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Abstract: 

Epichloid endophytes are well known symbionts of many cool-season grasses that may alleviate 

environmental stresses for their hosts. For example, endophytes produce alkaloid compounds 

that may be toxic to invertebrate or vertebrate herbivores. Achnatherum robustum, commonly 

called sleepygrass, was aptly named due to the presence of an endophyte that causes toxic effects 

to livestock and wildlife. Variation in alkaloid production observed in two A. 

robustum populations located near Weed and Cloudcroft in the Lincoln National Forest, New 

Mexico, suggests two different endophyte species are present in these populations. Genetic 

analyses of endophyte-infected samples revealed major differences in the endophyte alkaloid 

genetic profiles from the two populations, which were supported with chemical analyses. The 

endophyte present in the Weed population was shown to produce chanoclavine I, paspaline, and 

terpendoles, so thus resembles the previously described Epichloë funkii. The endophyte present 

in the Cloudcroft population produces chanoclavineI, ergonovine, lysergic acid amide, and 

paspaline, and is an undescribed endophyte species. We observed very low survival rates for 

aphids feeding on plants infected with the Cloudcroft endophyte, while aphid survival was better 

on endophyte infected plants in the Weed population. This observation led to the hypothesis that 

the alkaloid ergonovine is responsible for aphid mortality. Direct testing of aphid survival on oat 

leaves supplemented with ergonovine provided supporting evidence for this hypothesis. The 

results of this study suggest that alkaloids produced by the Cloudcroft endophyte, specifically 

ergonovine, have insecticidal properties. 
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Article: 

Introduction 

Wild grasses have evolved symbiotic relationships with endophytic fungi that cope with multiple 

abiotic and biotic stresses (Cheplick and Faeth 2009; Kannadan and Rudgers 2008). The most 

well studied of these fungal endophytes are Epichloë species that systemically infect many cool-

season pooid grasses. The most pronounced and well known effect of these endophytes is the 

production of bioactive alkaloids that can protect their host from vertebrate and invertebrate 

herbivores and pathogens (Clay 1996; Crawford et al.2010). Epichloid alkaloids are grouped into 

four classes: ergot alkaloids (e.g., chanoclavine, ergonovine, and ergovaline), lolines (e.g., N-

acetylnorloline and N-formylloline), indole-diterpenes (e.g., terpendole C and lolitrem B), and 

peramine. Each has varying biological activity against vertebrate or invertebrate herbivores 

(Panaccione et al. 2014). A given endophyte may produce alkaloids from one or more classes, 

and multiple alkaloids from within each class (Schardl et al. 2013a, c). Genome sequencing of 

multiple Epichloë species has indicated that the source of variation for the type of alkaloid 

produced stems mainly from the remarkable variation in presence of alkaloid genes 

among Epichloë species and strains (Schardl et al. 2013c). HybridEpichloë species, by the nature 

of arising from multiple progenitors, have the potential to increase genetic variation for alkaloid 

production (Schardl and Craven 2003; Schardl et al. 2012, 2013a, c). However, environmental 

factors, such as soil nutrients or herbivore grazing, may modulate alkaloid levels (Bultman et 

al. 2004; Hunt et al. 2005). Accumulating evidence also indicates that Epichloë species and 

strains vary greatly not only among grass species but also within a single grass species. For 

example, Hordelymus europaeus (Oberhofer and Leuchtmann 2012), Festuca 

arizonica (Sullivan and Faeth 2008), and Bromus laevipes (Charlton et al. 2014) can harbor both 

hybrid and nonhybrid Epichloë species. 

Achnatherum robustum (formerly Stipa robusta) is native to mountainous areas of the 

southwestern USA, and is commonly known as sleepygrass because of its long-recognized toxic 

and narcotic effects on livestock (Jones et al. 2000). Indeed, sleepygrass is one of the relatively 

few epichloid-infected native grasses known to be highly toxic to vertebrates (Faeth 2002b). The 

toxic effects are due presumably to ergot alkaloids (ergonovine and lysergic acid amide) 

(Petroski et al. 1992) produced by an asexual, seed-borne epichloid endophyte. Infected grasses 

with high levels of ergot alkaloids occur in a restricted range of A. robustum near Cloudcroft, 

NM in the Lincoln National Forest (Faeth et al. 2006). Endophyte-infected A. robustum from this 

location show very high levels of the ergot alkaloids ergonovine (EN), lower levels of lysergic 

acid amide (LAA), isolysergic amide, and much lower levels of ergonovinine. The presence of 

these alkaloids could explain the toxic effects of sleepygrass on livestock, such as narcotized 

sleep, elevated body temperature, weakness, frequent urination, dizziness, hyper salivation, 

diarrhea, and potential death (Miles et al. 1996; Petroski et al. 1992). Cytotoxic effects to animal 

muscle tissue also have been described for ergonovine and ergonovinine (Zhang et al. 2014). 

Although less well studied, ergot alkaloids also may have deterrent and toxic effects on 



invertebrate herbivores (Panaccione et al. 2014; Schardl et al. 2013a). In contrast to the 

Cloudcroft population, endophyte-infected A. robustum from other nearby and distant 

populations do not produce ergot alkaloids such as those found in the Cloudcroft population. One 

of these populations is located within 22 km from Cloudcroft in the Lincoln National Forest near 

Weed, NM, USA (Faeth et al. 2006). 

It is likely that A. robustum is a host for more than one endophyte species, based upon dramatic 

differences in alkaloids produced among different endophyte-infected plants (Faeth et al. 2006). 

Presently, only one endophyte species, Epichloë funkii (formerly Neotyphodium funkii) has been 

described from A. robustum(Leuchtmann et al. 2014; Moon et al. 2007). Epichloë funkii, a 

hybrid endophyte with E. elymi and E. festucae ancestral progenitors, was described based on a 

single plant collection in Colorado, USA (Moon et al. 2007). Recent draft genome sequence 

of E. funkii indicates the presence of EAS biosynthesis genes required for production of 

chanoclavine I, an early ergot alkaloid pathway intermediate, IDT/LTM biosynthesis genes 

required for production of terpendoles from the indole-diterpene pathway, and the perA gene 

required for peramine production (Schardl et al. 2013c). To date, however, only chanoclavine I 

has been detected from E. funkii-infected plant tissues, while peramine and indole-diterpenes 

have not been analyzed (Schardl et al. 2013a, c). The alkaloid genetic profile of E. funkii does 

not support the production of ergonovine, yet ergonovine is found at high levels in endophyte-

infected sleepygrass plants from the Cloudcroft population. Therefore, this evidence suggests 

that a different Epichloë species with the capability to produce ergonovine also infects A. 

robustum. 

Our goal was to examine the variation in epichloid endophytes, their alkaloid genes and 

products, and the ecological consequences for herbivores, in two disjunct, but nearby A. 

robustum populations (Cloudcroft and Weed). We tested whether the endophytes and their 

associated alkaloids differentially affected herbivores via a standard insect bioassay with aphids. 

To test for a mechanism underlying the observed variation in aphid resistance, we tested the anti-

herbivore properties of a specific ergot alkaloid, ergonovine, in controlled experiments. 

Methods and Materials 

Field Plants 

To study endophyte infection status (E), variation in production of the alkaloids ergonovine and 

lysergic acid amide (A) and alkaloid levels, we sampled A. robustum plants established in 2005 

in an experimental plot at the Arboretum of Flagstaff, Flagstaff, Arizona (Faeth et al. 2010). The 

experimental plot included three groups: uninfected plants (E-A-), endophyte-infected not 

producing ergonovine (E+A-), and endophyte-infected producing ergonovine (E+A+). Seed used 

for this plot (Table 1), originated from Cloudcroft and Weed natural populations, New Mexico, 

USA collected during 2001–2004 (Faeth et al. 2006). Each group was organized from multiple 

seedlings grown from 1 to 2 maternal plants. In September 2011, one tiller per plant was 



collected, checked for endophyte infection, and stored at −20 °C for alkaloid analyses. In May 

2013, we recollected several plant samples from each group and tested for endophyte infection, 

ergot alkaloid production, and endophyte alkaloid genotype. Achnatherum robustum is an 

obligate outcrossing species, and plants were allowed to naturally pollinate each other within the 

experimental plot to produce seed. 

Table 1 Origin of Achnatherum robustum field plot plants 

Group a Origin of population Coordinates Maternal plant ID 

E-A- Weed, New Mexico N:32o 47.7′ W:105o 35.7′ 5–91 b 

E+A- Weed, New Mexico N:32o 47.7′ W:105o 35.7′ 5–110 

E+A+ Cloudcroft, New Mexico N:32o57.5′ W: 105o 43.1′ 4–134 

Cloudcroft, New Mexico N:32o57.5′ W: 105o 43.1′ 4–136 

aE- = Epichloë free plant, E+ = Epichloë infected plant; A- = no ergonovine production, A+ = 

ergonovine production bSubsequent analysis of these plants revealed endophyte-infected plants 

existed within this group 

Maintenance of Greenhouse Plants 

To establish plants for herbivory experiments, chemotyping, and genotyping, second generation 

seeds originating from the Cloudcroft and Weed populations (2010 collection from the 

experimental plot) were planted on January 5, 2011 in potting mix soil (Timberline, USA) in 

300 ml pots. Seedlings were grown in the greenhouse at 25 °C/ 22 °C day/night temperatures and 

natural light conditions and fertilized with 20:20:20 soluble fertilizer with minor elements 

(Southern Agricultural Insecticides, Inc., Hendersonville, NC, USA) twice a month. One tiller 

was sampled prior to the herbivory experiment (April 2011) to determine endophyte infection 

status and alkaloid production. This sampling was repeated after the herbivory experiment 

(January 2012) to confirm endophyte infection. Samples for genetic studies were taken in 

December 2012. 

Detection of Endophyte Infection Status 

The Phytoscreen Immunoblot Kit “Neotyphodium Field Tiller” (Agrinostics, Ltd. Co, GA, USA) 

was used to determine the infection status of all plant samples. One tiller per plant was tested by 

imprinting the base of the tiller onto nitrocellulose paper to detect endophyte presence by 

immunoblot analysis, while the remainder of the tiller was retained for chemical analysis. Fresh 

samples were used from greenhouse plants and frozen samples from field plants. 

Alkaloid Extraction 



Leaf samples were freeze-dried and extracted with 95 % methanol (40 mg in 1 ml) at 5 °C for 

48 h. The extract was filtered through a 0.22 μm spin filter (Corning Inc.), air dried, and re-

dissolved in 17 % aqueous methanol. The resulting extracts were stored at 5 °C until time of 

analysis. 

Lysergic Acid Amide and Ergonovine Analysis 

To detect and quantify ergot alkaloids, HPLC-HESI-MS analyses were performed on a triple 

quadruple mass spectrometer (TSQ Quantum, Thermo, San Jose, CA, USA) interfaced to 

an HPLC system with photodiode array detector (monitored at 300 nm) and quaternary pump 

(Agilent HP1100 series). A binary solvent composition of aqueous 0.1 % formic acid (solvent A) 

and 0.1 % formic acid in methanol (solvent B) was employed with a flow rate of 0.20 ml/min on 

a C18 column (50 × 2.1 mm, 3 μm particle size, Prevail packing,Grace, Deerfield, IL, USA). 

Separation was achieved using a linear gradient that initiated at 95%A:5%B (v/v) and remained 

isocratic from 0 to 4 min; decreased linearly from 95%A:5%B to 90%A:10%B from 4 to 5 min; 

from 90 %A:10 %B to 70 %A:30 %B from 5 to 11.5 min; from 70 %A:30 %B to 10 %A:90 %B 

from 11.5 to 11.6 min; remained isocratic at 10 %A:90 %B from 11.6 to 16 min; increasing from 

10 %A:90 %B to 95 %A:5 %B from 16 to 16.1 min; and remained isocratic at 95 %A:5 %B 

from 16.1 to 24 min. 

Aqueous solutions of the ergot alkaloids lysergic acid amide tartrate (98 % pure by LC-MS) and 

ergonovine maleate (Sigma-Aldrich, 100 % pure by TLC) were employed as standards for 

quantitation. The mass spectrometer was operated in the positive ion mode with a 0.1 s scan time 

and a scan width of 0.5 m/z.Quantification was performed using selected reaction monitoring 

(SRM) with a 268 to 208 transition for lysergic acid amide and a 326 to 223 transition for 

ergonovine. Alkaloid quantities were calculated by linear regression of the relevant calibration 

curves. 

Analysis of N-acetylnorloline, Chanoclavine I, and Peramine 

Loline alkaloids, chanoclavine I, and peramine were analyzed by using ultra performance liquid 

chromatography – high resolution mass spectrometry (UPLC-HRMS) on an Orbitrap mass 

spectrometer with electrospray ionization (ESI) source (LTQ Orbitrap XL, Thermo, San Jose, 

CA, USA) coupled to Acquity UPLC (Waters Corp., Milford, MA, USA). A hydrophilic 

interaction chromatography (HILIC) column (150 × 2.1 mm, 5 μm particle size, 120 Å pore size, 

Alltima packing, Grace, Deerfield, IL, USA) was utilized for the analysis of all extracts, with a 

0.3 ml/min flow rate and a 3 μl injection volume. The samples were analyzed using the following 

gradient composition, where A = 0.1 % formic acid in (acetonitrile) and B = 0.1 % formic acid in 

(water), 95.1 % A from 0 to 8 min. Mass spectrometric detection was conducted in the positive 

ion mode with a scan range of 75–300 m/z. Capillary temperature was 275 °C, sheath gas 

pressure was 20 (arbitrary units), and spray, capillary, and tube lens voltages were 4.5 kV, 20 V, 

and 100 V, respectively. For comparison, this method was applied to the analysis of endophyte-



infected Elymus canadensis (strain NFe746), and the alkaloids N-acetylnorloline, peramine, and 

chanoclavine I were all detected, consistent with previous literature (Charlton et al. 2012; Clay 

and Schardl 2002; Schardl et al. 2013c). A synthetic standard of N-acetylnorloline also was 

analyzed as a positive control. 

Indole-Diterpenes Chemical Analysis 

Indole-diterpene analyses were performed by AgResearch in New Zealand using LC-MS/MS 

according to Rasmussen et al. (2012). 

DNA Extraction and Chemoprofiling 

Tillers from greenhouse and field plants were evaluated for the presence of 

associated Epichloë species, and the endophyte was characterized using PCR. DNA was isolated 

from plant material with MagAttract 96 DNA Plant Core Kit (QIAGEN Inc.) according to 

manufacturer’s instructions. PCR with six multiplex primers sets were used to determine 

endophyte infection status, mating type, and genes present at each alkaloid loci as described in 

Charlton et al. (2014). In addition, the multiplex three primer set included primers, 

dmaW818(311 + 21)d (5′-AACCCATCAACGGAGCAACTG) and dmaW818(1068 + 21)u (5′-

GCCAAACACTGTGAAATACACCTG), designed to the E. 

gansuensis var. inebrians e818 dmaW EN gene required for ergonovine production (L. Chen, C. 

L. Schardl unpublished). 

Aphid Biological Assay 

An aphid bioassay was employed to test the effects of endophytic alkaloids from different 

endophyte-infected A. robustum on herbivore resistance (e.g., Cheplick and Faeth 2009). In total, 

101 greenhouse grown plants originating from the Cloudcroft population and 54 plants from the 

Weed population were evaluated. Twenty seven plants from the Cloudcroft population with total 

ergonovine plus lysergic acid amide (EN+LAA) ergot alkaloid levels greater than 26.7 μg/kg (at 

the age of 3 months) were selected for one group, and 26 infected plants from the Weed 

population with no detectable ergonovine and lysergic acid amide alkaloids were selected for the 

other group. Two Rhopalosiphum padi L. aphid populations were used for this experiment: wild 

NC (North Carolina) origin (collected in Greensboro, NC) and NY (New York) origin (obtained 

from the UNC-Chapel Hill collection). The NY population has been observed to be more tolerant 

to endophytic alkaloids (M. Dekker, pers. communication). Rhopalosiphum padi has been used 

commonly to bioassay the effects of endophytic alkaloids on herbivores (Leuchtmann et 

al. 2000; Saari et al. 2014). Aphids were reared on oat (Avena sativa) plants, so they were naïve 

to fungal alkaloids (oats do not produce alkaloids). This experiment continued for 30 day in 

October-November 2011 when plants were 10 month old. Initially, three aphids were placed 

on A. robustum plants enclosed with clear plastic cups and thin fabric secured on top for air 

exchange. Every 3 days, wingless and winged aphid numbers were recorded, and an additional 

three aphids were added to each plant to maintain populations. Both wingless and winged forms 



were recorded because aphids may produce winged forms when host plant quality deteriorates 

(Braendle et al. 2006; De Barro 1992). 

Bioassay to Test Anti-Herbivore Activity of Ergonovine 

To test the direct effects of the ergot alkaloid ergonovine on aphid herbivores, 20 one-wk-old oat 

(Avena sativa) seedlings (seed material from Nasco, Fort Atkinson, WI, USA) were cut at soil 

level and placed into an aqueous ergonovine solution (1.5 ppm, 1 ml) in a microcentrifuge tube 

covered with aluminum foil. Each leaf was secured in the tube with a small piece of sponge. 

Ergonovine was adsorbed naturally due to transpiration. A 15 ml clear plastic centrifuge tube 

with the end cut off was inverted to cover the leaf in the microfuge tube, and the hole was closed 

with a small roll of KimWipes to allow some gas exchange. Five R. padi (NY) aphids of 3rd and 

4th instar were added to each leaf. For the control group, deionized water was used in place of the 

ergonovine solution. Plants were placed in a growth chamber at 25 °C with 16 h of L/D for 

4 days. All aphids were counted, and leaves were freeze-dried to determine the ergonovine 

concentration. Extraction and LC-MS analysis of ergonovine levels in three control and 20 

ergonovine treated leaves was performed as described above. We did not have sufficient lysergic 

acid amide, the second candidate for insecticidal properties, to test the direct effects on aphids. 

Statistical Analysis 

RGui 32-bit software with R Commander Package was used for statistical analyses. For ergot 

alkaloid concentration measurements, averages and population standard deviations were 

determined. For the ergonovine testing bioassay, we used aphid means with SE counts; one-

way ANOVA test was performed to determine the difference between the treatment groups, and a 

simple linear regression model was used to test the effect of ergonovine concentration on aphid 

numbers. Data from the aphid biological assay was non-normally distributed, so we used rank 

transformation and Wilcoxon nonparametric tests for comparing the differences at each of ten 

measurements between two plant and two aphid populations. Because of repeated measures, 

overall aphid numbers between populations also were compared with Hotelling’s T 2 test for 

ranked data. To test differences in the collective number of wingless and winged forms over all 

time periods, we used the Pearson’s Chi-square test. 

Results 

Infection Status and Ergot Alkaloid Levels in Seedlings from Cloudcroft and Weed Populations 

Differences were observed in alkaloid content and endophyte infection status between 3 month 

old seedlings originating from Cloudcroft and Weed populations. When the endophyte infection 

status was determined by immunoblot analysis for 155 greenhouse three-month old seedlings, 

only the Weed population tested positive for endophyte infection, while all Cloudcroft seedlings 

appeared to be endophyte free. However, chemical analysis revealed the presence of ergot 

alkaloids (ergonovine and lysergic acid amide) at varying levels in 74 out of 101 Cloudcroft 



population seedlings (Table 2) despite negative immunoblot results. All 54 plants from the Weed 

population seedlings tested negative for the presence of ergot alkaloids, ergonovine, and lysergic 

acid amide. 

Table 2 Ergonovine (EN) and Lysergic Acid Amide (LAA) levels from three-month-

old Achnatherum robustum 

Population 

# plants 

tested 

# of 

plants 

EN + 

LAA 

detected 

# of 

plants 

EN + 

LAA Not 

detected 

Highest 

concentration 

EN (ppb or 

μg/kg)a 

Mean 

EN ± 

SDb(ppb 

or μg/kg) 

Highest 

concentration 

LAA (ppb or 

μg/kg) 

Mean 

LAA ± 

SD (ppb 

or 

μg/kg) 

Cloudcroft 

101 plants 

74 27 248 25 ± 36 31 3.7 ± 5.1 

Weed 

54 plants 

0 54 0 0 0 0 

aAlkaloid concentrations were calculated as μg of alkaloid per kg of dry leaf material bMeans and 

standard deviation (SD) were calculated for all plants tested in the group, including plants that 

produced no detectable alkaloids 

Infection Status and Ergot Alkaloid Production in Field Plot Plants 

Endophyte infection status and ergot alkaloid analysis of 105 adult plants originating from all 

four mother plants from the Cloudcroft and Weed populations were determined (Table 3). 

Endophyte infection was detected by the immunoblot method from the adult plants for both 

populations. We detected seven endophyte-free plants out of 59 Cloudcroft plants and six 

endophyte-free plants out of 46 plants from the Weed population. Surprisingly, the purported E-

A- group (Faeth et al. 2006) from Weed mother plant 5–91 had only four uninfected plants from 

the total of 21 plants (Table 3), suggesting that the original mother plant was mistakenly 

identified as uninfected. The original infection status of the majority (23 of 25) of the E+A- 

group plants was confirmed by immunoblot. As expected, the ergot alkaloids ergonovine and 

lysergic acid amide were detected only from plants that originated from Cloudcroft, E+A+ 

group. Ergonovine levels in dry plant tissues ranged from 0 to 2.67 μg/g, and lysergic acid amid 

levels ranged from 0 to 1.18 μg/g (Table 3). 

Table 3 Endophyte infection status and Ergonovine (EN) and Lysergic Acid Amide (LAA) 

levels in Achnatherum robustum field plot plants in September 2011 

Populatio Status in 2011 Range of Mean EN Range of Mean Total 



n /Status 

when 

planting/ 

# plants 

testeda 

(immunoblottin

g and alkaloid 

testing) 

ENb(pp

m or 

μg/g)c 

± SD (ppm 

or μg/g)d 

LAAb(pp

m or 

μg/g)c 

LAA ± SD 

(ppm or 

μg/g)d 

Mean 

EN+LAA 

± SD (ppm 

or μg/g)d 

Cloudcroft 

(E+A+) 59 

plants 

52 plants 

(E+A+) 

0 to 2.67 1.023 ± 0.6

0 

0 to 1.18 0.369 ± 0.2

8 

1.392 ± 0.8

6 

7 plants (E-) 0 0 0 0 0 

Weed 

(E+A-) 25 

plants 

23 plants (E+A-) 0 0 0 0 0 

2 plants (E-) 0 0 0 0 0 

Weed (E-

A-) 21 

plants 

4 plants (E-A-) 0 0 0 0 0 

17 plants (E+A-

)e 

0 0 0 0 0 

aE- = Epichloë free plant, E+ = Epichloë infected plant; A- = no ergonovine production, A+ = 

ergonovine production b EN ergonovine, LAA lysergic acid amide cAlkaloid concentrations were 

calculated as μg of alkaloid per g of dry leaf material dMeans and standard deviation (SD) were 

calculated for all plants tested in the group, including plants that produced no detectable 

alkaloids eOriginally E-A- plants but changed to E+A- based upon positive immunoassay tests 

Genetic and Chemical Variation of Endophytes from Two Populations 

Infection status, mating type, and alkaloid gene profiles were determined for 26 Cloudcroft and 

nine Weed samples that originated from all mother plants used in our aphid experiments. Within 

each population, endophytes from all mother plants had the same genetic profiles represented in 

Fig. 1. However, the endophytes from the Weed and Cloudcroft populations are genetically 

distinct from each other (Fig. 1). The endophyte from the Weed population resembles E. 

funkii (Schardl et al. 2013c), whereas the endophyte from the Cloudcroft population is distinct in 

mating type and alkaloid gene profiles. 



 



Fig. 1 Genetic analysis of endophyte-infected Achnatherum robustum from Cloudcroft and Weed 

populations. Each column represents analysis of DNA from individual plants from Cloudcroft 

and Weed populations amplified with markers to determine endophyte genetic diversity across 

the two populations 

The endophytes from each of the locations have different mating types (Fig. 1, Table 4). The 

Cloudcroft endophyte contains both mating type idiomorphs, MTA and MTB, which indicates a 

hybrid origin. The endophyte from the Weed population has one mating type MTB, but probably 

is also a hybrid where both ancestral progenitors were MTB. In addition, the endophytes from 

each location contained different alkaloid gene profiles that suggest they are capable of 

producing different alkaloids (Fig. 1). The presence or absence of key pathway genes allowed us 

to predict the likelihood of an alkaloid being produced based on our knowledge of the associated 

biosynthetic pathways (Schardl et al. 2013b). 

Table 4 Endophyte genetic profiles from maternal plants originating from Cloudcroft and Weed 

populations 

Detection Genes Multiplex Fragment size, 

bp 

Cloudcroft Weed 

Mother plant Mother plant 

4–

134 

4–

136 

5–91 5–110 

Mating type mtAC M2 785 + + – – 

mtBA M2 213 + + + + 

Mating type genotype MTA MTB MTB MTB 

Peramine perA-5′ M5 309 – – + + 

perA-A2 M6 652 – – + + 

perA-T2 M1 600 – – + + 

perA-R M2 589 – – + faint + faint 

Predicted PER chemotypea nonproducer unknown 

Ergots dmaWERV M1 282 – – + + 

dmaWEN M3 758 + + – – 

easC M4 278 + + + + 



easA M4 350 – – – – 

cloA M5 383 – – – – 

lpsB M3 598 – – – – 

Predicted EAS chemotypeb CC, EN, LAA CC 

Indole-

diterpenes 

idtG M1 113 + + + + 

ltmQ M3 334 – – + + 

ltmF M6 277 + + + + 

ltmJ M5 242 – – – – 

Predicted IDT/LTM chemotype c PAS PAS, PAX, 

TER 

Lolines lolC M1 442 – – – – 

lolA M3 270 + + – – 

lolO M4 719 – – – – 

lolP M5 566 – – – – 

Predicted LOL chemotyped nonproducer nonproducer 

a PER peramine b EAS ergot alkaloid. dmaW ERV is associated with EAS clusters from endophytes 

that produce only CC or ergovaline (ERV) [e.g. E. funkii and E. festucae; (Schardl et al. 2013c)] 

while dmaW EN is associated withEAS clusters from endophytes that produce EN and LAA 

[e.g. E. gansusensis var. inebrians (Schardl et al.2013b)]: CC chanoclavine-

I, EN ergonovine, LAA lysergic acid amide c IDT/LTM indole-

diterpenes/lolitrems, PAS paspaline, PAX paxiline, TER terpendoles d LOL lolines 

Two dmaW markers were used to identify variation at the EAS locus. 

The dmaW ERV and dmaW EN markers were designed to different dmaW alleles identified 

within Epichloë species. The dmaW ERV marker was designed for species that are able to produce 

chanoclavine (e.g., E. elymi E56) or ergovaline (e.g., E. festucae Fl1); while dmaW EN is specific 

for ergonovine producers such as E. gansuensis var. inebrians fromAchnatherum 

inebrians (Schardl et al. 2013b). The presence of only dmaW ERV and easC in the Weed 

population endophyte is suggestive of a chanoclavine producer, as markers to the 

later EAS pathway genes were not detected. The endophyte present in the Cloudcroft population 

has the dmaW EN and easC markers (Fig. 1, Table 4), and this profile has been associated with 

ergonovine and lysergic acid amide producers (L. Chen, C. L. Schardl unpublished). It is likely 



that other ergonovine pathway specific genes exist in the Cloudcroft endophyte but these were 

not tested for in our study. 

Markers for the perA gene encoding peramine synthetase were detected only in endophyte-

infected plants from the Weed population. Three of the four perA markers produced PCR bands, 

while the expected band for the perA reductase domain was faint, so it is unclear if this gene is 

likely to encode a functional protein, and if peramine would be produced (Fig. 1). The complete 

absence of all PER markers in the Cloudcroft population endophyte indicates this endophyte 

likely lacks the perA gene and would be unable to make peramine (Table 4). 

Variation also was identified within the IDT/LTM locus of the endophytes from each population 

(Fig. 1). The endophyte from the Weed population contained the markers for idtG, idtF, and 

idtQ. Based on this genetic profile, we would predict this endophyte could produce early indole-

diterpene products, such as paspaline, paxiline, and some terpendoles. The endophyte present in 

the Cloudcroft population contained the markersidtG and ltmF. The absence of a product 

for idtQ suggests that the indole-diterpene pathway for this endophyte may be blocked early, 

which would result in the biosynthesis of paspaline (Fig. 1, Table 4). 

Neither the Cloudcroft nor the Weed population endophytes have the potential for loline alkaloid 

production. PCR products for the LOL markers were not detected from samples of endophyte-

infected material from the Weed population. Although the endophyte in the Cloudcroft 

population contained lolA, a gene associated with the LOL gene cluster, the presence of this gene 

alone will not support synthesis of any loline compounds (Fig. 1, Table 4) (Schardl et al. 2013b). 

Genetic analysis to detect the presence of key genes from each alkaloid locus provides 

knowledge of alkaloids that could be produced within the different endophyte-infected 

populations (Table 5). To date, ergot alkaloids were expected only from endophyte-infected 

plants from the Cloudcroft population, as ergonovine and lysergic acid amide have previously 

been detected (Faeth et al. 2006). However, the genetic profile of the endophyte from the Weed 

population indicated the capacity of this endophyte to produce chanoclavine, which was 

confirmed by chemical analysis. Peramine production was not detected in the Weed population, 

thus supporting the likelihood that the perA gene is not functional. Chemical analysis for indole-

diterpenes confirmed their presence in plant tissues from both populations. Paspaline was 

detected in infected plants from both populations. Furthermore, as predicted by genetic analysis, 

terpendoles E, I, J, and C were detected only from Weed population plants. As expected based 

upon genetic profiles, no lolines, which are well known insecticides (e.g. Panaccione et al. 2013; 

Siegel et al. 1990), were detected in infected plants from either population.  

Table 5 Alkaloids detected by chemical analysis compared to predictions based on genetic 

analyses 

    Cloudcroft population Weed population 



Alkaloid class Alkaloid Predicted Detected Predicted Detected 

Peramine Peramine No No Unsure a No 

Ergot alkaloids ChanoclavineI Yes Yes Yes Yes 

Ergonovine Yes Yes No No 

Lysergic acid amide Yes Yes No No 

Lolines NANL No No No No 

Indole-diterpenes Paspaline Unsure Yes Yes Yes 

Paxilline No No Yes Unsure 

Terpendoles E, I, J, C No No Yes Yes 

aOnly three out of four gene regions could be amplified 

Response of Aphids to Endophyte-Infected Plants 

Aphid numbers were significantly lower on the Cloudcroft population than Weed population 

plants at each of the 10 sampling periods (P < 0.001) and across all dates 

(Hotelling’sT 2 P < 0.001). Aphids on most of the Cloudcroft plants did not survive at all during 

sample periods, so it was necessary to add more aphids to all plants after each aphid count. In 

contrast, aphid numbers increased over time on the Weed population plants (Fig. 2). The two 

aphid strains did not differ (Hotelling’s T 2 P = 0.39) in overall numbers on plants from each of 

the Weed and Cloudcroft populations, although the NY aphid strain had higher mean population 

sizes, especially on Weed plants. Aphids reared on the endophyte-infected Weed population 

plants produced more winged forms (20 and 11 % for NY and NC aphids, respectively), than on 

Cloudcroft plants (13 and 4 % for NY and NC aphids, respectively). However, increased 

proportion of winged forms likely stems from denser aphids populations on Weed plants due to 

decreased host plant quality (Braendle et al. 2006; De Barro 1992) rather than host toxicity, since 

very few aphids survived on any Cloudcroft plants. 



 

Fig. 2 Change in mean numbers of NY and NC aphid strains on Weed and Cloudcroft 

endophyte-infected plants during the recording days. Error bars represent SE 

Aphid Performance From the Ergonovine Insecticidal Bioassay 

Aphids reared on oat leaves supplemented with ergonovine had reduced mean numbers (8.4 ± 1.0 

SE) when compared to aphids reared on control plants (12.2 ± 1.3 SE) 

(ANOVA F 1,38 = 5.348, P = 0.026). The mean concentration of ergonovine in the oat leaves after 

treatment was 0.123 ± 0.05 μg/kg, approximately 8.3 times lower than the ergonovine 

concentration measured from field plants (Table 3). However, in a linear regression model of 

actual concentrations vs. aphid numbers, ergonovine concentration measurements at the end of 

the treatment had marginally negative relationship on aphid numbers (P = 0.087). Because 

experimental levels of ergonovine were low relative to naturally-infected plants, our assay 

suggests that even very low levels of ergonovine may reduce aphid numbers, presumably via 

reduced aphid performance and survival. 

Discussion 

It is well established that systemic Epichloë species infecting native grasses are genetically 

diverse among grass species (Leuchtmann et al. 2014; Schardl et al. 1997; Schardl and 

Phillips 1997). More recent evidence suggests that endophytes also can be highly variable within 

wild grass species, whereby endophyte diversity identified within a single host species can be 

due to different endophyte species or different strains of the same endophyte species representing 

different alkaloid potential (Charlton et al. 2012,2014; Iannone et al. 2012; Kang et al. 2011; 

Moon et al. 2004; Oberhofer and Leuchtmann 2012; Takach et al. 2012; Takach and 

Young 2014; Wali et al. 2007). Genetic variation among endophytes can lead to phenotypic 

changes in host grasses that may be greater than that caused by endophyte infection per se 

(Morse et al. 2007; Oberhofer et al. 2014). These phenotypic changes caused by endophyte 

genetic variation, especially in alkaloid production, can then profoundly affect competing plant 

species, herbivores, and natural enemies of herbivores (Cheplick and Faeth 2009). 



Our results indicate two genetically distinct endophytes inhabit two A. robustum populations in 

close proximity (22 km apart). Based on genotype and chemotype, the endophyte from the Weed 

population resembles E. funkii, described by Moon et al. (2007) from an A. robustum Colorado 

population and analyzed for alkaloid gene diversity by Schardl et al. (2013a, c). Phylogenetic 

data are needed to confirm that the Weed endophyte is indeed E. funkii. Interestingly, the 

Cloudcroft endophyte that likely has been responsible for the name “sleepygrass” due to its well-

renowned toxicity to livestock is an undescribed new Epichloëspecies. A forthcoming paper (M. 

Oberhofer, T. Shymanovich, C. Young, and S. Faeth, unpublished data) will include detailed 

genetic and morphological data that will describe this endophyte species. Notably, this 

endophyte appears to be restricted to the Cloudcroft region in the distribution range of A. 

robustum, whereas the endophyte identified from the Weed population is more widespread based 

upon absence of ergonovine production (Faeth et al. 2006; Jones et al. 2000) and endophyte 

phylogeny (Moon et al. 2004, 2007). Similarity can be seen between the A. robustum Cloudcroft 

population endophyte with E. gansusensis var.inebrians from A. inebrians hosts in China. Each 

is known to produce ergonovine and lysergic acid amide, although E. 

gansusensis var. inebrians also can produce lysergic acid α-hydroxyethylamide (Schardl et 

al.2013b). Similarly, A. inebrians also is known to be a host for two different endophytes, E. 

gansusensis var.inebrians, the likely causal agent of “drunken horse grass”, and E. 

gansuensis that is unable to produce ergot alkaloids (Moon et al. 2007; Schardl et al. 2013b). 

As we predicted, A. robustum hosts two different endophytes, which have different effects on 

insect herbivore performance and survival. Aphid survival and abundances were reduced on 

infected plants from the Cloudcroft population in comparison to endophyte-infected plants from 

the Weed population. The main difference observed in the endophyte-infected Cloudcroft 

population as compared to the endophyte-infected Weed population was the presence of the 

ergot alkaloids ergonovine and lysergic acid amide. Ergot alkaloids are thought to be effective 

mainly against vertebrate herbivores (Jackson et al. 1987; Zavos et al. 1987; Zhang et al. 2014). 

Nonetheless, it seems that ergonovine and possibly lysergic acid amide, produced in the 

Cloudcroft population, are likely candidates for anti-herbivore effects against aphids. Moreover, 

there is growing evidence that some ergot alkaloids from different groups, ergopeptines, 

clavines, and simple amides of lysergic acid possess insecticidal and nematicidal activities 

(Panaccione et al. 2014; Potter et al. 2008). Ergonovine causes feeding inhibition of Japanese 

beetle, Popillia japonica, grubs (Patterson et al. 1991). The adult black lawn 

beetle, Heteronychus arator, showed a moderate reduction of artificial feed consumption in the 

presence of ergonovine but not lysergic acid amide (Ball et al. 1997). Likewise, ergonovine 

caused weight reduction in fall armyworm, Spodoptera frugiperda, larvae but not reduction in 

leaf area consumed (Clay and Cheplick 1989). Consistent with these findings, our bioassays with 

ergonovine-treated A. sativa leaves confirmed that the ergot alkaloid ergonovine reduced aphid 

survival and reproduction. Our study is the first to indicate that ergonovine has insecticidal 

activity against sucking insects such as aphids. Moreover, reduction in aphid number occurs even 

when ergonovine is at very low levels. Because endophyte-infected A. robustum plants had 



ergonovine levels more than eight times higher than our experimental assay, we would expect 

even much stronger effects of ergonovine in plants in natural populations. Although ergonovine 

seems like a probable candidate for the reduced aphid numbers on Cloudcroft plants, other 

alkaloidal and non-alkaloidal differences (e.g., nutritional or water content) cannot be ruled out. 

There have been two previous studies (Faeth et al. 2010, Jani et al. 2010) on the effects of 

infection in sleepygrass on herbivory or herbivore abundances and species richness. Most 

relevant to the current study, Faeth et al. (2010) showed that infected plants from the Weed 

population reduced seed dry biomass and reproductive effort under ambient herbivory treatments 

compared to conditions of greatly reduced herbivory. In contrast, seed production and 

reproductive effort of infected plants from the Cloudcroft population were equivalent under 

ambient and reduced herbivory, suggesting a protective effect of infection and alkaloids in this 

population. However, Jani et al. (2010) found that natural enemies of herbivores also may be 

affected by alkaloids in infected plants in the Cloudcroft population. They found that abundances 

and species richness of herbivores and natural enemies was greater and lower, respectively, on 

sleepygrass plants with high ergot alkaloids compared to plants with low or no ergot alkaloids. 

They concluded that high alkaloid plants may provide “enemy-reduced” space for specialist 

herbivores and, thus, herbivory could be greater on infected grasses with high alkaloid levels. 

Therefore, whether endophytes that produce ergonovine or other alkaloids in sleepygrass reduce, 

increase, or have no effect on herbivory in nature likely depends on the herbivore species and the 

presence of natural enemies. 

Alkaloid synthesis is energetically and nutritionally costly because alkaloids contain nitrogen 

that is often limiting in southwestern USA soils (Faeth 2002a; Faeth and Sullivan 2003). From 

this perspective, production of alkaloids that are diverse yet part of the same biosynthetic 

pathway and effective against both vertebrate and invertebrate herbivores may be more efficient 

at protecting the host than alkaloids produced from multiple pathways. The ergot alkaloids 

ergonovine and lysergic acid amide are known to have toxic effects on vertebrates (Oliver et 

al. 1993; Schiff 2006), and ergonovine, according to our study and other sources (Ball et 

al. 1997; Clay and Cheplick 1989; Patterson et al. 1991), has insecticidal or insect deterring 

properties. The Cloudcroft endophyte is devoid of LOL and PER genes required for loline and 

peramine production, and although it is capable of producing indole-diterpenes, the IDT pathway 

is greatly reduced. Thus, the endophyte from the Cloudcroft population may provide host 

protection against both vertebrate and invertebrate herbivores through the production of alkaloids 

from a single biosynthetic pathway. 

Although the endophyte present in the Weed population also is capable of producing alkaloids 

from the EASand IDT pathways, the compounds produced were different from the Cloudcroft 

endophyte and were not efficient at providing protection against aphids. Moreover, 

the perA gene encoding peramine synthetase for the insect feeding deterrent peramine (Tanaka et 

al. 2005) is present in the Weed endophyte, but it appears to be non-functional, and peramine 

was not detected in endophyte-infected samples from the Weed population. We predict that the 



endophyte in the Weed population affords less protection against both invertebrate and vertebrate 

herbivores based upon its alkaloid potential (chanoclavine and terpendole production). The 

environment could influence host fitness benefits provided by the endophyte. If herbivory is 

reduced or resources are more limiting within an environment, reduction of alkaloid pathways 

may lower the metabolic cost of maintaining alkaloid defenses. Interestingly, the Weed and 

Cloudcroft populations are only a short distance apart, yet they vary in rainfall and soil nutrients. 

The Weed location has lower rainfall and fewer nutrients than Cloudcroft (Tong Jia et al. 

unpublished). Thus, it is possible that the Weed environment selected for persistence of an 

endophyte that produced fewer alkaloids due to higher costs and lower benefits, or that this 

endophyte provides another yet to be discovered benefit. 

Epichloid endophytes that associate with A. robustum are challenging to work with compared to 

other infected grass species. Traditional detection methods such as microscopic examination of 

leaf tissue and seeds or culturing the endophyte for identification have been unreliable. For 

example, the endophyte within the Cloudcroft population is slow growing and has only been 

isolated successfully from the seeds after a 5 month growth period (M. Oberhofer et al. 

unpublished). Similarly, endophyte infection in 3-month-old Cloudcroft plants could not be 

detected by the more reliable and commonly used tissue-print immunoblot method. Additionally, 

vertical transmission rates appear much lower (T. Shymanovich, personal obs.) than other 

asexual endophytes (Afkhami and Rudgers 2008). However, unlike detection of the endophyte 

itself, we could reliably detect ergot alkaloids in endophyte-infected Cloudcroft plant material in 

3-month-old seedlings. In contrast, the Weed endophyte was easily detected by the immunoblot 

method. By using multiple detection methods, genotypic profiling, and alkaloid analyses, we are 

confident of the endophyte infection status and genotype of endophyte-infected material used in 

this study. 

Our study shows that natural populations of cool-season grasses can harbor genetically different 

endophyte species or genotypic variants. In turn, these endophytes can have different effects on 

host plant phenotypes through the production of bioactive alkaloids. In our study, two genetically 

distinct endophytes from A. robustum produced different alkaloid compounds, resulting in 

varying resistance to aphid herbivores. Although ergot alkaloids are traditionally viewed as 

active against vertebrates, at least one ergot alkaloid, ergonovine, from the Cloudcroft population 

has insecticidal properties against aphids, even at low levels. 
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