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ABSTRACT
Today’s highly-scalable low-latency Web services rely on in-mem-
ory key-value stores. While they are essential to improve Web ser-
vice performance they should not be exposed to the Internet. Secu-
rity problems range from data leakage to remote code execution. In
this paper we use a year long data set of exposed Redis and mem-
cached instances to highlight the magnitude (about 200K) of the
problem, document new transitive attacks, and explore misconfig-
uration patterns. We find that the number of exposed instances is
constantly on the rise and that even severe problems only lead to
temporal decreases. However, by correlating misconfiguration pat-
terns we can explain significant changes in the number of exposed
systems.

CCS Concepts
•Security and privacy→ Access control; Database and storage
security; Information accountability and usage control; Usabil-
ity in security and privacy; •Networks→ Network security;
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Security; Measurement; Misconfiguration; Key-Value-Stores

1. INTRODUCTION
Key-value stores have emerged as a vital technology to support

highly-scalable low-latency Web services. They were first docu-
mented in research literature by Amazon with Dynamo [1]. To
offer high performance and ease of use key-value stores remove
features of traditional Relational Database Management Systems
(RDBMS) such as inter-object relations and type-dependent data
fields. As consequence, key-value stores are excellent systems for
services which need to store small values associated with an unique
index key. Their intended deployment environment is a dedicated,
well protected, and isolated backend network segment [1].

To achieve their performance, usability, and slim design goals
key-value stores often omit basic security features. Usually, mod-
ern key-value stores only offer limited authentication schemes, hard-
ly any authorization, and regularly lack transport encryption. This
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is a proper trade-off within the intended operational use cases. Orig-
inally, key-value store systems were supposed to be deployed in
isolated network segments, however, this is no longer the case.

Today, due to their ease of use, high performance, and widespread
availablility in almost all cloud environments almost every Web 2.0
service relies on key-value stores [2]. However, this increasing pop-
ularity has also lead to a wide spread deployment of unprotected
key-value stores. This was first noticed in early 2015 [3] and af-
fects more than 200,000 systems. Indeed, several key-value store
implementations are commonly run without authentication or au-
thorization while being Internet-wide reachable. Since then, vari-
ous authors have investigated what kind of data is stored in such
publicly reachable key-value stores [4, 5, 6]. The data includes
personal data, credit card information, medical data, cached Web
pages and byte-code, etc. Thus, in principle the data confidentiality
and integrity of tens of thousands of Web applications at risk.

Moreover, deployed key-value stores— exposed to the Internet
— suffer from a range of attacks beyond the confidentiality, in-
tegrity and availability of the data stored within them. These in-
clude object code cache injection, persistent cross-site-scripting
(XSS), Web session manipulation, and even remote shell access.
Therefore, one would presume that once it is known that key-value
stores deployments have to be properly isolated from the Internet
the Web services’ administrators take action and, indeed, isolate
them.

In an ideal world today no key-value stores services should be
reachable via the Internet. However, we find that this is not the
case. Overall, the number of unprotected instances is growing even
though it may temporarily decrease as a result of public disclosure
of exploits. This motivates our year-long survey of unprotected in-
stances of two prominent key-value stores, namely Redis and mem-
cached. Our key contributions can be summarized as follows:

• We document new transitive attacks on key-value stores.
• We document the magnitude of the problem of exposed key-

value stores using Redis and memcached as case studies.
• We point out that even significant attack possibilities only

lead to a temporary decrease in the number of exposed in-
stances.
• We distill insights regarding individual as well as organiza-

tion misconfigurations.
• We hint at how misconfiguration patterns together with re-

verse DNS information may be used to track offending orga-
nizations, e.g., spammers, across the Internet.

Paper structure: Section 2 introduces key-value stores and de-
scribes possible attacks. We present our dataset in Section 3 and
our observations in Section 4. Section 5 discusses our case-studies.
We then conclude in Section 6.
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2. Key-value stores
Over the last decade, we have seen a dramatic rise in the use

of NoSQL (Not Only SQL) databases. NoSQL, in contrast to re-
lational databases, does not require the use of an explicit schema
and trades consistency for flexibility and performance. One type
of NoSQL database with particularly good performance are in-
memory key-value stores. Key-value stores provide a mapping be-
tween keys and their associated values. In-memory key-value stores
avoid I/O bottlenecks by storing the entire database in memory.

Among the prominent in-memory key-value stores are Redis and
Memcached. These systems are commonly used for low-latency
access to shared or cached data [7]. Similar use cases apply to
other key-value stores including MongoDB and ElasticSearch [4].
To understand the security implications of exposing deployed key-
value stores to the Internet we highlight what they are used for.
We then outline security implications of accessing/tainting data in
key-value stores.

2.1 Key-Value Stores: Use-Cases
Amazon, Facebook, Digg, and Twitter [7] commonly use key-

value stores to realize their services. Moreover, key-value stores
are also used by many smaller companies and startups. Common
use cases are caching [8], queuing [9] and providing featured lists,
e.g., lists of the N most recent items [10].

Caching: Caching is a principle mechanism for improving perfor-
mance. Hereby, key-value stores are often used to store previous or
intermediate results. One example is traditional database queries
where the client first checks if the result is already cached in the
key-value stores. If yes it uses the result if not it issues the query
against the original database and stores the result in the cache. Due
to their in-memory design and key-based lookup pattern key-value
stores significantly accelerate performances over traditional rela-
tional databases [11, 7].

Another example involves PHP code if Zend or PHP-FPM is
used. Both compile PHP code to byte-code and cache the resulting
byte-code, e.g., in a key-value store. Thus, the application server
first checks in the key-value store cache if the PHP code is already
available as byte-code, and, if yes, skips the compilation. This sig-
nificantly accelerates application performance.

Lists: Key-value stores often include support for ordered lists [10]
and in particular for determining the top-N of such a sorted list
which is an expensive operation in traditional RDBMSs [7]. Such
lists are often used to hold volatile authentication data. Examples
include lists containing web-sessions, file-share links with asso-
ciated tokens and expiration time, and temporary access tokens
handed out to devices after login. Such tokens are needed by all
involved application servers as they are used to authenticate each
request. Previous work [1, 7] shows that this is one of the major
use-cases for key-value stores.

Queues: Key-value stores also often support queue types which
are are useful for a wide range of applications from email and mes-
saging to workload queues. Worker processes can access those
queues to obtain data for distributed compute jobs. This can in-
volve metadata on the processed job, i.e., a global tracking of the
progress on a single job or the actual data to be processed distribu-
tively. Distributed system log message management frameworks
like Logstash rely on key-value stores to handle the log messages
of thousands of systems [9]. Note, that log messages often hold
sensitive information on users’ actions or may have to be covertly
altered by an attacker to hide the evidence of a compromise [12].

2.2 Transitive attacks
As highlighted above key-value stores are often used to store

sensitive data. Thus, access to or tainting of this data leads to con-
fidentiality, integrity, and availability problems for the key-value
stores itself, see, e.g., Zahid et al. [13] for an overview. However,
there are also severe consequences for the service using the key-
value store. Below we outline several, so far unreported, transitive
attacks on such services via their key-value stores.
Object Code Cache Injection: In case key-value stores are used
as caches, e.g., for PHP object code, an attacker can replace the
cached object with her own. Hereby, the attacker can force the
application server to execute her object code the next time the cor-
responding Web-page is accessed. This allows full remote code
execution by an attacker.
Stored XSS: In a similar way an attacker can abuse the key-value
store for persistent XSS (Cross-Site-Scripting). By injecting, e.g.,
JavaScript, into cached HTML templates an attacker can distribute
her code to all clients which access web-sites that use these tem-
plates. This constitutes an easily executed drive-by attack.
Web-Session Manipulation: If, for example, an authentication to-
ken (SessionID) with the session data of an application is stored in
the key-value stores [7] an attacker can impersonate users or elevate
the privileges of her own session within the application’s context.
Redis Remote Shell: In October 2015 Salvatore “antirez” Sanfil-
ippo, the lead developer of Redis, demonstrated a Redis specific
exploit in a blog article [14] which leads to a remote shell. Since
Redis allows an attacker to alter its configuration the attacker can
instruct it to use ~/.ssh/author ized_keys as database. By
entering a ssh-public-key enclosed by “\n” as data for an arbitrary
key to that database the attacker can obtain shell access.

3. DATASET
One of the Shadowserver Foundation’s projects [15] aims at re-

ducing the set of affected systems for various protocols that are po-
tentially vulnerable, misconfigured, or packet amplification sources.
Among these potentially vulnerable systems are, e.g., Redis and
memcached.

The Shadowserver foundation utilizes a distributed scanning clus-
ter to regularly scan the Internet for affected systems. It checks if
a service is reachable and for key-value stores if they reply to sta-
tus requests. Due to the missing privilege separation, this indicates
full access to a key-value store. Thus, this key-value store is con-
sidered affected. Hence, these scans follow the zMap-style [16]
two-step approach: First the general reachability of a port is estab-
lished. Then, a service specific protocol handshake is performed.
The scans check for Redis on port TCP/6379 and memcached on
port TCP/11211. The data is then aggregated on two levels: the
Autonomous System (AS) and CC (Country Code). Thus, for each
AS/CC we can estimate the number of Internet-wide reachable sys-
tems on a daily basis. This information is made publicly available
each day. However, no historical summary of the key-value stores
scans are provided.

In late January 2015 the Shadowserver Foundation added Re-
dis and memcached to their scanning project [15]. Other key-
value stores’s were added later, e.g., MongoDB mid-February 2015
and ElasticSearch in June 2015. We, for the purpose of this pa-
per, choose Redis and memcached as our research focus is on in-
memory key-value stores. We have gathered a year-long dataset of
all exposed Redis and memcached instances on the Internet, start-
ing on the 5th of February 2015 using the Shadowserver Founda-
tion’s public data feed.
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Start End Change Contributors
Feb-27-2015 Feb-28-2015 -20,272 ASm2

May-30-2015 Jun-03-2015 +12,020 ASm2

Nov-06-2015 Nov-07-2015 +40,327 ASm1 , ASm2

Nov-20-2015 Nov-21-2015 -30,632 ASm1

Dec-09-2015 Dec-11-2015 +28,615 ASm1

Dec-16-2015 Dec-17-2015 -26,598 ASm1

Dec-31-2015 Jan-03-2016 +12,186 ASm1

Jan-06-2016 Jan-09-2016 +10,586 ASm1

Jan-15-2016 Jan-17-2016 -21,344 ASm2

Feb-25-2016 Feb-26-2016 -28,796 ASm1

Mar-03-2016 Mar-05-2016 +26,517 ASm1

Mar-08-2016 Mar-09-2016 -24,175 ASm1

Table 1: Memcached: Periods with significant changes in the
number of exposed instances.

As the ShadowServer datasets are already highly aggregated we
augment them with additional data. For this purpose, we perform
our own targeted low bandwidth (5mbit) zMap [16] SYN only scan.
But rather than targeting all ASes we focus on a subset of the ASes
which we highlight in our case studies, see Section 5. To identify
which prefixes to scan we use the HE BGP tool [17] to identify all
de-aggregated /24 prefixes an AS originates at the time of a scan.

We find that the total number of responding systems in our scan
is comparable to the numbers reported by the Shadowserver Foun-
dation. Indeed, as these do match nearly exactly, we consider this
as validation of both our own data as well as the data by the Shad-
owServer foundation. It is a validation of our own data as we do an
SYN only scan. It is a validation of the data by the ShadowServer
foundation as an independent scan yields similar results.

4. OBSERVATIONS
To get an overview of how the number of exposed Redis and

memcached instances on the Internet evolved over time, Figure 1(a)
and 1(b) show for each day the number of exposed instances. Sur-
prisingly, given the severe security implications, we still see a steady
increase in the number of exposed instances in both datasets. How-
ever, there is one major difference between the two key-value stores.
In case of Redis the number of exposed instances is substantially
reduced during the time period from early November 2015 to the
beginning of January 2016.

Taking a closer look at the Redis dataset we identify three phases,
see Figure 1(a). From the start of our observation period, Feb-05-
2015, till about Nov-06-2015 we observe a steady increase of ex-
posed instances. Here, the average increase of exposed instances is
62/434 per day/week. Starting from Nov-07-2015 to Jan-03-2016
we observe a huge drop by 30,575 exposed instances. The aver-
age decrease rate is 449 instances per day. This decrease is briefly
interrupted by a short increase over the holiday season at the end
of 2015. However, starting around Jan-04-2015 till the end of our
observation period, Apr-01-2015, the number of exposed instances
is on the rise again with an average increase of 109 per day.

In the memcached dataset, see Figure 1(b), we do not see such a
significant decrease in the number of exposed instances as for the
Redis dataset. Here, the increase of exposed instances is roughly
170/1130 per day/week over the whole observation period. How-
ever, note that the magnitude of memcached instances is signifi-
cantly larger with a maximum of almost 200,000 However, Fig-
ure 1(b) shows some strange behavior towards the end of 2015 and
in March 2016. Indeed, Table 1 summarizes short time periods
when the number of exposed systems changed by more than 9,000.
In Section 5 we take a closer look at them.

Next, we explore how the number of exposed system is dis-
tributed across the autonomous systems. Overall, our dataset finds
exposed systems in 4,705 / 7,714 ASes for Redis / memcached.
This corresponds to a large fraction of total number of ASes. In
addition, as one may expect, not all ASes are affected equally. Ac-
cordingly, Figure 2(a) shows for Mar-14-2016 the concentration of
the number of exposed key-value stores per AS for both Redis and
memcached using a cumulative distribution function (CDF) with a
log-scale x-axis. To ease interpretation of the results we added a
support line for the Top 10% of the ASes. For memcached they
host 90% of the exposed instance while for Redis they only host
82% of exposed instances. The Top 1% contribute 60%/50% of
all exposed memcached/Redis instances. For other days we find
similar distributions.

We do see some evidence of irregularities in the two datasets:
up to Feb-19-2015 and from Apr-09-2015 to Apr-14-2015. More-
over, there are a few days (less than ten) in which no or a very
small number of exposed instances are reported for both Redis and
Memcached. Since these are common to both datasets we pre-
sume that these are due to some problems with the Shadowserver
Foundation’s infrastructure and ignore those time periods. Indeed,
these are the only irregularities that we find that are present in both
datasets. While on first glance the data for Memcached in the pe-
riod from Nov-06-2015 to Jan-15-2016 may look like an irregular-
ity it is not as we discuss below.

5. CASE-STUDIES
Next, we take a look at the possible causes for significant changes

in the number of affected systems for both Redis and memcached.

5.1 Redis Decrease/Reincrease
Recall, that Redis has an initial phase with steady increase in the

number of exposed instances followed by a second phase of sub-
stantial decline which starts around Nov-07-2015 where the num-
ber of exposed instances platoons followed by few days of minor
decline and then a sharp decline around Nov-12-2015 which leads
to a reduction in the number of exposed instances by a factor of
more than three within the next month.

On Oct-25-2015 Sanfilippo described how an exposed Redis serv-
er can be used to obtain remote shell access to a server [14], see
Section 2. This story remained more or less dormant for the follow-
ing nine days. On Nov-12-2015 various programming community-
related news sites started to report on the possible exploit. Up to
this time the increase of the exposed instances levels which indicate
that some administrators already reacted based on the original blog
post or an attack. Shortly afterwards, mainstream media picked up
the issue. This corresponds to the sudden and forceful decline in
the number of exposed Redis instances. Moreover, we find first
evidence of the use of this exploit—stackoverflow posts [18]—on
Nov-13-2015. The decline is for Redis only and did not carry over
to other key-value stores, e.g., memcached. Given that this spe-
cific attack only affects Redis this may not be surprising. However,
given the other attacks pointed out in Section 2, this is a severe
issue which should be approached by the responsible parties.

The decline lasted until early January 2016 with a brief interrup-
tion during the holiday season at the end of 2015. Our conjecture is
that people used that time to evaluate new software stacks. As such,
test systems were set-up during the holiday season and discontin-
ued afterwards. If the project involved key-value stores Redis was
a likely choice due to its previous prominence in the media.
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Figure 1: Redis and memcached: Number of exposed instances over time.
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Figure 2: Redis/Memcached closeups: (a) CDF across ASN (b) Exposed instances for selected ASNs over time (Memcached only).
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(a) ASm1 , Feb-23-2016
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(b) ASm2 , Mar-16-2016
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(c) ASm3 , Feb-23-2016

Figure 3: Memcached: Density of exposed instances for ASm1 , ASm2 and ASm3 .

Disturbingly, after the brief period of decrease, the number of ex-
posed Redis instances rises at nearly twice the previous rate. This
indicates that the incident awareness within the system administra-
tion community of a severe security problem is limited to roughly
one month. Thus, continuous mitigation is severely lacking.

5.2 Memcached Events
As pointed out the number of exposed memcached systems is

varying, see Table 1. To understand its root cause we use the distri-
bution per AS and identified two major contributing ASes: ASm1

focuses on large web-hoster and also offers dedicated/virtual-private
server provider; ASm2 is another large hoster. In contrast to ASm1

ASm2 focuses mainly on co-location as well as dedicated/virtual-
private servers. For comparison, we also consider ASm3 : A large
end-user PaaS cloud network.

To get an overview of how the number of exposed memcached
instances for ASm1 and ASm2 changes over time Figure 2(b) shows
for each day the number of exposed instances by these ASes. By
comparing Figure 2(b) with Figure 1(b) we find that both ASes are
responsible for most of the events of Table 1. One can see that
most identified irregular events between Nov-2015 and Apr-2016
can be attributed to one of the two AS even given that ASm2 partly
(de)amplified the observable effects. Therefore we label each of
the events with the AS that is the major contributor in Table 1.
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Given the large number of exposed systems and their sudden,
apparently coordinated, appearance we hypothesize that they are,
in fact, under a single administrative control. Here, administrative
control is not meant in the sense of determining the BGP policies
but rather the firewall and/or systems configuration of the exposed
systems. In contrast to BGP in dedicated server setups the control
of the systems and firewall level can be diversified up to a per-IPv4
address level.

Therefore, we check if the exposed systems are distributed evenly
across the address range of the ASes or if they are clustered in spe-
cific prefixes. Using our zMap SYN scan for all prefixes originated
by our three sample ASes we determine the density of the exposed
systems per de-aggregated /24 prefixes originated by that AS. A
density of 1 corresponds to an exposed memcached service on all
IPv4 addresses within the /24 prefix. A density of 0 corresponds to
no exposed memcached services.

Figure 3 shows the densities for our three ASes for Feb-23-2016
respectively Mar-16-2016. We picked Feb-23-2016 for ASm1 and
ASm3 as there are a lot of exposed memcached instances within
ASm1 . We picked Mar-16-2016 for ASm2 as the number of ex-
posed memcached instances with ASm2 is again around 5,000 in-
stances1. ASm3 , a large end-user PaaS cloud network, serves as
baseline and hosts more than 4,000 exposed memcached instances.
The density plot for February, Figure 3(c), and March, not shown,
for ASm3 shows that the exposed instances are more or less evenly
distributed across the address space of the AS.

For ASm1 and ASm2 , see Figures 3(a) and 3(b), the densities
support our hypothesis that here the exposed instances are under
common administrative control. Indeed, for ASm1 more than hun-
dred adjacent /24s have significant densities. Indeed, these densi-
ties vary in multiples of 32 IPv4 addresses. It appears the allocation
of addresses is done en-block on /28 granularity.

We contacted the operator of ASm1 in mid Feb-2016. After
some discussion, the operator started to mitigate the issue. Miti-
gation was completed by end of February. Surprisingly, our dataset
shows that the problem re-surfaced at the beginning of March. This
time, the operator mitigated the problem without further contact.

ASm2 is responsible for the first large drop event in Feb-2015
of the exposed memcached instances. It re-introduced a large num-
ber of exposed memcached instances in the beginning of Jun-2015.
This event was, however, counteracted by a simultaneous decrease
in another AS and does, therefore, not significantly stick out in Fig-
ure 1(b). Its instances further increase at the same time when ASm1

first exposed its large number of instances. However, in contrast to
ASm1 , ASm2 mitigated the issue for nearly all exposed instances
by mid January 2016. For ASm2 , see Figure 3(b), we find 56 dif-
ferent /24 with a density higher than 0.9. This indicates that the
systems in these subnets are under common administrative control.

Background checks showed that the corresponding network seg-
ments are most probably rented out. While ASm2 already has
a somewhat questionable reputation due to being regularly listed
on various blacklists, these third parties are commonly known for
shady practices. Indeed, all affected prefixes are on the Spamhaus
blacklist for use in so-called snowshoe spamming. In snowshoe
spamming, spammers reserve large prefix sets to send spam from
all addresses within the network to bypass spam filtering [19]. Over-
all, we conclude that the system(s) behind these addresses are most
likely under the control of a sub-sub-customer of ASm2 .

While we cannot per-se generalize to earlier events in ASm2 it
may be possible to cross-check it with previous spam-campaigns
which is beyond the scope of this paper. Nevertheless, from these
1Unfortunately, we started this kind of detailed analysis too late to
get insights into the events before Feb-2016.
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Figure 4: ASr1 and ASr2 from the Redis Dataset.

exposed memcached instances we could have gathered internal in-
formation from these large, commercial spammers, if we had ig-
nored ethical and legal considerations.

In principle, we can turn this observation around. By looking
for prefixes with high densities of exposed memcached instances
and their reverse DNS entries we can identify systems that are mis-
configured due to a common root cause and are likely under one
administrative control. Thus, as long as the spammers do not fix
their memcached deployment we should be able to track them even
if they move across the Internet or change their incorporated affili-
ation. Moreover, it may be possible to use related historic datasets
to better understand spammers.

5.3 Redis anomalies
Next, we use the concept of prefixes with high-density of ex-

posed instances per /24 to revisit the Redis data. Among the iden-
tified ASes with such prefixes are two relatively small ASes: ASr1

is registered in Azerbaijan and announces one /21 and ASr2 is reg-
istered in Kazakhstan which announces one /22 and one /20. In-
deed, a detailed look at these ASes across time, Figure 4, shows
the simultaneous sudden appearance and disappearance of exposed
Redis instances.

Here, the most striking observation is that the appearance / dis-
appearance of exposed key-value stores in these two ASes fully
coincides. This indicates a shared administrative body. Indeed,
the RIPE database entries for the two ASes list the same MNT-
BY. This maintainer object belongs to a hoster that advertises that
abuse complains are treated in a relaxed manner. Again, we have
leads that may allow us to identify and link shady ASes via a shared
misconfiguration pattern.

6. SUMMARY
In this paper we take a closer look at the protection of two pop-

ular in-memory key-value stores, Redis and memcached. Both are
systems that are designed to be deployed in isolated network seg-
ments. If exposed to the Internet such system pose significant dan-
gers to the data within them. In addition to the general abuse po-
tential and the Redis remote shell exploits, we, in this paper, point
out further so far undocumented transitive attacks.

Using a year-long scan dataset, to point out that there is an alarm-
ing and ever increasing number of Redis as well as memcached sys-
tems on the Internet. Moreover, even significant security problems
only lead to a temporary, even if significant, reduction in the num-
ber of effected systems. Unfortunately, the memory of the systems
administration community seems to be less than a few months and
even ready reports, such as those by the ShawdowServer founda-
tion do not seem to have any lasting impact in reducing them.
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Moreover, as a significant number of these key-value stores sys-
tems are hosted in cloud environments individual as well as or-
ganization misconfigurations can drastically increase the number
of exposed systems. We highlight this using exposed memcached
instances in two ASes as examples. Indeed, such misconfigura-
tions if cross-correlated with reverse DNS may even enable us to
track spammers. Moreover, we show that it is possible to identify
underlying organizational structures with concurrent misconfigura-
tion patterns. We use Redis with two ASes as example to link two
ASes with questionable reputation to a common operator.

Regarding future work it will be interesting to see if papers such
as this one which points out the magnitude of issues actually have
a longer lasting impact on reducing them. In this paper, we focused
on the AS level. An analysis of the CC level may reveal further
insights, e.g., on the performance of the respective country-level
Computer Security Incident Response Teams (CSIRTs).
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