
FREE-p: Protecting Non-Volatile Memory against both Hard and Soft Errors

Doe Hyun Yoon†
doehyun.yoon@gmail.com

Naveen Muralimanohar‡
naveen.muralimanohar@hp.com

Jichuan Chang‡
jichuan.chang@hp.com

Parthasarathy Ranganathan‡
partha.ranganathan@hp.com

Norman P. Jouppi‡
norm.jouppi@hp.com

Mattan Erez†
mattan.erez@mail.utexas.edu

†The University of Texas at Austin

Electrical and Computer Engineering Dept.
‡Hewlett-Packard Labs

Intelligent Infrastructure Lab.

Abstract

Emerging non-volatile memories such as phase-
change RAM (PCRAM) offer significant advantages but
suffer from write endurance problems. However, prior
solutions are oblivious to soft errors (recently raised as
a potential issue even for PCRAM) and are
incompatible with high-level fault tolerance techniques
such as chipkill. To additionally address such failures
requires unnecessarily high costs for techniques that
focus singularly on wear-out tolerance.

In this paper, we propose fine-grained remapping
with ECC and embedded pointers (FREE-p). FREE-p
remaps fine-grained worn-out NVRAM blocks without
requiring large dedicated storage. We discuss how
FREE-p protects against both hard and soft errors and
can be extended to chipkill. Further, FREE-p can be
implemented purely in the memory controller, avoiding
custom NVRAM devices. In addition to these benefits,
FREE-p increases NVRAM lifetime by up to 26% over
the state-of-the-art even with severe process variation
while performance degradation is less than 2% for the
initial 7 years.

1. Introduction

Non-volatile memory (NVRAM) technologies are
emerging as a scalable substitute of DRAM as main
memory. For example, phase-change memory
(PCRAM) is almost as fast as DRAM (only 2-3× higher
latency at the same bandwidth), provides larger
capacity, and scales better. However, most NVRAM
technologies, including PCRAM, have finite write
endurance; memory cells wear out after a certain
number of writes. Recent architectural research has
focused on this write endurance issue but this prior
work is incomplete for three important reasons: (1) it

relies on integrating custom error-tolerance
functionality within memory devices – an idea that the
memory industry is historically loath to accept because
of strong demand to optimize cost per bit; (2) it ignores
soft errors (in both peripheral circuits and cells), which
can cause errors in NVRAM as shown in recent studies;
and (3) it requires extra storage to support chipkill that
enables a memory DIMM to function even when a
device fails. We propose Fine-grained Remapping with
ECC and Embedded-Pointers (FREE-p) to address all
three problems. Fine-grained remapping nearly
eliminates storage overhead for avoiding wear-out
errors. Our unique error checking and correcting (ECC)
component can tolerate wear-out errors, soft errors, and
device failures. The proposed mechanism shifts
resiliency functions entirely to the memory controller,
leaving NVRAM devices as simple and cheap as
possible.

Prior research focused on protecting NVRAM only
against wear-out failures, ignoring soft errors and
device failures. The motivation has been that NVRAM
cells are inherently robust against particle strikes.
Unfortunately, recent work [5] identified new soft-error
mechanisms that impact NVRAM, which we
summarize in Section 2.1. Further, memory cells
typically account for only 60% of the die area with the
rest used for global and peripheral circuits, which are
still susceptible to soft errors [32]. Recent architecture
research on error-tolerance in NVRAM systems ignores
this important source of errors. Simply augmenting
existing mechanisms, such as dynamically replicating
memory (DRM) [10] and error correcting pointers
(ECP) [22], with the techniques for soft-error tolerance
used in current DRAM-based systems requires too high
an overhead. Moreover, existing NVRAM reliability
solutions often require custom functionality embedded
within NVRAM devices. ECP, for example,
implements hard error detection/correction logic within
an NVRAM device. Embedding reliability mechanisms

at the device increases the cost of memory and the
protection level is fixed at design-time. It also protects
only cell array; hence, it does not achieve end-to-end
protection. As practiced in DRAM and FLASH, it is
better to implement error detecting/correcting at the
memory controller so that we can even detect and
correct errors in wires, packaging, and periphery
circuits in addition to errors in memory cells.

FREE-p is the first mechanism that is designed
specifically to tolerate both soft and hard errors in
NVRAM main memory systems without error tolerance
functionality within the NVRAM devices themselves.
FREE-p relies on a novel fine-grained remapping (FR)
mechanism that has almost zero storage overhead
initially and dynamically adapts to wear-out failures.
The innovation is in utilizing the still-functional cells of
worn-out memory blocks to store remapping
information. We then integrate FR with specially
designed ECC for detecting and correcting both hard
and soft errors. Unlike prior work, our mechanism can
be easily augmented to support chipkill-correct. FR,
however, incurs a performance overhead. When
accessing a remapped block, the memory controller first
reads the original location, and then follows the pointer
to the remapped location. This increases memory traffic
and access latency, potentially degrading performance.
To mitigate the negative impact of FR, we propose a set
of optimization techniques to accelerate remapping,
including simple caching and a more effective hash-
based scheme.

We implement all the necessary functionality except
the additional storage for ECC (limited to under 12.5%
typical in current systems) at the memory controller,
enabling end-to-end protection with simple (and
expected commodity) NVRAM devices. Compared to
the most efficient prior work, ECP, FREE-p achieves
7.5% and 26% longer lifetime at typical and high
process variation. These advantages are in addition to
tolerating soft errors and potential chip failures. The
performance impact of the fine-grained remapping is
negligible in the first 7 years of operation, less than
1.8% on average, and is around 10% on average even
near end of life (8.8 years).

The rest of the paper is organized as follows: We
briefly review failure mechanisms in PCRAM and
related work in Section 2; we present FREE-p in
Section 3; we evaluate the wear-out tolerance and
performance overhead of FREE-p in Section 4; and
Section 5 concludes the paper.

2. Background and related work

Our technique, FREE-p, is applicable to any non-
volatile memory technology but we use PCRAM as an

example technology in this paper. We first describe
basics of PCRAM as well as failure mechanisms in
Section 2.1, and discuss related work in Section 2.2.

2.1. Failures in phase-change memory

PCRAM operations. PCRAM is a non-volatile
memory built out of Chalcogenide-based materials such
as alloys of germanium, antimony, or tellurium
(Ge2Sb2Te5, GeSb, Sb2Te3). Unlike DRAM and
FLASH that record data through charge storage,
PCRAM uses distinct phase-change material states
(hence, resistances) to store values. Specifically, when a
phase-change material is heated to a high temperature
for an extended period of time, it crystallizes and
reduces its resistance (SET operation). The SET
operation is slow, and determines the write latency of
PCRAM. To RESET a cell into a high resistance state,
a current large enough to melt the phase-change
material (almost double the SET current) is applied for
a short period, and then abruptly cut-off. The abrupt
current fall quenches the material into the amorphous
phase, resulting in high resistance.

A promising feature of PCRAM is its capability to
store multiple bits in a single cell, also referred to as
Multi Level Cells (MLC). The pulse width of RESET
for MLC is adjusted such that it partially crystallizes
the phase-change material and modifies its resistance to
an intermediate value between SET and RESET
resistances. ITRS projects the availability of 4-bit MLC
by 2012 [1]. Reading a cell simply involves sending a
small current and measuring the voltage drop across the
cell. As both crystalline and amorphous phases are
relatively stable at normal operating temperature (more
about this later), the cell can ideally retain the value for
many years.
Hard Errors in PCRAM. While high operating
temperatures, required for SET/RESET operations, help
keep PCRAM cells stable at room temperature, they
significantly impact the lifetime of PCRAM. After
repeated high temperature RESET operations, the
electrical path through the phase-change material
begins to break and this permanently RESETs the cell
into a high resistance state. Recent studies on PCRAM
prototypes show that the number of writes to a PCRAM
cell is limited to 108-1010 [5] while a DRAM or SRAM
cell can support more than 1015 writes. This significant
difference in endurance between PCRAM and volatile
memories is considered a critical drawback that
precludes PCRAM from becoming a universal memory.
Going from cell to chip, PCRAM chip endurance
(based on vendor specifications such as [16]) can
further drop to 106 due to process variation and non-
ideal wear-leveling.

Soft Errors in PCRAM. Although PCRAM is robust
against particle-induced soft errors, there are several
factors that can cause soft errors in PCRAM. Some
common factors include write noise, resistance drift (or
short-term drift), and spontaneous crystallization (or
long-term drift). In particular, the short-term resistance
drift is prone to causing soft errors in PCRAM but has
received little attention from the architecture
community.

Write noise (also called thermal crosstalk) refers to
disturbances in a cell value due to repeated
SET/RESET operations on a nearby cell. Studies on
PCRAM reliability, however, show crosstalk is not an
issue [17, 12]. The root cause of short- and long-term
resistance drifts lies in the metastable nature of the
amorphous phase. After the sudden cooling of a
PCRAM cell that triggers the state change, the
resistance of the cell continues to grow for a certain
period of time before it starts reducing again. This
phenomenon is referred to as short-term drift. Long-
term drift is a result of slow crystallization of the phase-
change material at room temperature, which degrades
the cell resistance over time. As the rate of
crystallization is directly proportional to temperature, it
can take many days to produce a noticeable change in
cell resistance at room temperature. Long-term drift can
be easily addressed by periodically refreshing cells
every several days. However, short-term drift can be
problematic in PCRAM, especially for multi-level cell
(MLC) PCRAM. The random nature of short-term drift
due to process variation makes it difficult to guarantee
correctness through periodic refreshing or scrubbing.

In addition to soft errors in the PCRAM cells
themselves, the peripheral circuits such as decoders,
sense-amps, and repeaters still use CMOS transistors
that are susceptible to soft errors. With memories
typically having area efficiency (ratio of area of
memory cells to the total area) of less than 60% [32],
the likelihood of a failure in peripheral circuits is non-
trivial.
Chip Failures. In addition to soft and hard errors in
memory arrays, a recent study shows memory chip
failures, possibly due to packaging and global circuit
issues, cause significant down time in datacenters [23].
Hence, business critical servers and datacenters demand
chipkill-correct level reliability, where a DIMM is
required to function even when an entire chip in it fails.
There are various solutions for chipkill-correct [6, 3,
33, 27] and the industry is pursuing even stronger
protection [8, 15], for example, double chipkill or soft
error correction under chipkill. With memory
manufacturers’ relentless focus on cost per bit, PCRAM
memories will likely require very robust fault tolerance
techniques as well. For these reasons, in addition to

wear-out protection, traditional coding techniques such
as ECC and parity will be required to tolerate PCRAM
chip failures.

2.2. Related work

Many techniques have been recently proposed to
improve NVRAM endurance, focusing on write
reduction and wear-leveling to increase lifetime
(Section 2.2.1) and hard error detection/correction for
graceful degradation (Section 2.2.2). We also discuss
other prior work (Section 2.2.3).

2.2.1. Increasing NVRAM lifetime.
Avoiding unnecessary writes. Researchers have
developed various techniques to avoid unnecessary
writes. Lee et al. [13] proposed to only write back
modified cache lines or words. Qureshi et al. [19] also
explored writing back only modified data. A variety of
fine-grained approaches (bit-level partial write) have
also been proposed, including data comparison write
(DCW) [31], Flip-N-Write [7], and many others [36,
34, 11], by utilizing read-before-write to detect
modified data and potentially selectively invert bits.
Wear-leveling. Another approach to improve lifetime
is by distributing writes equally to all cells in the
device. This technique is known as wear-leveling and is
commonly used with FLASH memory. Prior research
on PCRAM wear-leveling includes row shift [36, 22],
word shift [34], and randomized address mapping [19,
18, 24].

Our work focuses on soft and hard error tolerance
with commodity NVRAM devices, and can be
combined with any lifetime-improvement techniques.

2.2.2. Tolerating wear-out failures. We first present
prior wear-out failure detection/correction schemes, and
then explain the extra actions needed once such
mechanisms become insufficient due to a large number
of failures. We also describe one of the most advanced
prior proposals, ECP, in detail.
Detecting/correcting wear-out failures. The most
intuitive approach to detect wear-out failures is to use
an ECC code. The complexity of ECC-based error
correction, however, increases linearly with the
correction capability [26], rendering general ECC
unsuitable for NVRAM [10, 22].

An entirely different approach to detecting wear-out
errors is to use verify-after-write, in which detection
happens when writing to NVRAM. Verify-after-write
first writes a data block to NVRAM and then
immediately reads the value for comparison. A
mismatch indicates a write failure due to wear-out.
Verify-after-write incurs high traffic and performance

overheads if implemented at the memory controller and
recent work advocates implementing this functionality
within the NVRAM devices themselves [10, 22].
Because an NVRAM write is relatively slow, it is
generally believed that the penalty of adding an internal
read after the write is not significant. A caveat is that
the verifying reads increase power consumption even
when there is no wear-out failure.

After error detection, errors are corrected by using
another, non-faulty set of cells to store the data. Two
recent techniques have been suggested to accomplish
this. Dynamically replicating memory (DRM) [10]
replicates the write to a separate NVRAM page with
disjoint failures, and future reads access both pages to
retrieve the correct data. Later research [22], however,
shows that even a simple ECC scheme with a single-bit
error correcting and double-bit error detecting (SEC-
DED) code outperforms DRM. A promising alternative,
ECP [22], can tolerate wear-out failures without
multiple accesses, but further modifies NVRAM
devices.

ECP implements all error-correcting functionality
within the NVRAM device: it uses verify-after-write to
detect errors, a set of pointers to encode error locations,
and additional storage cells to hold patched values. For
a 512-bit data block, a 10-bit error correcting entry can
tolerate one bit failure (9 bits to identify the error
location and 1 bit to hold the patched value). The 6-bit
tolerating ECP (ECP6) uses 6 such 10-bit entries, and
has a 12% static overhead. Although correcting multi-
bit errors with ECP is much simpler than with
traditional error codes (e.g., BCH codes), ECP has
several significant limitations.
− ECP can tolerate only wear-out failures.

Augmenting ECP to achieve end-to-end reliability
will result in high storage overhead.

− The hard error tolerance level with ECP is fixed and
determined at device design time. Due to process
variation and non-ideal wear-leveling efficiency 1 ,
the overhead of ECP is unnecessarily large.

− ECP requires custom NVRAM devices. DRAM and
FLASH manufactures are highly motivated to
minimize cost per bit, and would prefer solutions
without custom logic in the NVRAM devices for
simplicity, flexibility, and cost advantages.
Recent work, SAFER [25], proposes a better

mechanism compared to ECP to tolerate hard failures in
PCRAM. While it is orthogonal to our work, similar to
ECP, SAFER also requires a custom-designed PCRAM
device.

1 We use “normalized endurance” proposed by Qureshi et al. [18] as

the metric for the efficiency of wear-leveling, which is 90%, at
most, using one of the best practical wear-leveling mechanisms.

FREE-p departs from this recent work on tolerating
NVRAM errors. We focus on end-to-end reliability
rather than on wear-out errors, and also restrict
ourselves to current best-practice constraints: (1) we
keep storage devices optimized for cost per bit, and
implement all resiliency functionality at the memory
controller; and (2) we tolerate wear-out, soft errors, and
potential device failures with less than 12.5% storage
overhead.

2.2.3. Other related work. There has been other prior
work that uses pointers and fine-grained data
remapping. Wilkerson et al. presented a bit-fix
technique [29] that stores pointers as meta-data similar
to ECP [22]. Our technique differs in that a pointer is
stored within a data block itself and used for fine-
grained data remapping rather than error correction.
Roberts et al. coupled two cache lines assuming one
will function if the other fails [21] similar to the DRM
approach [10]. Wu et al. presented fine-grained data
relocation for migrating frequently accessed cache lines
to faster storage. This technique uses cache “tags” for
managing fine-grained data relocation. Instead, we use
embedded pointers for fine-grained data remapping.

3. FREE-p implementation

This section describes our proposal for an end-to-
end reliable NVRAM memory system with commodity
devices and FREE-p. We start by describing fine-
grained remapping (FR), our low-cost wear-out failure
tolerance mechanism, in Section 3.1. In Section 3.2, we
explain how to use FR to design an NVRAM-based
memory system with all necessary reliability
mechanisms implemented at the memory controller,
leaving NVRAM devices simple. We identify
overheads and propose a set of optimization techniques
to mitigate the potential performance degradation in
Section 3.3. We then discuss hard/soft error detection
and correction in Section 3.4 followed by required
operating system support in Section 3.5 and chipkill
support in Section 3.6.

3.1. Fine-grained remapping

As described earlier, current wear-out failure
tolerance techniques are designed to tolerate up to a
certain number of errors in a memory block. When a
block accumulates more wear-out failures than can be
corrected, it gets disabled and remapped. The primary
problem with the existing techniques is that the
remapping and the disabling of data blocks happen at a
coarse granularity of a device or OS page. For example,
the FLASH controller disables device pages that can no

longer be used [14]. Most recent work on NVRAM
does bit-level error correction prior to remapping [22].
Although coarse-grained techniques are simple to
implement (through OS virtual to physical mapping
table), they are inefficient. A single 64B block with
intolerable failures triggers the mapping out of an entire
large page of data of 4kB or more.

In contrast to coarse-grained approaches, we propose
fine-grained remapping (FR); FR maps out only a small
block that contains wear-out failures, leaving the rest of
the physical page usable. This both increases the
lifetime of a page and makes NVRAM more tolerant to
process variation. For instance, prior studies on process
variation show strong spatial correlation between
memory cells [9] 2 . Hence, it is likely that several
consecutive bits in NVRAM can fail well in advance
compared to the vast majority of other bits in a page.
Without FR, a single cache line failure will deactivate
an entire page, leading to poor efficiency. Further, FR
adapts to imperfections in wear-leveling more
efficiently.

Although it is desirable to keep the remap size as
small as possible, we use the last level cache line size
(e.g., 64B) as the granularity for remapping. While
solving the problem of disabling coarse-grained blocks,
FR requires a large book-keeping storage. Maintaining
all of the remapping information in dedicated storage
within the processor or in main memory is impractical.
We make a key observation that even if a block is
deemed dead, it still has many functional bits that can
store useful information. We propose using the
remaining working bits in a dead block to embed a
remapping pointer, as shown in Figure 1. Thus, we use
the mapped-out block itself, otherwise useless, as free
storage for remapping information. In addition, we need
dedicated storage to indicate whether a block has been
remapped; only 1 bit per block. When we detect a wear-
out failure, we remap the block to a fault-free location,
mark that this block is remapped (using a 1-bit
Data/Pointer flag (D/P) per data block), and write the
embedded remapping pointer within the faulty block.

2 For evaluating our proposals, we conservatively model only

random variation.

The operating system is responsible for identifying a
remap region for the failed block (more on this in
Section 3.5). In this way, the size of NVRAM degrades
gracefully with age.

Because the embedded pointer is stored in
essentially a faulty memory block, we must ensure that
it can be correctly accessed. A pointer is much smaller
than the data block it is remapping, and we can
therefore use a very simple and strong error code. For
example, we can even use a 7-modular-redundancy (7-
MR) code, which replicates the 64-bit pointer 7 times.
If the pointer cannot be correctly stored, even with this
large redundancy, we map out the entire page as in
current techniques. This, however, should be very rare
considering the strength of the 7-MR code (the
probability that 7-MR cannot tolerate 4-bit failures is
roughly 9.04e-7, assuming uniform errors). We do not
consider further wear-out failures on pointers and the
D/P flag because we rarely re-write them.

A potential problem with FR is chained remapping
when a remapped block is remapped again, as shown in
Figure 2 (solid arrows). An access to this chained
remapping will traverse a linked list, which may take a
long time. We eliminate such chains by writing the final
destination to the original faulty block when a
remapped block is remapped again (dashed arrow in
Figure 2).

3.2. NVRAM system organization

In this subsection, we show how to use FR and ECC
to design a memory system with simple, expected
commodity, NVRAM devices. We explicitly explore
this as an alternative to the approach of prior research
(e.g., ECP [22]) that recommends significant changes to
the internal design and micro-architecture of NVRAM
components.

Figure 3 illustrates a FREE-p memory controller and
NVRAM organization. It is much like current DRAM
systems: eight ×8 devices construct a 64-bit wide
channel and a dedicated device stores the meta-data,
which includes the D/P flag as well as ECC
information. We assume a DDR3-like interface (burst
8) for NVRAM devices in this study. The main change

Figure 1. Example of fine-grained remapping
with an embedded pointer.

Ptr

Data

Data page

Page for remapping

Block with a failure

D/P flag

Figure 2. Chained remapping example (solid
pointers) and limiting the number of hops
(dashed pointer).

Ptr

Data Ptr
Ptr

to the memory controller is support for fine-grained
remapping, detailed below for read and write operations.
Read operations. When we read data from NVRAM,
we also read the D/P flag and identify whether a block
is remapped or not. If the block is not remapped, the
memory controller forwards the returned data to the
upper level, e.g., cache controller, as in a standard
memory controller (Figure 4(a)). Otherwise, the
memory controller decodes the pointer, re-inserts the
request onto the read queue with the remapped address,
and schedules the forwarded read request (Figure 4(b)).
Thus, reading remapped data requires no interaction
with the processor core but incurs bandwidth and
latency overheads for the second read. We propose
mechanisms to mitigate these overheads in Section 3.3.
Write operations. Write operations with FR are
trickier than reads. Because we do not rely on any
functionality in NVRAM devices, the memory
controller must make sure that the target block in
NVRAM has not been previously remapped before
issuing a write. Otherwise, we may accidentally
overwrite the embedded pointer with new data (which
will never succeed because of wear-out failures).
Hence, we first read the data block from memory before
writing data. If the block is not yet remapped, we write
the new data to the block (Figure 5(a)). Otherwise, we
write the new data to the remapped location using the
pointer (Figure 5(b)).

Though a write-back is not on the critical processing
path, always reading a block before a write is
inefficient. With an order of magnitude difference
between read and write latency in PCRAM, the
overhead of performing a read before a write has
minimal impact on performance (<4% performance
penalty in our analysis). We can address even this small
overhead by keeping track of all cache lines in a
processor. Assuming a write-back write-allocate last-
level cache (LLC), a data block is always fetched and
cached before it is written out to NVRAM. We can
keep track of the remapped status of blocks by

maintaining a single bit for each cache line that
indicates whether that line is in a remapped block or
not. This flag can either reside in the cache or in the
memory controller, and its overhead is <0.2% (64kB
for a 32MB LLC). We use this optimization when
evaluating FREE-p (Section 4). Uncached and I/O
operations always read before writing. However, their
effect on performance is negligible.

3.3. Mitigating remapped access penalty

FR provides wear-out tolerance with nearly zero
storage overhead but may degrade performance because
of the additional traffic and latency for accessing
remapped data. We consider two techniques that
opportunistically avoid pointer fetching: simple caching
of pointers and more efficient index caching with hash
based remapping.

3.3.1. Remapped pointer cache. The most intuitive
approach to mitigating the remapping penalty is to add
a small cache to the memory controller that stores
remapping pointers to avoid re-fetching them on a hit.
Off-chip accesses often lack temporal locality so the
remapping cache will work well only when the number
of failed blocks is small. Thus, we expect the benefit of
this cache to decrease as the memory ages. We use a
1024-set 4-way set-associative cache which requires
around 64kB total in Section 4.

(a) A read from a normal block

(b) A read from a remapped block

Figure 4. Read operation examples.

(a) A write to a normal block

(b) A write to a remapped block

Figure 5. Write operation examples.

RDABUS

DBUS Data

Read

D/P D

RDABUS

DBUS Ptr

First Read (pointer)

RD

Reschedule

Data

Second Read

D/P P D

ABUS

DBUS

D/P

Rd

Data

Read D/P flag

D

Wr

Data

WriteReschedule

ABUS

DBUS

D/P

Rd

Pointer

Read D/P flag and Pointer

P

Wr

Data

WriteReschedule

Figure 3. Memory controller and NVRAM
organization. The gray device is for D/P flag
and ECC.

Read Data Queue

Read Req Queue

Write Req Queue

Write Data Queue

ABUS

72-bit wide DBUS

decode

Memory controller

NVRAM

x8 x8 x8 x8 x8 x8 x8 x8x8

3.3.2. Index cache with hashing. We propose storing
the remapped addresses in a compressed form using
hashing and pre-defined remapping (Figure 6). Instead
of maintaining a remap table containing a 64-bit
address of a remapped location, we associate each page
with a remap_base and a Hash index (H-idx) vector.
The remap base identifies a page that is being used to
store remapped blocks, while H-idx is used to find a
block within that page. We use the H-idx to select one
of a set of hash functions, apply the hash to the block’s
original address, and use the result as an offset from the
page’s remap_base as the final remapped address. Thus
we can compute a remapped location without accessing
the embedded pointer. Additionally, all the remappings
associated with an entire page (e.g., 4kB) can be stored
efficiently.

While we can accelerate address remapping using
this scheme, the embedded pointers are still required,
because hash collisions may occur. A hash collision
means that two blocks are remapped to a single
location, which should not be allowed. The OS checks
for collisions at the time a block must be remapped (this
is a very rare event). When a collision is detected, the
OS remaps the block to a different location, and the
block is associated with an H-idx of all ones (i.e., 2n-1
for an n-bit H-idx). The address remapping of such
blocks cannot be accelerated and the embedded pointer
is used as described in Section 3.2. Most blocks, of
course, require no remapping, and this is represented
with an H-idx value of zero. Note that the OS is
responsible for selecting the remap_base address for a
page and allocating regions for remapping targets to
optimize the total memory capacity used for these
remapping candidate regions and to minimize the
likelihood of a hash collision.

H-idx cache. The H-idx cache is addressed by physical
frame number (PFN). Though we illustrate it as a direct
mapped cache in Figure 6, the cache can be fully- or
set-associative. Each entry in the H-idx cache is
composed of the tag (for the PFN), the remap_base
address and the 64 H-idx’s (one H-idx for each cache
line). An H-idx cache entry is filled and evicted along
with the processor’s TLB so a 100% hit is guaranteed
for reads. For write-backs, however, it is possible to
miss the H-idx cache but it should be rare; a physical to
ECC address translation architecture presented in [33]
reports that the translation miss rate for write-backs is
less than 0.05% in most memory-intensive applications.

In our evaluation (Section 4), we use 2 bits for each
H-idx (n=2), hence, 24B per H-idx cache entry (8B for
a remap_base and 16B for 64 H-idx’s), and each remap
region is 1MB. Although other configurations are
possible, we found that a 2-bit H-idx is sufficient to
identify more than 98% of the remapped blocks in most
cases (see Figure 12(b)). To guarantee identifying all
remapped blocks without fetching an embedded
pointer, the H-idx cache should be at least as large as
the TLB. Therefore, in the evaluation we use 512-set 4-
way set-associative H-idx cache that requires 48kB data
and 16kB for tag.

3.4. Detecting and correcting errors

The main objectives of our design are to implement
error tolerance efficiently entirely within the memory
controller and also to provide a mechanism for
tolerating soft errors and device failures. We also
restrict ourselves to a storage overhead of 12.5% or less
to stay within best-practice constraints. We assume a
DDR3-like interface with burst length of 8 and a 72-bit
wide channel (64 bits for data and 8 bits for meta-data
including D/P flag and ECC) as presented in
Section 3.2. Hence, each 64B data block has 8 bytes of
meta-data: 1 bit for the D/P flag and the remaining bits
for ECC to tolerate wear-out and soft errors (chipkill
support is discussed in Section 3.6). In an effort to
extend the lifetime of a block as much as possible, we
rely on ECC to tolerate initial wear-out failures. As we
will explain later in the section, we remap blocks only
when the number of errors exceeds 4-bits per cache
line. We propose to use a 61-bit 6 bit-error correcting 7
bit-error detecting (6EC-7ED) BCH code. Note that the
6EC-7ED BCH code also protects the D/P flag.

The main design issue with the strong BCH code is
its high complexity of error correction (encoding and
detecting errors is straightforward to implement). We
note that it takes a long time for a bit to wear out, but
once it does the bit may always return an erroneous
value (depending on a ‘0’ or a ‘1’). Soft errors, on the

Figure 6. Index cache with hashing functions.
PFN is physical frame number, CI is cache
line index, and CO is cache line offset. We
use a 4kB page and a 64B cache line; hence,
each page has 64 lines.

6636
PFN CI CO

PA

hit/miss

Remapped_address

?

H-idx
cache

Hash1

Hash2n-2
...

H-idx (n bit)

remap_base

Offset

=

+

other hand, are very rare. We utilize this asymmetry,
and leverage the idea presented in Hi-ECC [28]. The
key idea behind Hi-ECC is to employ low cost ECC for
most blocks, which have little or no errors, and resort to
high latency correction only for blocks with multi-bit
errors. We extend this idea and implement three ECC
logic paths: quick-ECC, slow-ECC and mem-ECC.
Quick-ECC processes the 6EC-7ED BCH, detects up to
7 errors but corrects only up to 2 errors. Hence, it can
handle 2 wear-out errors per block with no latency
penalty. If quick-ECC identifies 3 bit errors or more, it
invokes slow-ECC for correction. Slow-ECC can
correct up to 4 bit errors and forwards the corrected
data to the cache controller. If slow-ECC detects more
than 4 bit errors, it invokes mem-ECC. Mem-ECC
corrects up to 6 bit errors and also identifies which
errors are wear-out errors by writing and re-reading
data to/from NVRAM (verify-after-write through the
memory controller). If a block has 5 or more worn-out
bits, the memory controller raises an exception to the
OS so that the OS can remap the failed block. Thus,
mem-ECC will not be needed again to correct wear-out
failures for that memory address. This procedure
ensures that most blocks can be accessed with no
penalty using quick-ECC, few blocks with slow-ECC,
and in any case at least 2 soft bit errors can be corrected
because remapping is triggered if more than 4
permanent errors exist. We estimate the latencies of
quick-, slow-, and mem-ECC as 2, 4, and 183 memory
cycles, where BCH coding/decoding latencies are
from [26] and NVRAM parameters from [13, 10]. Note
that the mem-ECC path latency is dominated by the
verify-after-read operation: a row precharge (tRP: 120
cycles), a row activate (tRCD: 44 cycles), and a column
read (tCL: 10 cycles). Mem-ECC is quite slow but is
used extremely rarely, and will not impact overall
performance. Mem-ECC is used only when several soft
errors occur or once per block when wear-out

accumulates to the point of remapping. Figure 7 depicts
an example error correction procedure using quick-,
slow-, and mem-ECC. The area overhead of the
proposed tiered BCH encoder/decoder is only a
fraction of the whole memory controller so we do not
evaluate that in detail.

In summary, we can tolerate up to 4 worn-out bits
per 64B block and up to 6 bit errors including soft and
hard errors using the 6EC-7ED BCH code. Unlike prior
research that uses coarse-grained remapping, FR maps
out only the failed block and enhances storage
efficiency. We leverage Hi-ECC to reduce the common
case error correcting overheads. Importantly, FREE-p
detects wear-out failures at the memory controller,
obviating verify-after-write within NVRAM devices.

3.5. OS support

In the proposed FREE-p technique, the role of the
OS is to allocate pages to map failed blocks and keep
track of free spots in the allocated pages. Every time a
block fails, the operating system will try to remap an
empty spot in the remap page for the failed block. In the
absence of empty slots, it allocates a fresh page from
the free page list and adjusts the effective memory size
available for workloads accordingly. With the index
cache presented in Section 3.3.2, the role of the OS is
more prominent. The OS must be aware of hashing
functions and remapping regions used in the index
cache. The OS is also responsible for managing H-idx
information of physical pages; the cost is just 24B per
4kB page (less than 0.6%) for an H-idx of size 2 bits. A
variation-aware OS mechanism suggested by Zhang
and Li [34] may further improve the efficiency, but we
leave this to future work.

3.6. Chipkill

Chipkill-correct is commonly required for today’s
high-end servers and datacenters. Storage overhead of
chipkill is typically around 12%. Prior NVRAM
reliability proposals incur 12% storage overhead to
overcome just wear-out failures [10, 22]. Supporting
chipkill-correct with FREE-p, on the other hand, is
cost-effective. We illustrate this using the following
example design. We base our design on a configuration
that supports chipkill in DRAM. We propose a 144-bit
wide NVRAM channel (32 ×4 NVRAM devices for
data and 4 ×4 devices for meta-data). Assuming burst-8
(like DDR3), a data block size is 128B and the size of
the meta-data is 16B. We use two bus transfers as a
coding unit to construct an 8-bit symbol out of a ×4
NVRAM device, and apply a GF (28) based 3-check
symbol error code with chipkill-correct capability [6].

Figure 7. Error correction procedure using
quick-ECC, slow-ECC, and mem-ECC. The
illustrated quick- and slow-ECC are only
examples, and we can design a better, and
simpler, fast-path 2-bit/4-bit correction
procedures.

6EC-7ED
syndrome
decoding

Data + ECC

2EC
Correction

all-zero
syndrome?

yes

yes

no

no

No error

2 or fewer errors
- corrected

Quick-ECC

6EC-7ED
Correction

DUE?

no

Exception:
uncorrectable
errors

Write to
NVRAM

Read from
NVRAM

5 or more
hard error?

no

Up to 6 soft errors
– corrected

Exception:
remap
the block

yes

yes

Slow-ECC

3 or more
errors

Verify-after-write
to identify
hard errors

6EC-7ED
syndrome
decoding

all-zero
syndrome?

4EC
Correction

6EC-7ED
syndrome
decoding

yes

noall-zero
syndrome?

4 or fewer errors
- corrected

5 or more
errors

Mem-ECC

We use the remaining 4B of meta-data for D/P flag and
another three 8-bit check symbols to tolerate wear-out
failures. Also, the NMR (N modular redundancy) coded
embedded pointer should be laid out such that NMR
coding can tolerate a device failure, which is easy to do.
We leave detailed investigation of this FREE-
p+Chipkill design as well as integration with more
advanced schemes such as [27, 33] to future work.

4. Evaluation

In this section, we evaluate our proposed NVRAM
memory system. We first compare FREE-p with
ECP [22], the current state-of-the-art mechanism, in
Section 4.1, and then quantify the performance impact
of FREE-p in Section 4.2.

4.1. Capacity vs. lifetime

Evaluating how the capacity of an NVRAM memory
system changes over time is challenging because it
requires simulating very long-term behavior (years) in
reasonable time (hours). Since detailed cycle-based
simulation is impractical in this case, we adopt a
simplified methodology, which was also used in prior
research [10, 22]. We use 4kB physical pages and a
64B granularity for reads and writes. In each failure
simulation, we lay out 2000 pages, 3 each of which has
4kB memory cells as well as meta-data (ECC, D/P flag,
and error correcting entries). To account for variability,
the initial endurance of each NVRAM cell is a random
variable. Unless noted otherwise, we use a normal
distribution with an average of 108 writes and a
standard deviation of 0.25×108 (CoV: coefficient of
variation is 0.25), as in prior work [22]. We assume
uniform random memory access patterns and random
data values resulting in a bit-transition probability of
0.5. In addition, we model perfect wear-leveling, which
makes our result conservative. Imperfect wear-leveling
will increase CoV due to uneven distribution of
failures. As we show later in the section FREE-p
performs relatively better with high CoVs. We run
failure simulations by applying writes to random

3 When estimating the expected lifetime of a page (around 8 years)

using the failure simulation, 2000 pages yield a confidence interval
of ±10 days, at most, at 95% confidence level and ±15 days at 99%.

locations while monitoring the remaining NVRAM cell
lifetimes. Bit-error correction and coarse-grained/fine-
grained remapping are accurately modeled. We use a
constant write-back rate of 66.67M write-backs per
second (1/3 peak data rate of a 12.8GB/s DDR3-like
channel) for the failure simulations. The lifetime of
NVRAM presented later in the section varies linearly
with the write-back rate. Any deviation from our
assumed data rate will still preserve the relative lifetime
improvements between various designs.

Table 1 describes the configurations we use for these
lifetime failure simulations. No correction 4 cannot
tolerate any errors, and SEC64 implements an 8-bit
SEC-DED code per 64-bit data. Both schemes assume
verify-after-write for wear-out detection and coarse-
grained (4kB) remapping. ECP6 [22] implements a 6-
bit error correcting ECP within an NVRAM device, and
uses coarse-grained remapping 5 . ECP6 uses verify-
after-write for error detection; hence, a 7th failure within
a 64B block triggers a page map-out.

Figure 8 compares capacity vs. lifetime of No-
correction, SEC64, ECP6, and FREE-p. Both ECP6 and
FREE-p show a much longer lifetime than the simpler
mechanisms (No Correction and SEC64). FREE-p
offers a 7.5% longer lifetime than ECP6 at 90%
capacity and 11.5% longer at 50% capacity. This
increase in lifetime is due to the flexibility provided by
the fine-grained remapping compared to ECP6’s
coarse-grained approach. More importantly, FREE-p
uses simple commodity NVRAM, can correct soft
errors, and can provide chipkill protection without
incurring any additional storage overhead (Section 3.6).

4 No Correction uses 2240 pages, 12.5% more pages than other

schemes, to account for 0% overhead.
5 ECP can also be implemented at multiple levels – local ECP to

correct errors in a block and a global ECP to correct bit errors at
page level (layered ECP). This incurs non-deterministic access
latency; hence, we do not consider it here.

Table 1. Evaluated wear-out failure tolerance
mechanisms.

 Overhead Coding
block

Tolerable
bit failures

Map-out
unit

No Correction 0% N/A 0 4kB
SEC64 12.5% (8bit) 64 bit 1 4kB
ECP6 11.9% (61 bit) 512 bit 6 4kB
FREE-p 12. 5% (64 bit) 512 bit 4 64B

Figure 8. Capacity vs. lifetime (CoV=0.25).

Figure 9. Capacity vs. lifetime (CoV=0.35).

0.0

0.2

0.4

0.6

0.8

1.0

1.2

0 2 4 6 8 10 12 14 16

N
or

m
al

iz
ed

 C
ap

ac
ity

Year

No Correction

SEC64

ECP6

FREE-p

0.0

0.2

0.4

0.6

0.8

1.0

1.2

0 2 4 6 8 10 12 14 16

N
or

m
al

iz
ed

 C
ap

ac
ity

Year

No Correction

SEC64

ECP6

FREE-p

We also evaluate sensitivity to process variation and
imperfect wear-leveling. At very low process variation
and with perfect wear-leveling (CoV=0.15), all
schemes show a lifetime longer than 8 years so we do
not show the result here. As CoV increases, however,
FREE-p achieves 21% longer lifetime than ECP6 at
90% capacity and 26% longer at 50% capacity, as
shown in Figure 9(b).

4.2. Performance impact

We evaluate the performance impact of FREE-p
using a cycle-level simulator with an in-order core
processing up to 1 instruction and 1 memory access per
cycle [2]. The simulator has detailed models of L1, L2,
and main memory, including memory controllers,
memory bank conflicts, and bus contention. We
augmented the simulator to support an NVRAM device
with a DDR3-like interface, and we used PCRAM
timing parameters from prior work [13, 10]. Table 2
summarizes the system parameters used. We ran each
application until 200 million memory instructions are
processed. We use a mix of applications from the
SPLASH 2 [30] and PARSEC [4] benchmark suites.
We selected only applications that stress the memory
system and that are potentially significantly impacted
by the pointer-chasing operations of FR (Table 2).
Other non-memory-intensive applications will not be
affected adversely by FREE-p.
Configurations for the evaluation. We use the
configuration presented in Section 3; FREE-p
implements FR with a 6EC-7ED BCH code where a
fifth hard bit failure remaps a block. We compare the

performance impact of FREE-p to an ideal memory
system without wear-out failures.

ECP [22] has very little impact on performance but
the true cost is the complexity and specialization of the
NVRAM devices to include internal error-correcting
logic and redundant storage, for which users pay the
price throughout the entire system life, even when no
fault exists. Hence, we do not directly compare the
performance of FREE-p with that of ECP, and use ideal
memory instead.

Table 3 summarizes the configurations used in the
performance evaluation, including the optimization
techniques presented in Section 3.3.1 (FREE-p:Cache)
and Section 3.3.2 (FREE-p:IndexCache). We also
evaluate an idealized implementation, FREE-
p:PerfectCache+Locality; the memory controller has
perfect knowledge of remapping so embedded pointers
are never fetched. In this configuration, the remapped
data blocks are allocated such that spatial locality is
preserved, that is, all the blocks within a memory page
are remapped to a single alternative memory page. This
allows the memory controller to exploit row-buffer
locality among remapped blocks. In all other FREE-p
configurations, we assume blocks are remapped to
random locations (or based on the hashing functions in
FREE-p:IndexCache), potentially degrading spatial
locality. We accurately model the performance impact
of this loss of spatial locality.

(a) Remapped blocks per page

(b) Failure distribution in enabled blocks

Figure 10. The number of remapped blocks
per page and failures per block (CoV=0.25).

0

8

16

24

32

40

48

56

64

0 2 4 6 8 10

bl

oc
ks

/p
ag

e

Year

7.3
years

8
years

8.8
years

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0.0 0.9 1.9 2.8 3.7 4.6 5.6 6.5 7.4 8.4 9.3
Years

slow-ECC (4 failures)
slow-ECC (3 failures)
quick-ECC (2 failures)
quick-ECC (1 failure)
quick-ECC (no failure)

Table 2. Simulated system parameters.
Processor core 4GHz in-order x86 core

L1 cache Split I/D caches, each 32kB, 64B cache line
1-cycle latency

L2 cache Unified 1MB, 64B cache line, 4-cycle latency

Memory controller
32 entry scheduling window
FR-FCFS [20] with open-page policy
XOR based bank interleaving [35]

NVRAM Similar to DDR3-1600 channel
64-bit data and 8-bit meta-data (D/P flag and ECC)

NVRAM timing
in cycles at 800MHz

tRCD: 44 cycles, tRP(dirty): 120 cycles
tRP(clean): 10 cycles, tRR(dirty): 22 cycles
tRR(clean): 3 cycles, tCL: 10 cycles, tBL: 4 cycles

Benchmarks FFT, Radix, Ocean, Raytrace, Facesim,
Canneal, and Streamcluster

Table 3. Summary of configurations in the
evaluation.

FREE-p:Baseline The baseline FREE-p system

FREE-p:Cache FREE-p with a remap pointer cache
presented in Section 3.3.1.

FREE-p:IndexCache FREE-p with the index cache presented
in Section 3.3.2.

FREE-p:PerfectCache+Locality FREE-p with a perfect cache with
spatial locality aware remapping

Fault injection. In order to measure the performance
impact with failures, we use random failure injection to
physical memory. At the beginning of each simulation,
failures are injected with a certain probability (e.g.,
X failures per 4kB page on average), assuming no new
wear-out failures occur during the relatively short
program execution. The probability of injected faults is
based on the capacity/lifetime simulations presented in
Figure 8. Figure 10(a) shows the average number of
blocks per page that need multiple accesses due to
remappings. As shown, the performance impact in the
first 7 years is negligible, and only 1 block per page is
remapped on average even after 7.3 years. After 8 and
8.8 years, the number of remapped blocks grows to 4
and 16 respectively. We also present the distribution of
failed bits per block in Figure 10(b), which shows that
quick-ECC (2 or fewer failure bits) dominates. Even
after 8 years, about 70% of active blocks use quick-
ECC.
Performance impact. Figure 11 presents the
performance impact of the FREE-p schemes. FREE-p’s
performance depends on the number of remapped
blocks as well as the frequency of using quick-ECC.
For the case of 7.3 years, when nearly all accesses use

quick-ECC, we randomly use slow-ECC in 20% of
accesses. For the case of 8 and 8.8 years, we bound the
performance impact of using slow-ECC, by showing
execution times of both quick-ECC only and slow-ECC
only.

After 7.3 years, when FREE-p remaps one block per
page on average, FREE-p:Baseline has a very small
impact on performance; only 3.1% on average. FREE-
p:Cache and FREE-p:IndexCache reduce this further to
2.5% and 1.8% respectively. After 8 years, as the
number of failed blocks per page increases to four,
FREE-p:Cache performs poorly, similar to the baseline,
and incurs more than 10% overhead. FREE-
p:IndexCache is very effective at mitigating the
remapping penalty, degrading performance by only
3.5% with quick-ECC only and 6.7% with slow-ECC
only (we expect real performance to fall in between
these two numbers, likely closer to 3.5%). With further
increase in errors (as shown in Figure 11(c), FREE-
p:IndexCache is critical to avoid significant drop in
performance. On average, FREE-p:IndexCache incurs a
13% drop in performance (with slow-ECC) compared
to 31% drop in baseline and FREE-p:Cache.
Accelerated Access. We further investigate the
effectiveness of the simple remap pointer cache and the
index cache presented in Section 3.3. We define the
accelerated access rate (AAR) as the percentage of
accesses to the remapped blocks for which embedded
pointer is readily available. The AAR of the simple
cache (FREE-p:Cache) depends on its hit-rate. On the
other hand, the index cache (FREE-p:IndexCache) can
fail only when all remapping candidates are already
used or because of rare hash collisions. The simple

(a) 7.3 years (80% quick ECC and 20% slow-ECC)

(b) 8 years

(c) 8.8 years

Figure 11. Performance overhead of the
FREE-p schemes (CoV=0.25). Stacked white
bars in (b) and (c) represent the additional
overhead due to slow-ECC.

0.0%

1.0%

2.0%

3.0%

4.0%

5.0%

6.0%

FFT RADIX OCEAN RAYTRACE facesim canneal streamcluster Average

SPLASH2 PARSEC

Pe
rf

or
m

an
ce

 o
ve

rh
ea

d FREE-p:Baseline
FREE-p:Cache
FREE-p:IndexCache
FREE-p:PerfeCache+Locality

0.0%

5.0%

10.0%

15.0%

20.0%

25.0%

FFT RADIX OCEAN RAYTRACE facesim canneal streamcluster Average

SPLASH2 PARSEC

Pe
rf

or
m

an
ce

 o
ve

rh
ea

d

0.0%

5.0%

10.0%

15.0%

20.0%

25.0%

FFT RADIX OCEAN RAYTRACE facesim canneal streamcluster Average

SPLASH2 PARSEC

Pe
rf

or
m

an
ce

 o
ve

rh
ea

d FREE-p:Baseline
FREE-p:Cache
FREE-p:IndexCache
FREE-p:PerfeCache+Locality

0.0%

10.0%

20.0%

30.0%

40.0%

50.0%

60.0%

70.0%

FFT RADIX OCEAN RAYTRACE facesim canneal streamcluster Average

SPLASH2 PARSEC

Pe
rf

or
m

an
ce

 o
ve

rh
ea

d

0.0%

10.0%

20.0%

30.0%

40.0%

50.0%

60.0%

70.0%

FFT RADIX OCEAN RAYTRACE facesim canneal streamcluster Average

SPLASH2 PARSEC

Pe
rf

or
m

an
ce

 o
ve

rh
ea

d

FREE-p:Baseline
FREE-p:Cache
FREE-p:IndexCache
FREE-p:PerfectCache+Locality

(a) FREE-p:Cache

(b) FREE-p:IndexCache

Figure 12. Accelerated access rate (AAR).

0%

20%

40%

60%

80%

100%

FF
T

R
A

D
IX

O
C

E
A

N

R
AY

TR
AC

E

fa
ce

si
m

ca
nn

ea
l

st
re

am
cl

us
te

r

A
ve

ra
ge

SPLASH2 PARSEC

A
cc

el
er

at
ed

 A
cc

es
s

R
at

e 7.3 years
8 years
8.8 years

0%

20%

40%

60%

80%

100%

FF
T

R
A

D
IX

O
C

E
A

N

R
AY

TR
AC

E

fa
ce

si
m

ca
nn

ea
l

st
re

am
cl

us
te

r

A
ve

ra
ge

SPLASH2 PARSEC

A
cc

el
er

at
ed

 A
cc

es
s

R
at

e

7.3 years
8 years
8.8 years

cache works well only until 7.3 years and its AAR
becomes very low after that (Figure 12(a)). The index
cache, however, retains very high AAR even after 8.8
years (Figure 12(b)). Even with 16 blocks remapped per
page, the AAR of the index cache is still 93% on
average.

5. Conclusions and future work

In this paper, we presented a general NVRAM
reliability mechanism that can tolerate both wear-out
and soft errors and that can be extended to support
chipkill-correct. We showed a low-cost wear-out
tolerance mechanism, fine-grained remapping (FR), and
described FREE-p that integrates FR and ECC. Our
scheme, unlike prior work, implements all the
necessary functionality including error detecting and
correcting at the memory controller, leaving NVRAM
devices as simple and cheap as possible. This also
provides end-to-end reliability that protects not only
memory cells but also wires, packages, and periphery
circuits. Overall, FREE-p increases lifetime by up to
26%, and incurs less than 2% performance overhead for
the initial 7 years and less than 10% even near end of
life.

In future work, we will explore the optimal
partitioning of functionality between the memory
controller and NVRAM devices, adapting hard error
tolerance levels to process variation, the design space of
the index cache architecture, and a detailed design of
more aggressive chipkill solutions.

6. Acknowledgments

This work is supported, in part, by the following
organizations: NVIDIA Corp., The National Science
Foundation under Grant #0954107.
Hidden refs FRFCFS[20], xor[35], star-gap[18]
7. References

[1] ITRS 2008 update. Tech. report, Int’l Tech. Roadmap for
Semiconductors, 2008.
[2] J. H. Ahn, et al. Future scaling of processor-memory
interfaces. In SC, 2009.
[3] AMD. BIOS and kernel developer’s guide for AMD
NPT family 0Fh processors, 2007.
[4] C. Bienia, et al. The PARSEC benchmark suite:
Characterization and architectural implications. Tech. Report
TR-811-08, Princeton Univ., 2008.
[5] G. W. Burr, et al. Phase change memory technology. J.
Vacuum Science and Tech. B, 28 (2): 223–262, 2010.
[6] C. L. Chen and M. Y. Hsiao. Error-correcting codes for
semiconductor memory applications: A state-of-the-art
review. IBM J. Res. and Dev., 28 (2): 124–134, 1984.
[7] S. Cho and H. Lee. Flip-N-Write: A simple deterministic
technique to improve PRAM write performance, energy and
endurance. In MICRO, 2009.
[8] T. J. Dell. System RAS implications of DRAM soft
errors. IBM J. Res. and Dev., 52 (3): 307–314, 2008.

[9] P. Friedberg, et al. Modeling within-die spatial
correlation effects for process-design co-optimization. In
ISQED, 2005.
[10] E. Ipek, et al. Dynamically replicated memory: Building
reliable systems from nanoscale resistive memories. In
ASPLOS, 2010.
[11] Y. Joo, et al. Energy- and endurance-aware design of
phase change memory caches. In DATE, 2010.
[12] D.-H. Kang, et al. Two-bit cell operation in diode-switch
phase change memory cells with 90nm technology. In Symp.
VLSI Tech., 2008.
[13] B. C. Lee, et al. Architecting phase change memory as a
scalable DRAM alternative. In ISCA, 2009.
[14] MICRON. NAND Flash Translation Layer (NFTL) 4.5.0
User Guide, 2010.
[15] J. A. Nerl, et al. System and method for controlling
application of an error correction code. In U.S. Patent,
#7,308,638, 2007.
[16] Numonyx. 128-Mbit Parallel Phase Change Memory,
2010.
[17] A. Pirovano, et al. Reliability study of phase-change
nonvolatile memories. IEEE Tran. Device and Materials
Reliability, 4 (3): 422–427, 2004.
[18] M. K. Qureshi, et al. Enhancing lifetime and security of
PCM-based main memory with start-gap wear leveling. In
MICRO, 2009.
[19] M. K. Qureshi, et al. Scalable high-performance main
memory system using phase-change memory technology. In
ISCA, 2009.
[20] S. Rixner, et al. Memory access scheduling. In ISCA,
2000.
[21] D. Roberts, et al. On-chip cache device scaling limits and
effective fault repair techniques in future nanoscale
technology. In DSD, 2007.
[22] S. Schechter, et al. Use ECP, not ECC, for hard failures
in resistive memories. In ISCA, 2010.
[23] B. Schroeder, et al. DRAM errors in the wild: A large-
scale field study. In SIGMETRICS, 2009.
[24] N. H. Seong, et al. Security refresh: Prevent malicious
wear-out and increase durability for phase-change memory
with dynamically randomized address mapping. In ISCA,
2010.
[25] N. H. Seong, et al. SAFER: Stuck-at-fault error recovery
for memories. In MICRO, 2010.
[26] D. Strukov. The area and latency tradeoffs of binary bit-
parallel BCH decoders for prospective nanoelectronic
memories. In Asilomar Conf., 2006.
[27] A. Udipi, et al. Rethinking DRAM design and
organization for energy-constrained multi-cores. In ISCA,
2010.
[28] C. Wilkerson, et al. Reducing cache power with low-
cost, multi-bit error-correcting codes. In ISCA, 2010.
[29] C. Wilkerson, et al. Trading off cache capacity for
reliability to enable low voltage operation. In ISCA, 2008.
[30] S. C. Woo, et al. The SPLASH-2 programs:
Characterization and methodological considerations. In ISCA,
1995.
[31] B.-D. Yang, et al. A low power phase-change random
access memory using a data-comparison write scheme. In
ISCAS, 2007.
[32] Y. Yokoyama, et al. A 1.8-V embedded 18-Mb DRAM
macro with a 9-ns RAS access time and memory cell
efficiency of 33%. In CICC, 2000.
[33] D. H. Yoon and M. Erez. Virtualized and flexible ECC
for main memory. In ASPLOS, 2010.
[34] W. Zhang and T. Li. Characterizing and mitigating the
impact of process variations on phase change based memory
systems. In MICRO, 2009.
[35] Z. Zhang, et al. A permutation-based page interleaving
scheme to reduce row-buffer conflicts and exploit data
locality. In MICRO, 2000.
[36] P. Zhou, et al. A durable and energy efficient main
memory using phase change memory technology. In ISCA,
2009.

