign a VOO that the two other agents can use in their
interaction.

We can be more precise in this definition by rephrasing the
auditing principle of [2] for a validation case:

If Role 1 cannot witness the truthfulness of an assertion
about Role 2, another Role 3 should testify the condition of
Role 2 if the party playing Role 2 is not trusted by the party
playing Role 1. This document must be received by Role 1
before the execution of its primary activity, and the party
playing Role 3 should be trusted by the party playing Role
1.

According to this principle, we suppose that both agents
involved in a two-party interaction trust a common agent,
playing Role 3, that we call Guarantor. This agent is supposed
to be responsible for the exactness of the information provided
by itself and by its tools. Unlike other agents, the Guarantor
of the interaction can easily check ontologies, tools and other
Guarantors, to provide tools that can operate on other Guaran-
tors’ certificates, ontologies, etc. Therefore, the introduction of
the Guarantor allows agents to put their trust in a single entity,
thus simplifying greatly the decisions related to according or
revoking trust.

In summary, in our model the Guarantor is responsible for
the following tasks:

1) Provide identity certificates;
2) Provide signed ontologies compliant with real-world

laws;
3) Provide signed runtime tools for its ontologies and/or

certifying external tools under its responsibility.

Then, if we remember that identity certificates are providedas
signed instances of concepts of an ontology, and if we go back
to the previous definition of VOO, these three responsibilities
of the Guarantor can reduce to a single responsibility:provide
VOOs.

The Guarantor takes the responsibility of catalyzing the trust
of an interaction in various ways, e.g., through:

1) A signed list of trusted tools;

2) A certified public key whose private key is provided only
to trusted tools;

3) A certified set of services that could access the Guaran-
tor’s database and whose use could be detected by the
tools’ user.

IV. A N API FOR SECURE, TRUSTED AND PRIVACY-AWARE

COMMUNICATIONS

The abstractions of VOOs and Guarantors must be ade-
quately supported by some development tools in order to
implement them correctly in real-world MASs. This is the
reason why we developed an API for JADE capable of
providing a direct support to developers in the realizationof
secure and trusted MASs.

The API we developed focuses primary on the double-
Guarantor model, because it is general enough to subsume the
single-Guarantor model, but it is simple enough to allow an in
depth evaluation and study. Furthermore the double-Guarantor
model is probably the most frequent case.

We designed our API to match a set of fundamental require-
ments, that resulted in strict development guidelines.

1) Privacy. All communications must be encrypted and
directed to trusted parties.

2) Traceability and security. Invocations involving toolsof
VOOs must be signed by the caller, while responses
from such tools must be signed, directly or indirectly, by
a Guarantor. The API transparently checks this property
and provides a transparent tracing service that logs all
invocations and responses.

3) Locality. The number of trusted parties involved in any
interaction must be kept at minimum. This means that an
operation performed by a given Guarantor in a mutual
recognition case, must be delegated upwards and not
delegated immediately to the other Guarantor’s tools.

4) Transparency. The invocation procedures of VOO tools
must be transparent to the user, i.e., the user is not
directly involved in the use of the tools that the VOO
provides.

5) Ease of use. The API must provide high level procedures
to perform common tasks, as well as low level, more
specific procedures devoted to fine-grained (and less
common) tasks.

6) Standardization. Information exchange, including cer-
tificates and proposals, must be performed using well-
known formats.

These guidelines are completed with the following use cases
and result in a first set of requirements that we used in the
realization of our API.

The design of the API is split into two views:(i) a client
view that shows the classes that a client agent can use to
access the services of the security and privacy subsystem, and
(ii) a Guarantor view that describes the components that the
Guarantors use to implement their functionality. Such views
are connected through theGuarantor interface, that plays the
logical role of a remote interface that Guarantors implement
and that client exploit by means of proxies.

WOA 2005 147



public interface Guarantor {
public SessionToken signOn(Credentials c) throws SignOnFailed;
public boolean signOff(SessionToken st); /* true on successful sing-offs */

public Object directInvocation(
DistributedTimeStamp dts,
ServiceDescriptor sd,
Object[] parameters

);

public DelegationToken createDelegationToken(
ServiceDescriptor sd,
DelagationDescriptor dd

);

public Object indirectInvocation(
DistributedTimeStamp dts,
DelegationToken dt,
Object[] parameters

);
}

public interface ServiceDelagationDescriptor {
public Certificate delegator();
public Certificate delegated();

public long getNumberOfInvocations(); /* max number of invocations */
public long getDeadline(); /* in millis from generation time */

}

public interface Token {
public String getCanonicalString(); /* UUencoded */
public long getExpirationDate(); /* in millis from generation time */

}

public interface SessionToken extends Token {}

public interface DelegationToken extends Token {}

Fig. 1. Client view of the API

It is worth noting that the client view represents a mandatory
interface, on the contrary, the Guarantor view is only a sug-
gestion of a possible internal design of Guarantors. Obviously,
client view plays a substantially more important role in this
design.

A. Client View

For the sake of clarity and readability, Figure 1 collects the
interfaces of the client view in terms of Java interfaces.

The central interface of the client view is Guarantor. It
encapsulates all methods that Guarantors expose to clients.
Such methods are accessed remotely through an encrypted
channel and they are available after an initial mutual recog-
nition phase through thesignOn()method. Client wishing to
use the services of a Guarantor, invoke this method and pass
their credentials. The type of requested credentials depends on
the Guarantor: simple username/password may be sufficient
in certain cases, or more complex X.509 certificates may be
needed in other cases. Guarantors will provide their specific
subclass of interface Credentials to have clients provide the
required information.

If the Guarantor intends to serve the client that issued the
signOn()request, it will respond with aSessionTokenthat the
client will use for subsequent invocations on the Guarantors
interface. ASessionTokenis a particular sort ofToken. Just like
all tokens, it has an expiration date and it can be converted in
a canonical string.

signOn() requests are invoked on some kind of secure
channel, e.g., HTTPS, and subsequent services are requested
on the same secure channel. A client can issue request for
services until the client itself signs off (through thesignOff()
method) or until the session expires.

Once a client is authenticated with a Guarantor, it can
perform two kinds of requests:

1) Direct requests, i.e., requests for services whose out-
come is used by the client itself;

2) Indirect requests, i.e., requests that are performed on
behalf of some other client.

Direct requests are performed simply through thedirectInvoca-
tion() method. These are ordinary requests for services except
for the following two constraints:

1) Parameters and result value are transported on a secure
channel;

2) The Guarantor is responsible for tracing the request to
guarantee non-repudiability;

3) The client is responsible for providing a distributed
timestamp to allow for traceability of complex interac-
tions.

The directInvocation()method is the only mechanism that
Guarantors offer to have services performed in this way. Other
methods of the Guarantor interface (or of any of its subclasses)
are not guaranteed to respect the aforementioned constraints.
All in all, the directInvocation()method plays the role of the
Dynamic Invocation Interface of CORBA objects, or of the
Method.invoke()method of Java reflection. It is the preferred
way to handle secure services.Indirect requests are a delegation
mechanisms that allows a client (A, delegated) to have a
service performed on behalf of another client (B, delegator).
This process is made of the following steps:

1) Client A requests the Guarantor to grant indirect requests
to client B;

2) If the Guarantor can honour this request, it will accept
requests from B and serve them as if they were requested
by A;

3) The Guarantor stops serving indirect requests from B if
the delegation has expired, e.g., because the maximum
number of requests from B is reached.

The first step of this process is performed when A invokes the
createDelegationToken()method on the Guarantor interface.
This method needs the following parameters:

1) A ServiceDescriptor that identifies which service(s) of
the Guarantor the client is willing to delegate;

2) A DelegationDescriptor that provides the Guarantor with
all information needed to actually perform the delega-
tion, e.g., who is the delegated client, for how long the
delegation will last.

If the Guarantor can grant the delegation of the service to
B, the return value ofcreateDelegationToken()is a globally
unique token that identifies the delegation. The delegated client
B will use this token to finally access the services of the
Guarantor through a call toindirectInvocation(). This method
has exactly the same meaning and constraints of thedirectIn-
vocation()method, except for the fact that it can be invoked
by delegated clients that are not currently authenticated with
the Guarantor.

If a Guarantor needs additional, application-specific infor-
mation, to grant indirect requests, it can provide its own sub-

WOA 2005 148



public interface SensitiveDataStore {
public SessionToken signOn(Credential c) throws SignOnFailedException;
public boolean signOff(SessionToken st); /* true on successful sing-offs */

public ResultSet query(SessionToken st, QueryStatement q) /* result set */
throws IllegalSessionToken, IllegalStatement;

public long insert(SessionToken st, InsertStatement o) /* number of additions */
throws IllegalSessionToken, IllegalStatement;

public long update(SessionToken st, UpdateStatement o) /* number of updates */
throws IllegalSessionToken, IllegalStatement;

public long delete(SessionToken st, DeleteStatement o) /* number of deletions */
throws IllegalSessionToken, IllegalStatement;

public boolean create(SessionToken st, CreateStatement o) /* creations */
throws IllegalSessionToken, IllegalStatement;

public void setUsernameForNotifications(SessionToken st, String username)
throws IllegalSessionToken, IllegalUsername;

}

public interface InvocationTracer {
public void traceIndirectInvocation(

DistributedTimeStamp dts,
DelegationToken dt,
Object[] parameters,
Object result

);

public void traceDirectInvocation(
DistributedTimeStamp dts,
ServiceDescriptor sd,
Object[] parameters,
Object result

);
}

Fig. 2. Guarantor view of the API

classes of classesServiceDescriptorandDelegationDescriptor
interfaces.

Indirect requests is the preferred way to allow a third party
having a service done without explicitly requesting sensitive
data. For example, let’s consider a buyer A and a seller B.
Normally, the seller will request the details of As credit card
in order to:

1) Check the validity of the credit card;
2) Perform the withdrawal of the exact amount of the

requested payment.

B would be able to perform exactly such operations if buyer
A would instruct its bank (the Guarantor) to serve this two
requests from B as if they were issued by A itself. This
approach has the great advantage of allowing A to buy from
B without revealing any sensitive information. The delegation
token that allows B to perform the withdrawal is a sort of
anonymized view of the sensitive data of A. Formally, this
delegation token is aone-time passwordfor logical access
control.

B. Guarantor View

The Guarantor view of the architecture describes how a
Guarantor may implement a general-purpose infrastructurefor
providing its services with requested level of security and
privacy. This architecture is not mandatory because every
Guarantor may decide its own optimized approach to provide
services. Anyway, the quality of Guarantors in performing
tasks related to security and privacy, e.g., the global uniqueness
of the generated tokens, or the correct tracing of invocations,
are important metrics for clients to put trust of Guarantors.
Therefore, the Guarantor view is highly recommended as it
helps clients estimating the reputation of Guarantors. Figure 2
shows the Java interfaces that make the Guarantor view of the
architecture.

One of the principal interfaces that build the Guarantor view
of the architecture isSensitiveDataStore. This is an abstract
view of a data store that is meant to allow for a seamless
treatment of sensitive data. It is worth remembering that every
Nation in the European Community adopted laws to provide
guarantees to citizens regarding the treatment of their sensitive
data.

Such laws are all rooted in a note of the European Com-
mission and they all contain strict technical requirementsthat
databases of sensitive data must follow. As an example, the
following are examples of the requirements of the Italian law
on privacy:

1) The password of the manager of the data store must be
of 8 alphanumerical characters, at least;

2) The password of the manager of the data store must be
changed every 3 months;

3) If any access credential to the data store has not been
used for more than 3 months, it must be revoked.

Any implementation of theSensitiveDataStoreinterface will
wrap existing technologies for storing data, e.g., JDBC or
JNDI, and it will add the support for any requirement to
make it compliant with a particular legislation (at a particular
time). Any SensitiveDataStoreallows a direct management
of the data it contains thought methods: query, insert, up-
date, delete and create. These are wrapper to the underly-
ing storing technology and their statement parameters are
concrete subclasses that provide all necessary information to
concretely perform requested operations. Not all such methods
are always permitted to allow for accommodating different
levels of management of the data store, e.g., query may be
always possible, but creation and deletion of database table is
possible only when the Guarantor is not online. Any attempt
of violating such application-specific constraints will generate
an InvalidStatementexception.

MethodssetUserNameForNotifications()is used to instruct
the data store to actively provide information on compliancy.
For example, a particular data store may decide to notify the
manager of any credential that no longer complies with laws,
or it may decide to notify the administrator of any clean-up
of old data. This unusual behaviour of aSensitiveDataStoreis
needed to allow data stores suspending operations on a session
when, for some reason, the session does no longer comply with
laws. So, for example, a properly implemented sensitive data
store would stop functioning when the password of the person
in charge is more than 3 months old.

The second interface that may be used to design Guarantors
is InvocationTracer. This interface provides all methods for
tracing direct and indirect requests served or rejected by the
Guarantor. Such requests are stored in aSensitiveDataStore
that would save all (context) information regarding requests,
It is worth noting that the invocationDistributedTimeStamp
property allow to correlate logs of different Guarantors, and
therefore it allows backword tracing the execution of complex
actions.

WOA 2005 149



V. D ISCUSSION

The central focus of this paper is on the motivated introduc-
tion of two abstractions, VOOs and Guarantors, that we can
use to provide general-purpose mechanisms to realize secure
and trusted MASs. The need of these abstractions should be
clear if we go back to the very general issues related to
security and trust that we identified for two-party interactions.
Obviously, the introduction of these abstractions is not the
only way we can think to tackle such issues, but we believe
that our approach has two interesting properties:

1) Concentrated trust. Guarantors are sorts of trust catalysts
that we use to keep trust concentrated on the minimum
number of parties. From the point of view of interacting
agents, this is good because the number of operations
related to according or revoking trust is minimized.

2) Pragmatic interactions. The strict coupling between an
ontology and a set of tools capable of performing
general-purpose, critical tasks on the individuals of
this ontology (i.e., the idea of VOO) guarantees the
possibility of performing secure and trusted interactions
also to agents with minimal reasoning capabilities.

In conclusion, we believe that the introduction of VOOs
and Guarantors provides a solid ground for the concrete
development of trusted and secure MASs. Many issues related
to these properties are encapsulated by these abstractionsand
we believe that their in-depth study can lead to a better under-
standing of the subtle behaviours of these complex systems in
real-world situations.

ACKNOWLEDGEMENTS

This work is partially supported by project CASCOM (FP6-
2003-IST-2/511632). The CASCOM consortium is formed by
DFKI (Germany), TeliaSonera AB (Sweden), EPFL (Switzer-
land), ADETTI (Portugal), URJC (Spain), EMA (Finland),
UMIT (Austria), and FRAMeTech (Italy). This article reports
on joint work that is being realised by the consortium. The
authors would like to thank all partners for their contributions.

REFERENCES

[1] Baader, F., Calvanese, D., McGuinness, D., Nardi, D., and Patel-
Schneider, P.F., (Eds.),The Description Logic Handbook: Theory, Im-
plementation and Applications, Cambridge University Press, 2003.

[2] Bons, R.W.H.,Designing Trustworthy Trade Procedures for Open Elec-
tronic Commerce, Ph.D. Dissertation, 1997, EURIDIS and Faculty of
Business Administration, Erasmus University.

[3] Casati, F., Shan, E., Dayal, U., and Shan, M.-C.,Service-Oriented
Computing: Business-Oriented Management of Web Services. Commu-
nications of the ACM, 46:10, October 2003.

[4] CASCOM Web sitehttp://www.ist-cascom.org
[5] Castelfranchi, C., and Falcone, R. Principles of Trust for MAS: Cognitive

Anatomy, Social Importance, and Quantification. In Proceedings of The
International Conference of Multi-agent Systems (ICMAS), 72–79, 1998.

[6] Ellison, C., SPKI Requirements. IETF RFC 2692, September 1999.
[7] Ellison, C., Frantz, B., Lampson, B., Rivest, R., Thomas, B., and Ylonen,

T., SPKI Certificate Theory. IETF RFC 2693, September 1999.
[8] Foster, I., Kesselman, C., and Tuecke, S.,The Anatomy of the Grid:

Enabling Scalable Virtual Organizations, Int’l Journal of Supercomputer
Applications, 15(3), 2001.

[9] Gambetta, D. (Ed.),Trust: Making and Breaking Co-operative Relations,
Basil Blackwell, Inc., UK, 1985.

[10] JENA Web sitehttp://jena.sourceforge.net

[11] Jennings, N. R., Parsons, S., Sierra, C. and Faratin, P., Automated
Negotiation, in Procs. of the5

th Int’l Conference on the Practical
Application of Intelligent Agents and Multi-Agents Systems, PAAM-
2000, Manchester, UK.

[12] Martin, D., Paolucci, M., McIlraith, S., Burstein, M.,McDermott, D.,
McGuinness, D., Parsia, D., Payne, T., Sabou, M., Solanki, M., Srinivasan,
N., and Sycara, K.,Bringing Semantics to Web Services: The OWL-S
Approach, in Procs. of the1st Int’l Workshop on Semantic Web Services
and Web Process Composition (SWSWPC 2004), July 2004, San Diego,
USA.

[13] Marsh, S.Formalising Trust as a Computational Concept. Ph.D. diss.,
Department of Mathematics and Computer Science, University ofStirling,
Stirling, UK, 1994.

[14] Meyer, B., Object Oriented Software Construction, Second Edition,
Prentice-Hall, NJ, 1997.

[15] MINDSWAP, A Definition of Trust for Computing with Social Networks
Technical report, University of Maryland, College Park, February 2005.

[16] OWL Web sitehttp://www.w3.org/2004/OWL
[17] Poggi, A., Tomaiuolo, M., Vitaglione, G.,Do Agents Need Certificates?

Distributed Authorization to Improve JADE Security, in Procs. of the
6

th Int’l Workshop on Trust, Privacy, Deception, and Fraud in Agent
Societies, AAMAS 2003, July 2003, Melbourne, Australia.

[18] Racer Web sitehttp://www.sts.tu-harburg.de/
∼r.f.moeller/racer/

[19] Szomszor, M., and Moreau, L.,Recording and reasoning over data
provenance in web and grid services, in Procs. of the Int’l Conference
on Ontologies, Databases and Applications of Semantics (ODBASE’03),
LNCS 2888, November 2003, Catania, Italy.

WOA 2005 150


