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Abstract 
 

Emerging non-volatile memories such as phase-
change RAM (PCRAM) offer significant advantages but 
suffer from write endurance problems.  However, prior 
solutions are oblivious to soft errors (recently raised as 
a potential issue even for PCRAM) and are 
incompatible with high-level fault tolerance techniques 
such as chipkill. To additionally address such failures 
requires unnecessarily high costs for techniques that 
focus singularly on wear-out tolerance. 

In this paper, we propose fine-grained remapping 
with ECC and embedded pointers (FREE-p). FREE-p 
remaps fine-grained worn-out NVRAM blocks without 
requiring large dedicated storage. We discuss how 
FREE-p protects against both hard and soft errors and 
can be extended to chipkill. Further, FREE-p can be 
implemented purely in the memory controller, avoiding 
custom NVRAM devices. In addition to these benefits, 
FREE-p increases NVRAM lifetime by up to 26% over 
the state-of-the-art even with severe process variation 
while performance degradation is less than 2% for the 
initial 7 years.  
 
 
1. Introduction 
 

Non-volatile memory (NVRAM) technologies are 
emerging as a scalable substitute of DRAM as main 
memory. For example, phase-change memory 
(PCRAM) is almost as fast as DRAM (only 2-3× higher 
latency at the same bandwidth), provides larger 
capacity, and scales better. However, most NVRAM 
technologies, including PCRAM, have finite write 
endurance; memory cells wear out after a certain 
number of writes. Recent architectural research has 
focused on this write endurance issue but this prior 
work is incomplete for three important reasons: (1) it 

relies on integrating custom error-tolerance 
functionality within memory devices – an idea that the 
memory industry is historically loath to accept because 
of strong demand to optimize cost per bit; (2) it ignores 
soft errors (in both peripheral circuits and cells), which 
can cause errors in NVRAM as shown in recent studies; 
and (3) it requires extra storage to support chipkill that 
enables a memory DIMM to function even when a 
device fails. We propose Fine-grained Remapping with 
ECC and Embedded-Pointers (FREE-p) to address all 
three problems. Fine-grained remapping nearly 
eliminates storage overhead for avoiding wear-out 
errors. Our unique error checking and correcting (ECC) 
component can tolerate wear-out errors, soft errors, and 
device failures. The proposed mechanism shifts 
resiliency functions entirely to the memory controller, 
leaving NVRAM devices as simple and cheap as 
possible.  

Prior research focused on protecting NVRAM only 
against wear-out failures, ignoring soft errors and 
device failures. The motivation has been that NVRAM 
cells are inherently robust against particle strikes. 
Unfortunately, recent work [5] identified new soft-error 
mechanisms that impact NVRAM, which we 
summarize in Section 2.1. Further, memory cells 
typically account for only 60% of the die area with the 
rest used for global and peripheral circuits, which are 
still susceptible to soft errors [32]. Recent architecture 
research on error-tolerance in NVRAM systems ignores 
this important source of errors. Simply augmenting 
existing mechanisms, such as dynamically replicating 
memory (DRM) [10] and error correcting pointers 
(ECP) [22], with the techniques for soft-error tolerance 
used in current DRAM-based systems requires too high 
an overhead. Moreover, existing NVRAM reliability 
solutions often require custom functionality embedded 
within NVRAM devices. ECP, for example, 
implements hard error detection/correction logic within 
an NVRAM device. Embedding reliability mechanisms 



at the device increases the cost of memory and the 
protection level is fixed at design-time. It also protects 
only cell array; hence, it does not achieve end-to-end 
protection. As practiced in DRAM and FLASH, it is 
better to implement error detecting/correcting at the 
memory controller so that we can even detect and 
correct errors in wires, packaging, and periphery 
circuits in addition to errors in memory cells.  

FREE-p is the first mechanism that is designed 
specifically to tolerate both soft and hard errors in 
NVRAM main memory systems without error tolerance 
functionality within the NVRAM devices themselves. 
FREE-p relies on a novel fine-grained remapping (FR) 
mechanism that has almost zero storage overhead 
initially and dynamically adapts to wear-out failures. 
The innovation is in utilizing the still-functional cells of 
worn-out memory blocks to store remapping 
information. We then integrate FR with specially 
designed ECC for detecting and correcting both hard 
and soft errors. Unlike prior work, our mechanism can 
be easily augmented to support chipkill-correct. FR, 
however, incurs a performance overhead. When 
accessing a remapped block, the memory controller first 
reads the original location, and then follows the pointer 
to the remapped location. This increases memory traffic 
and access latency, potentially degrading performance. 
To mitigate the negative impact of FR, we propose a set 
of optimization techniques to accelerate remapping, 
including simple caching and a more effective hash-
based scheme.  

We implement all the necessary functionality except 
the additional storage for ECC (limited to under 12.5% 
typical in current systems) at the memory controller, 
enabling end-to-end protection with simple (and 
expected commodity) NVRAM devices. Compared to 
the most efficient prior work, ECP, FREE-p achieves 
7.5% and 26% longer lifetime at typical and high 
process variation. These advantages are in addition to 
tolerating soft errors and potential chip failures. The 
performance impact of the fine-grained remapping is 
negligible in the first 7 years of operation, less than 
1.8% on average, and is around 10% on average even 
near end of life (8.8 years).  

The rest of the paper is organized as follows: We 
briefly review failure mechanisms in PCRAM and 
related work in Section 2; we present FREE-p in 
Section 3; we evaluate the wear-out tolerance and 
performance overhead of FREE-p in Section 4; and 
Section 5 concludes the paper. 

 
2. Background and related work 
 

Our technique, FREE-p, is applicable to any non-
volatile memory technology but we use PCRAM as an 

example technology in this paper. We first describe 
basics of PCRAM as well as failure mechanisms in 
Section 2.1, and discuss related work in Section 2.2. 

 
2.1. Failures in phase-change memory 
 
PCRAM operations. PCRAM is a non-volatile 
memory built out of Chalcogenide-based materials such 
as alloys of germanium, antimony, or tellurium 
(Ge2Sb2Te5, GeSb, Sb2Te3). Unlike DRAM and 
FLASH that record data through charge storage, 
PCRAM uses distinct phase-change material states 
(hence, resistances) to store values. Specifically, when a 
phase-change material is heated to a high temperature 
for an extended period of time, it crystallizes and 
reduces its resistance (SET operation). The SET 
operation is slow, and determines the write latency of 
PCRAM. To RESET a cell into a high resistance state, 
a current large enough to melt the phase-change 
material (almost double the SET current) is applied for 
a short period, and then abruptly cut-off. The abrupt 
current fall quenches the material into the amorphous 
phase, resulting in high resistance.  

A promising feature of PCRAM is its capability to 
store multiple bits in a single cell, also referred to as 
Multi Level Cells (MLC). The pulse width of RESET 
for MLC is adjusted such that it partially crystallizes 
the phase-change material and modifies its resistance to 
an intermediate value between SET and RESET 
resistances. ITRS projects the availability of 4-bit MLC 
by 2012 [1]. Reading a cell simply involves sending a 
small current and measuring the voltage drop across the 
cell. As both crystalline and amorphous phases are 
relatively stable at normal operating temperature (more 
about this later), the cell can ideally retain the value for 
many years. 
Hard Errors in PCRAM. While high operating 
temperatures, required for SET/RESET operations, help 
keep PCRAM cells stable at room temperature, they 
significantly impact the lifetime of PCRAM. After 
repeated high temperature RESET operations, the 
electrical path through the phase-change material 
begins to break and this permanently RESETs the cell 
into a high resistance state. Recent studies on PCRAM 
prototypes show that the number of writes to a PCRAM 
cell is limited to 108-1010 [5] while a DRAM or SRAM 
cell can support more than 1015 writes. This significant 
difference in endurance between PCRAM and volatile 
memories is considered a critical drawback that 
precludes PCRAM from becoming a universal memory. 
Going from cell to chip, PCRAM chip endurance 
(based on vendor specifications such as [16]) can 
further drop to 106 due to process variation and non-
ideal wear-leveling.  



Soft Errors in PCRAM. Although PCRAM is robust 
against particle-induced soft errors, there are several 
factors that can cause soft errors in PCRAM. Some 
common factors include write noise, resistance drift (or 
short-term drift), and spontaneous crystallization (or 
long-term drift). In particular, the short-term resistance 
drift is prone to causing soft errors in PCRAM but has 
received little attention from the architecture 
community.  

Write noise (also called thermal crosstalk) refers to 
disturbances in a cell value due to repeated 
SET/RESET operations on a nearby cell. Studies on 
PCRAM reliability, however, show crosstalk is not an 
issue [17, 12]. The root cause of short- and long-term 
resistance drifts lies in the metastable nature of the 
amorphous phase. After the sudden cooling of a 
PCRAM cell that triggers the state change, the 
resistance of the cell continues to grow for a certain 
period of time before it starts reducing again. This 
phenomenon is referred to as short-term drift. Long-
term drift is a result of slow crystallization of the phase-
change material at room temperature, which degrades 
the cell resistance over time. As the rate of 
crystallization is directly proportional to temperature, it 
can take many days to produce a noticeable change in 
cell resistance at room temperature. Long-term drift can 
be easily addressed by periodically refreshing cells 
every several days. However, short-term drift can be 
problematic in PCRAM, especially for multi-level cell 
(MLC) PCRAM. The random nature of short-term drift 
due to process variation makes it difficult to guarantee 
correctness through periodic refreshing or scrubbing.  

In addition to soft errors in the PCRAM cells 
themselves, the peripheral circuits such as decoders, 
sense-amps, and repeaters still use CMOS transistors 
that are susceptible to soft errors. With memories 
typically having area efficiency (ratio of area of 
memory cells to the total area) of less than 60% [32], 
the likelihood of a failure in peripheral circuits is non-
trivial.  
Chip Failures. In addition to soft and hard errors in 
memory arrays, a recent study shows memory chip 
failures, possibly due to packaging and global circuit 
issues, cause significant down time in datacenters [23]. 
Hence, business critical servers and datacenters demand 
chipkill-correct level reliability, where a DIMM is 
required to function even when an entire chip in it fails. 
There are various solutions for chipkill-correct [6, 3, 
33, 27] and the industry is pursuing even stronger 
protection [8, 15], for example, double chipkill or soft 
error correction under chipkill. With memory 
manufacturers’ relentless focus on cost per bit, PCRAM 
memories will likely require very robust fault tolerance 
techniques as well. For these reasons, in addition to 

wear-out protection, traditional coding techniques such 
as ECC and parity will be required to tolerate PCRAM 
chip failures. 
 
2.2. Related work 
 

Many techniques have been recently proposed to 
improve NVRAM endurance, focusing on write 
reduction and wear-leveling to increase lifetime 
(Section 2.2.1) and hard error detection/correction for 
graceful degradation (Section 2.2.2). We also discuss 
other prior work (Section 2.2.3).  

 
2.2.1. Increasing NVRAM lifetime.  
Avoiding unnecessary writes. Researchers have 
developed various techniques to avoid unnecessary 
writes. Lee et al. [13] proposed to only write back 
modified cache lines or words. Qureshi et al. [19] also 
explored writing back only modified data. A variety of 
fine-grained approaches (bit-level partial write) have 
also been proposed, including data comparison write 
(DCW) [31], Flip-N-Write [7], and many others [36, 
34, 11], by utilizing read-before-write to detect 
modified data and potentially selectively invert bits. 
Wear-leveling. Another approach to improve lifetime 
is by distributing writes equally to all cells in the 
device. This technique is known as wear-leveling and is 
commonly used with FLASH memory. Prior research 
on PCRAM wear-leveling includes row shift [36, 22], 
word shift [34], and randomized address mapping [19, 
18, 24].  

Our work focuses on soft and hard error tolerance 
with commodity NVRAM devices, and can be 
combined with any lifetime-improvement techniques. 

 
2.2.2. Tolerating wear-out failures. We first present 
prior wear-out failure detection/correction schemes, and 
then explain the extra actions needed once such 
mechanisms become insufficient due to a large number 
of failures. We also describe one of the most advanced 
prior proposals, ECP, in detail. 
Detecting/correcting wear-out failures. The most 
intuitive approach to detect wear-out failures is to use 
an ECC code. The complexity of ECC-based error 
correction, however, increases linearly with the 
correction capability [26], rendering general ECC 
unsuitable for NVRAM [10, 22].  

An entirely different approach to detecting wear-out 
errors is to use verify-after-write, in which detection 
happens when writing to NVRAM. Verify-after-write 
first writes a data block to NVRAM and then 
immediately reads the value for comparison. A 
mismatch indicates a write failure due to wear-out. 
Verify-after-write incurs high traffic and performance 



overheads if implemented at the memory controller and 
recent work advocates implementing this functionality 
within the NVRAM devices themselves [10, 22]. 
Because an NVRAM write is relatively slow, it is 
generally believed that the penalty of adding an internal 
read after the write is not significant. A caveat is that 
the verifying reads increase power consumption even 
when there is no wear-out failure. 

After error detection, errors are corrected by using 
another, non-faulty set of cells to store the data. Two 
recent techniques have been suggested to accomplish 
this. Dynamically replicating memory (DRM) [10] 
replicates the write to a separate NVRAM page with 
disjoint failures, and future reads access both pages to 
retrieve the correct data. Later research [22], however, 
shows that even a simple ECC scheme with a single-bit 
error correcting and double-bit error detecting (SEC-
DED) code outperforms DRM. A promising alternative, 
ECP [22], can tolerate wear-out failures without 
multiple accesses, but further modifies NVRAM 
devices.  

ECP implements all error-correcting functionality 
within the NVRAM device: it uses verify-after-write to 
detect errors, a set of pointers to encode error locations, 
and additional storage cells to hold patched values. For 
a 512-bit data block, a 10-bit error correcting entry can 
tolerate one bit failure (9 bits to identify the error 
location and 1 bit to hold the patched value). The 6-bit 
tolerating ECP (ECP6) uses 6 such 10-bit entries, and 
has a 12% static overhead. Although correcting multi-
bit errors with ECP is much simpler than with 
traditional error codes (e.g., BCH codes), ECP has 
several significant limitations.  
− ECP can tolerate only wear-out failures. 

Augmenting ECP to achieve end-to-end reliability 
will result in high storage overhead.  

− The hard error tolerance level with ECP is fixed and 
determined at device design time. Due to process 
variation and non-ideal wear-leveling efficiency 1 , 
the overhead of ECP is unnecessarily large. 

− ECP requires custom NVRAM devices. DRAM and 
FLASH manufactures are highly motivated to 
minimize cost per bit, and would prefer solutions 
without custom logic in the NVRAM devices for 
simplicity, flexibility, and cost advantages. 
Recent work, SAFER [25], proposes a better 

mechanism compared to ECP to tolerate hard failures in 
PCRAM. While it is orthogonal to our work, similar to 
ECP, SAFER also requires a custom-designed PCRAM 
device. 

                                                           
1 We use “normalized endurance” proposed by Qureshi et al. [18] as 

the metric for the efficiency of wear-leveling, which is 90%, at 
most, using one of the best practical wear-leveling mechanisms. 

FREE-p departs from this recent work on tolerating 
NVRAM errors. We focus on end-to-end reliability 
rather than on wear-out errors, and also restrict 
ourselves to current best-practice constraints: (1) we 
keep storage devices optimized for cost per bit, and 
implement all resiliency functionality at the memory 
controller; and (2) we tolerate wear-out, soft errors, and 
potential device failures with less than 12.5% storage 
overhead.  

 
2.2.3. Other related work. There has been other prior 
work that uses pointers and fine-grained data 
remapping. Wilkerson et al. presented a bit-fix 
technique [29] that stores pointers as meta-data similar 
to ECP [22]. Our technique differs in that a pointer is 
stored within a data block itself and used for fine-
grained data remapping rather than error correction. 
Roberts et al. coupled two cache lines assuming one 
will function if the other fails [21] similar to the DRM 
approach [10]. Wu et al. presented fine-grained data 
relocation for migrating frequently accessed cache lines 
to faster storage. This technique uses cache “tags” for 
managing fine-grained data relocation. Instead, we use 
embedded pointers for fine-grained data remapping. 
 
3. FREE-p implementation 
 

This section describes our proposal for an end-to-
end reliable NVRAM memory system with commodity 
devices and FREE-p. We start by describing fine-
grained remapping (FR), our low-cost wear-out failure 
tolerance mechanism, in Section 3.1. In Section 3.2, we 
explain how to use FR to design an NVRAM-based 
memory system with all necessary reliability 
mechanisms implemented at the memory controller, 
leaving NVRAM devices simple. We identify 
overheads and propose a set of optimization techniques 
to mitigate the potential performance degradation in 
Section 3.3. We then discuss hard/soft error detection 
and correction in Section 3.4 followed by required 
operating system support in Section 3.5 and chipkill 
support in Section 3.6. 

 
3.1. Fine-grained remapping 
 

As described earlier, current wear-out failure 
tolerance techniques are designed to tolerate up to a 
certain number of errors in a memory block. When a 
block accumulates more wear-out failures than can be 
corrected, it gets disabled and remapped. The primary 
problem with the existing techniques is that the 
remapping and the disabling of data blocks happen at a 
coarse granularity of a device or OS page. For example, 
the FLASH controller disables device pages that can no 



longer be used [14]. Most recent work on NVRAM 
does bit-level error correction prior to remapping [22]. 
Although coarse-grained techniques are simple to 
implement (through OS virtual to physical mapping 
table), they are inefficient. A single 64B block with 
intolerable failures triggers the mapping out of an entire 
large page of data of 4kB or more. 

In contrast to coarse-grained approaches, we propose 
fine-grained remapping (FR); FR maps out only a small 
block that contains wear-out failures, leaving the rest of 
the physical page usable. This both increases the 
lifetime of a page and makes NVRAM more tolerant to 
process variation. For instance, prior studies on process 
variation show strong spatial correlation between 
memory cells [9] 2 . Hence, it is likely that several 
consecutive bits in NVRAM can fail well in advance 
compared to the vast majority of other bits in a page. 
Without FR, a single cache line failure will deactivate 
an entire page, leading to poor efficiency. Further, FR 
adapts to imperfections in wear-leveling more 
efficiently.  

Although it is desirable to keep the remap size as 
small as possible, we use the last level cache line size 
(e.g., 64B) as the granularity for remapping. While 
solving the problem of disabling coarse-grained blocks, 
FR requires a large book-keeping storage. Maintaining 
all of the remapping information in dedicated storage 
within the processor or in main memory is impractical. 
We make a key observation that even if a block is 
deemed dead, it still has many functional bits that can 
store useful information. We propose using the 
remaining working bits in a dead block to embed a 
remapping pointer, as shown in Figure 1. Thus, we use 
the mapped-out block itself, otherwise useless, as free 
storage for remapping information. In addition, we need 
dedicated storage to indicate whether a block has been 
remapped; only 1 bit per block. When we detect a wear-
out failure, we remap the block to a fault-free location, 
mark that this block is remapped (using a 1-bit 
Data/Pointer flag (D/P) per data block), and write the 
embedded remapping pointer within the faulty block. 

                                                           
2  For evaluating our proposals, we conservatively model only 

random variation. 

The operating system is responsible for identifying a 
remap region for the failed block (more on this in 
Section 3.5). In this way, the size of NVRAM degrades 
gracefully with age.  

Because the embedded pointer is stored in 
essentially a faulty memory block, we must ensure that 
it can be correctly accessed. A pointer is much smaller 
than the data block it is remapping, and we can 
therefore use a very simple and strong error code. For 
example, we can even use a 7-modular-redundancy (7-
MR) code, which replicates the 64-bit pointer 7 times. 
If the pointer cannot be correctly stored, even with this 
large redundancy, we map out the entire page as in 
current techniques. This, however, should be very rare 
considering the strength of the 7-MR code (the 
probability that 7-MR cannot tolerate 4-bit failures is 
roughly 9.04e-7, assuming uniform errors). We do not 
consider further wear-out failures on pointers and the 
D/P flag because we rarely re-write them.  

A potential problem with FR is chained remapping 
when a remapped block is remapped again, as shown in 
Figure 2 (solid arrows). An access to this chained 
remapping will traverse a linked list, which may take a 
long time. We eliminate such chains by writing the final 
destination to the original faulty block when a 
remapped block is remapped again (dashed arrow in 
Figure 2).  

 
3.2. NVRAM system organization 
 

In this subsection, we show how to use FR and ECC 
to design a memory system with simple, expected 
commodity, NVRAM devices. We explicitly explore 
this as an alternative to the approach of prior research 
(e.g., ECP [22]) that recommends significant changes to 
the internal design and micro-architecture of NVRAM 
components.  

Figure 3 illustrates a FREE-p memory controller and 
NVRAM organization. It is much like current DRAM 
systems: eight ×8 devices construct a 64-bit wide 
channel and a dedicated device stores the meta-data, 
which includes the D/P flag as well as ECC 
information. We assume a DDR3-like interface (burst 
8) for NVRAM devices in this study. The main change 

 
Figure 1. Example of fine-grained remapping 
with an embedded pointer. 
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Figure 2. Chained remapping example (solid 
pointers) and limiting the number of hops 
(dashed pointer). 
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to the memory controller is support for fine-grained 
remapping, detailed below for read and write operations. 
Read operations. When we read data from NVRAM, 
we also read the D/P flag and identify whether a block 
is remapped or not. If the block is not remapped, the 
memory controller forwards the returned data to the 
upper level, e.g., cache controller, as in a standard 
memory controller (Figure 4(a)). Otherwise, the 
memory controller decodes the pointer, re-inserts the 
request onto the read queue with the remapped address, 
and schedules the forwarded read request (Figure 4(b)). 
Thus, reading remapped data requires no interaction 
with the processor core but incurs bandwidth and 
latency overheads for the second read. We propose 
mechanisms to mitigate these overheads in Section 3.3. 
Write operations. Write operations with FR are 
trickier than reads. Because we do not rely on any 
functionality in NVRAM devices, the memory 
controller must make sure that the target block in 
NVRAM has not been previously remapped before 
issuing a write. Otherwise, we may accidentally 
overwrite the embedded pointer with new data (which 
will never succeed because of wear-out failures). 
Hence, we first read the data block from memory before 
writing data. If the block is not yet remapped, we write 
the new data to the block (Figure 5(a)). Otherwise, we 
write the new data to the remapped location using the 
pointer (Figure 5(b)).  

Though a write-back is not on the critical processing 
path, always reading a block before a write is 
inefficient. With an order of magnitude difference 
between read and write latency in PCRAM, the 
overhead of performing a read before a write has 
minimal impact on performance (<4% performance 
penalty in our analysis). We can address even this small 
overhead by keeping track of all cache lines in a 
processor. Assuming a write-back write-allocate last-
level cache (LLC), a data block is always fetched and 
cached before it is written out to NVRAM. We can 
keep track of the remapped status of blocks by 

maintaining a single bit for each cache line that 
indicates whether that line is in a remapped block or 
not. This flag can either reside in the cache or in the 
memory controller, and its overhead is <0.2% (64kB 
for a 32MB LLC). We use this optimization when 
evaluating FREE-p (Section 4). Uncached and I/O 
operations always read before writing. However, their 
effect on performance is negligible.  
 
3.3. Mitigating remapped access penalty 
 

FR provides wear-out tolerance with nearly zero 
storage overhead but may degrade performance because 
of the additional traffic and latency for accessing 
remapped data. We consider two techniques that 
opportunistically avoid pointer fetching: simple caching 
of pointers and more efficient index caching with hash 
based remapping.  
 
3.3.1. Remapped pointer cache. The most intuitive 
approach to mitigating the remapping penalty is to add 
a small cache to the memory controller that stores 
remapping pointers to avoid re-fetching them on a hit. 
Off-chip accesses often lack temporal locality so the 
remapping cache will work well only when the number 
of failed blocks is small. Thus, we expect the benefit of 
this cache to decrease as the memory ages. We use a 
1024-set 4-way set-associative cache which requires 
around 64kB total in Section 4.  

 
(a) A read from a normal block 

 

 
(b) A read from a remapped block 

Figure 4. Read operation examples. 
 

 
(a) A write to a normal block 

 
(b) A write to a remapped block 

Figure 5. Write operation examples. 
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Figure 3. Memory controller and NVRAM 
organization. The gray device is for D/P flag 
and ECC. 
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3.3.2. Index cache with hashing. We propose storing 
the remapped addresses in a compressed form using 
hashing and pre-defined remapping (Figure 6). Instead 
of maintaining a remap table containing a 64-bit 
address of a remapped location, we associate each page 
with a remap_base and a Hash index (H-idx) vector. 
The remap base identifies a page that is being used to 
store remapped blocks, while H-idx is used to find a 
block within that page. We use the H-idx to select one 
of a set of hash functions, apply the hash to the block’s 
original address, and use the result as an offset from the 
page’s remap_base as the final remapped address. Thus 
we can compute a remapped location without accessing 
the embedded pointer. Additionally, all the remappings 
associated with an entire page (e.g., 4kB) can be stored 
efficiently.  

While we can accelerate address remapping using 
this scheme, the embedded pointers are still required, 
because hash collisions may occur. A hash collision 
means that two blocks are remapped to a single 
location, which should not be allowed. The OS checks 
for collisions at the time a block must be remapped (this 
is a very rare event). When a collision is detected, the 
OS remaps the block to a different location, and the 
block is associated with an H-idx of all ones (i.e., 2n-1 
for an n-bit H-idx). The address remapping of such 
blocks cannot be accelerated and the embedded pointer 
is used as described in Section 3.2. Most blocks, of 
course, require no remapping, and this is represented 
with an H-idx value of zero. Note that the OS is 
responsible for selecting the remap_base address for a 
page and allocating regions for remapping targets to 
optimize the total memory capacity used for these 
remapping candidate regions and to minimize the 
likelihood of a hash collision. 

H-idx cache. The H-idx cache is addressed by physical 
frame number (PFN). Though we illustrate it as a direct 
mapped cache in Figure 6, the cache can be fully- or 
set-associative. Each entry in the H-idx cache is 
composed of the tag (for the PFN), the remap_base 
address and the 64 H-idx’s (one H-idx for each cache 
line). An H-idx cache entry is filled and evicted along 
with the processor’s TLB so a 100% hit is guaranteed 
for reads. For write-backs, however, it is possible to 
miss the H-idx cache but it should be rare; a physical to 
ECC address translation architecture presented in [33] 
reports that the translation miss rate for write-backs is 
less than 0.05% in most memory-intensive applications.  

In our evaluation (Section 4), we use 2 bits for each 
H-idx (n=2), hence, 24B per H-idx cache entry (8B for 
a remap_base and 16B for 64 H-idx’s), and each remap 
region is 1MB. Although other configurations are 
possible, we found that a 2-bit H-idx is sufficient to 
identify more than 98% of the remapped blocks in most 
cases (see Figure 12(b)). To guarantee identifying all 
remapped blocks without fetching an embedded 
pointer, the H-idx cache should be at least as large as 
the TLB. Therefore, in the evaluation we use 512-set 4-
way set-associative H-idx cache that requires 48kB data 
and 16kB for tag. 
 
3.4. Detecting and correcting errors 
 

The main objectives of our design are to implement 
error tolerance efficiently entirely within the memory 
controller and also to provide a mechanism for 
tolerating soft errors and device failures. We also 
restrict ourselves to a storage overhead of 12.5% or less 
to stay within best-practice constraints. We assume a 
DDR3-like interface with burst length of 8 and a 72-bit 
wide channel (64 bits for data and 8 bits for meta-data 
including D/P flag and ECC) as presented in 
Section 3.2. Hence, each 64B data block has 8 bytes of 
meta-data: 1 bit for the D/P flag and the remaining bits 
for ECC to tolerate wear-out and soft errors (chipkill 
support is discussed in Section 3.6). In an effort to 
extend the lifetime of a block as much as possible, we 
rely on ECC to tolerate initial wear-out failures. As we 
will explain later in the section, we remap blocks only 
when the number of errors exceeds 4-bits per cache 
line. We propose to use a 61-bit 6 bit-error correcting 7 
bit-error detecting (6EC-7ED) BCH code. Note that the 
6EC-7ED BCH code also protects the D/P flag.  

The main design issue with the strong BCH code is 
its high complexity of error correction (encoding and 
detecting errors is straightforward to implement). We 
note that it takes a long time for a bit to wear out, but 
once it does the bit may always return an erroneous 
value (depending on a ‘0’ or a ‘1’). Soft errors, on the 

 
Figure 6. Index cache with hashing functions. 
PFN is physical frame number, CI is cache 
line index, and CO is cache line offset. We 
use a 4kB page and a 64B cache line; hence, 
each page has 64 lines. 
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other hand, are very rare. We utilize this asymmetry, 
and leverage the idea presented in Hi-ECC [28]. The 
key idea behind Hi-ECC is to employ low cost ECC for 
most blocks, which have little or no errors, and resort to 
high latency correction only for blocks with multi-bit 
errors. We extend this idea and implement three ECC 
logic paths: quick-ECC, slow-ECC and mem-ECC. 
Quick-ECC processes the 6EC-7ED BCH, detects up to 
7 errors but corrects only up to 2 errors. Hence, it can 
handle 2 wear-out errors per block with no latency 
penalty. If quick-ECC identifies 3 bit errors or more, it 
invokes slow-ECC for correction. Slow-ECC can 
correct up to 4 bit errors and forwards the corrected 
data to the cache controller. If slow-ECC detects more 
than 4 bit errors, it invokes mem-ECC. Mem-ECC 
corrects up to 6 bit errors and also identifies which 
errors are wear-out errors by writing and re-reading 
data to/from NVRAM (verify-after-write through the 
memory controller). If a block has 5 or more worn-out 
bits, the memory controller raises an exception to the 
OS so that the OS can remap the failed block. Thus, 
mem-ECC will not be needed again to correct wear-out 
failures for that memory address. This procedure 
ensures that most blocks can be accessed with no 
penalty using quick-ECC, few blocks with slow-ECC, 
and in any case at least 2 soft bit errors can be corrected 
because remapping is triggered if more than 4 
permanent errors exist. We estimate the latencies of 
quick-, slow-, and mem-ECC as 2, 4, and 183 memory 
cycles, where BCH coding/decoding latencies are 
from [26] and NVRAM parameters from [13, 10]. Note 
that the mem-ECC path latency is dominated by the 
verify-after-read operation: a row precharge (tRP: 120 
cycles), a row activate (tRCD: 44 cycles), and a column 
read (tCL: 10 cycles). Mem-ECC is quite slow but is 
used extremely rarely, and will not impact overall 
performance. Mem-ECC is used only when several soft 
errors occur or once per block when wear-out 

accumulates to the point of remapping. Figure 7 depicts 
an example error correction procedure using quick-, 
slow-, and mem-ECC. The area overhead of the 
proposed tiered BCH encoder/decoder is only a 
fraction of the whole memory controller so we do not 
evaluate that in detail.  

In summary, we can tolerate up to 4 worn-out bits 
per 64B block and up to 6 bit errors including soft and 
hard errors using the 6EC-7ED BCH code. Unlike prior 
research that uses coarse-grained remapping, FR maps 
out only the failed block and enhances storage 
efficiency. We leverage Hi-ECC to reduce the common 
case error correcting overheads. Importantly, FREE-p 
detects wear-out failures at the memory controller, 
obviating verify-after-write within NVRAM devices. 
 
3.5. OS support  
 

In the proposed FREE-p technique, the role of the 
OS is to allocate pages to map failed blocks and keep 
track of free spots in the allocated pages. Every time a 
block fails, the operating system will try to remap an 
empty spot in the remap page for the failed block. In the 
absence of empty slots, it allocates a fresh page from 
the free page list and adjusts the effective memory size 
available for workloads accordingly. With the index 
cache presented in Section 3.3.2, the role of the OS is 
more prominent. The OS must be aware of hashing 
functions and remapping regions used in the index 
cache. The OS is also responsible for managing H-idx 
information of physical pages; the cost is just 24B per 
4kB page (less than 0.6%) for an H-idx of size 2 bits. A 
variation-aware OS mechanism suggested by Zhang 
and Li [34] may further improve the efficiency, but we 
leave this to future work. 
 
3.6. Chipkill  
 

Chipkill-correct is commonly required for today’s 
high-end servers and datacenters. Storage overhead of 
chipkill is typically around 12%. Prior NVRAM 
reliability proposals incur 12% storage overhead to 
overcome just wear-out failures [10, 22]. Supporting 
chipkill-correct with FREE-p, on the other hand, is 
cost-effective. We illustrate this using the following 
example design. We base our design on a configuration 
that supports chipkill in DRAM. We propose a 144-bit 
wide NVRAM channel (32 ×4 NVRAM devices for 
data and 4 ×4 devices for meta-data). Assuming burst-8 
(like DDR3), a data block size is 128B and the size of 
the meta-data is 16B. We use two bus transfers as a 
coding unit to construct an 8-bit symbol out of a ×4 
NVRAM device, and apply a GF (28) based 3-check 
symbol error code with chipkill-correct capability [6]. 

 
Figure 7. Error correction procedure using 
quick-ECC, slow-ECC, and mem-ECC. The 
illustrated quick- and slow-ECC are only 
examples, and we can design a better, and 
simpler, fast-path 2-bit/4-bit correction 
procedures. 
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We use the remaining 4B of meta-data for D/P flag and 
another three 8-bit check symbols to tolerate wear-out 
failures. Also, the NMR (N modular redundancy) coded 
embedded pointer should be laid out such that NMR 
coding can tolerate a device failure, which is easy to do. 
We leave detailed investigation of this FREE-
p+Chipkill design as well as integration with more 
advanced schemes such as [27, 33] to future work. 
 
4. Evaluation 
 

In this section, we evaluate our proposed NVRAM 
memory system. We first compare FREE-p with 
ECP [22], the current state-of-the-art mechanism, in 
Section 4.1, and then quantify the performance impact 
of FREE-p in Section 4.2. 
 
4.1. Capacity vs. lifetime  
 

Evaluating how the capacity of an NVRAM memory 
system changes over time is challenging because it 
requires simulating very long-term behavior (years) in 
reasonable time (hours). Since detailed cycle-based 
simulation is impractical in this case, we adopt a 
simplified methodology, which was also used in prior 
research [10, 22]. We use 4kB physical pages and a 
64B granularity for reads and writes. In each failure 
simulation, we lay out 2000 pages, 3 each of which has 
4kB memory cells as well as meta-data (ECC, D/P flag, 
and error correcting entries). To account for variability, 
the initial endurance of each NVRAM cell is a random 
variable. Unless noted otherwise, we use a normal 
distribution with an average of 108 writes and a 
standard deviation of 0.25×108 (CoV: coefficient of 
variation is 0.25), as in prior work [22]. We assume 
uniform random memory access patterns and random 
data values resulting in a bit-transition probability of 
0.5. In addition, we model perfect wear-leveling, which 
makes our result conservative. Imperfect wear-leveling 
will increase CoV due to uneven distribution of 
failures. As we show later in the section FREE-p 
performs relatively better with high CoVs. We run 
failure simulations by applying writes to random 
                                                           
3  When estimating the expected lifetime of a page (around 8 years) 

using the failure simulation, 2000 pages yield a confidence interval 
of ±10 days, at most, at 95% confidence level and ±15 days at 99%. 

locations while monitoring the remaining NVRAM cell 
lifetimes. Bit-error correction and coarse-grained/fine-
grained remapping are accurately modeled. We use a 
constant write-back rate of 66.67M write-backs per 
second (1/3 peak data rate of a 12.8GB/s DDR3-like 
channel) for the failure simulations. The lifetime of 
NVRAM presented later in the section varies linearly 
with the write-back rate. Any deviation from our 
assumed data rate will still preserve the relative lifetime 
improvements between various designs. 

Table 1 describes the configurations we use for these 
lifetime failure simulations. No correction 4  cannot 
tolerate any errors, and SEC64 implements an 8-bit 
SEC-DED code per 64-bit data. Both schemes assume 
verify-after-write for wear-out detection and coarse-
grained (4kB) remapping. ECP6 [22] implements a 6-
bit error correcting ECP within an NVRAM device, and 
uses coarse-grained remapping 5 . ECP6 uses verify-
after-write for error detection; hence, a 7th failure within 
a 64B block triggers a page map-out.  

Figure 8 compares capacity vs. lifetime of No-
correction, SEC64, ECP6, and FREE-p. Both ECP6 and 
FREE-p show a much longer lifetime than the simpler 
mechanisms (No Correction and SEC64). FREE-p 
offers a 7.5% longer lifetime than ECP6 at 90% 
capacity and 11.5% longer at 50% capacity. This 
increase in lifetime is due to the flexibility provided by 
the fine-grained remapping compared to ECP6’s 
coarse-grained approach. More importantly, FREE-p 
uses simple commodity NVRAM, can correct soft 
errors, and can provide chipkill protection without 
incurring any additional storage overhead (Section 3.6).  
                                                           
4  No Correction uses 2240 pages, 12.5% more pages than other 

schemes, to account for 0% overhead. 
5  ECP can also be implemented at multiple levels – local ECP to 

correct errors in a block and a global ECP to correct bit errors at 
page level (layered ECP). This incurs non-deterministic access 
latency; hence, we do not consider it here. 

Table 1. Evaluated wear-out failure tolerance 
mechanisms. 

 Overhead Coding 
block 

Tolerable 
bit failures  

Map-out 
unit 

No Correction 0% N/A 0 4kB 
SEC64 12.5% (8bit) 64 bit 1 4kB 
ECP6 11.9% (61 bit) 512 bit 6 4kB 
FREE-p 12. 5% (64 bit) 512 bit 4 64B  

Figure 8. Capacity vs. lifetime (CoV=0.25). 

 
Figure 9. Capacity vs. lifetime (CoV=0.35).
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We also evaluate sensitivity to process variation and 
imperfect wear-leveling. At very low process variation 
and with perfect wear-leveling (CoV=0.15), all 
schemes show a lifetime longer than 8 years so we do 
not show the result here. As CoV increases, however, 
FREE-p achieves 21% longer lifetime than ECP6 at 
90% capacity and 26% longer at 50% capacity, as 
shown in Figure 9(b).  

 
4.2. Performance impact  
 

We evaluate the performance impact of FREE-p 
using a cycle-level simulator with an in-order core 
processing up to 1 instruction and 1 memory access per 
cycle [2]. The simulator has detailed models of L1, L2, 
and main memory, including memory controllers, 
memory bank conflicts, and bus contention. We 
augmented the simulator to support an NVRAM device 
with a DDR3-like interface, and we used PCRAM 
timing parameters from prior work [13, 10]. Table 2 
summarizes the system parameters used. We ran each 
application until 200 million memory instructions are 
processed. We use a mix of applications from the 
SPLASH 2 [30] and PARSEC [4] benchmark suites. 
We selected only applications that stress the memory 
system and that are potentially significantly impacted 
by the pointer-chasing operations of FR (Table 2). 
Other non-memory-intensive applications will not be 
affected adversely by FREE-p.  
Configurations for the evaluation. We use the 
configuration presented in Section 3; FREE-p 
implements FR with a 6EC-7ED BCH code where a 
fifth hard bit failure remaps a block. We compare the 

performance impact of FREE-p to an ideal memory 
system without wear-out failures.  

ECP [22] has very little impact on performance but 
the true cost is the complexity and specialization of the 
NVRAM devices to include internal error-correcting 
logic and redundant storage, for which users pay the 
price throughout the entire system life, even when no 
fault exists. Hence, we do not directly compare the 
performance of FREE-p with that of ECP, and use ideal 
memory instead. 

Table 3 summarizes the configurations used in the 
performance evaluation, including the optimization 
techniques presented in Section 3.3.1 (FREE-p:Cache) 
and Section 3.3.2 (FREE-p:IndexCache). We also 
evaluate an idealized implementation, FREE-
p:PerfectCache+Locality; the memory controller has 
perfect knowledge of remapping so embedded pointers 
are never fetched. In this configuration, the remapped 
data blocks are allocated such that spatial locality is 
preserved, that is, all the blocks within a memory page 
are remapped to a single alternative memory page. This 
allows the memory controller to exploit row-buffer 
locality among remapped blocks. In all other FREE-p 
configurations, we assume blocks are remapped to 
random locations (or based on the hashing functions in 
FREE-p:IndexCache), potentially degrading spatial 
locality. We accurately model the performance impact 
of this loss of spatial locality. 

 
(a) Remapped blocks per page 

 
(b) Failure distribution in enabled blocks 

Figure 10. The number of remapped blocks 
per page and failures per block (CoV=0.25). 
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Table 2. Simulated system parameters.
Processor core 4GHz in-order x86 core  

L1 cache Split I/D caches, each 32kB, 64B cache line 
1-cycle latency 

L2 cache Unified 1MB, 64B cache line, 4-cycle latency  

Memory controller 
32 entry scheduling window 
FR-FCFS [20] with open-page policy 
XOR based bank interleaving [35] 

NVRAM Similar to DDR3-1600 channel 
64-bit data and 8-bit meta-data (D/P flag and ECC)  

NVRAM timing  
in cycles at 800MHz 

tRCD: 44 cycles, tRP(dirty): 120 cycles 
tRP(clean): 10 cycles, tRR(dirty): 22 cycles 
tRR(clean): 3 cycles, tCL: 10 cycles, tBL: 4 cycles 

Benchmarks  FFT, Radix, Ocean, Raytrace, Facesim,  
Canneal, and Streamcluster 

 

Table 3. Summary of configurations in the 
evaluation. 

FREE-p:Baseline The baseline FREE-p system 

FREE-p:Cache FREE-p with a remap pointer cache 
presented in Section 3.3.1.  

FREE-p:IndexCache FREE-p with the index cache presented 
in Section 3.3.2.  

FREE-p:PerfectCache+Locality FREE-p with a perfect cache with 
spatial locality aware remapping 



Fault injection. In order to measure the performance 
impact with failures, we use random failure injection to 
physical memory. At the beginning of each simulation, 
failures are injected with a certain probability (e.g., 
X failures per 4kB page on average), assuming no new 
wear-out failures occur during the relatively short 
program execution. The probability of injected faults is 
based on the capacity/lifetime simulations presented in 
Figure 8. Figure 10(a) shows the average number of 
blocks per page that need multiple accesses due to 
remappings. As shown, the performance impact in the 
first 7 years is negligible, and only 1 block per page is 
remapped on average even after 7.3 years. After 8 and 
8.8 years, the number of remapped blocks grows to 4 
and 16 respectively. We also present the distribution of 
failed bits per block in Figure 10(b), which shows that 
quick-ECC (2 or fewer failure bits) dominates. Even 
after 8 years, about 70% of active blocks use quick-
ECC.  
Performance impact. Figure 11 presents the 
performance impact of the FREE-p schemes. FREE-p’s 
performance depends on the number of remapped 
blocks as well as the frequency of using quick-ECC. 
For the case of 7.3 years, when nearly all accesses use 

quick-ECC, we randomly use slow-ECC in 20% of 
accesses. For the case of 8 and 8.8 years, we bound the 
performance impact of using slow-ECC, by showing 
execution times of both quick-ECC only and slow-ECC 
only.  

After 7.3 years, when FREE-p remaps one block per 
page on average, FREE-p:Baseline has a very small 
impact on performance; only 3.1% on average. FREE-
p:Cache and FREE-p:IndexCache reduce this further to 
2.5% and 1.8% respectively. After 8 years, as the 
number of failed blocks per page increases to four, 
FREE-p:Cache performs poorly, similar to the baseline, 
and incurs more than 10% overhead. FREE-
p:IndexCache is very effective at mitigating the 
remapping penalty, degrading performance by only 
3.5% with quick-ECC only and 6.7% with slow-ECC 
only (we expect real performance to fall in between 
these two numbers, likely closer to 3.5%). With further 
increase in errors (as shown in Figure 11(c), FREE-
p:IndexCache is critical to avoid significant drop in 
performance. On average, FREE-p:IndexCache incurs a 
13% drop in performance (with slow-ECC) compared 
to 31% drop in baseline and FREE-p:Cache.  
Accelerated Access. We further investigate the 
effectiveness of the simple remap pointer cache and the 
index cache presented in Section 3.3. We define the 
accelerated access rate (AAR) as the percentage of 
accesses to the remapped blocks for which embedded 
pointer is readily available. The AAR of the simple 
cache (FREE-p:Cache) depends on its hit-rate. On the 
other hand, the index cache (FREE-p:IndexCache) can 
fail only when all remapping candidates are already 
used or because of rare hash collisions. The simple 

 
(a) 7.3 years (80% quick ECC and 20% slow-ECC) 

 
(b) 8 years 

 
(c) 8.8 years 

Figure 11. Performance overhead of the 
FREE-p schemes (CoV=0.25). Stacked white 
bars in (b) and (c) represent the additional 
overhead due to slow-ECC. 

0.0%

1.0%

2.0%

3.0%

4.0%

5.0%

6.0%

FFT RADIX OCEAN RAYTRACE facesim canneal streamcluster Average

SPLASH2 PARSEC

Pe
rf

or
m

an
ce

 o
ve

rh
ea

d FREE-p:Baseline
FREE-p:Cache
FREE-p:IndexCache
FREE-p:PerfeCache+Locality

0.0%

5.0%

10.0%

15.0%

20.0%

25.0%

FFT RADIX OCEAN RAYTRACE facesim canneal streamcluster Average

SPLASH2 PARSEC

Pe
rf

or
m

an
ce

 o
ve

rh
ea

d

0.0%

5.0%

10.0%

15.0%

20.0%

25.0%

FFT RADIX OCEAN RAYTRACE facesim canneal streamcluster Average

SPLASH2 PARSEC

Pe
rf

or
m

an
ce

 o
ve

rh
ea

d FREE-p:Baseline
FREE-p:Cache
FREE-p:IndexCache
FREE-p:PerfeCache+Locality

0.0%

10.0%

20.0%

30.0%

40.0%

50.0%

60.0%

70.0%

FFT RADIX OCEAN RAYTRACE facesim canneal streamcluster Average

SPLASH2 PARSEC

Pe
rf

or
m

an
ce

 o
ve

rh
ea

d

0.0%

10.0%

20.0%

30.0%

40.0%

50.0%

60.0%

70.0%

FFT RADIX OCEAN RAYTRACE facesim canneal streamcluster Average

SPLASH2 PARSEC

Pe
rf

or
m

an
ce

 o
ve

rh
ea

d

FREE-p:Baseline
FREE-p:Cache
FREE-p:IndexCache
FREE-p:PerfectCache+Locality

 
(a) FREE-p:Cache 

 
(b) FREE-p:IndexCache 

Figure 12. Accelerated access rate (AAR). 
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cache works well only until 7.3 years and its AAR 
becomes very low after that (Figure 12(a)). The index 
cache, however, retains very high AAR even after 8.8 
years (Figure 12(b)). Even with 16 blocks remapped per 
page, the AAR of the index cache is still 93% on 
average.  
 
5. Conclusions and future work 
 

In this paper, we presented a general NVRAM 
reliability mechanism that can tolerate both wear-out 
and soft errors and that can be extended to support 
chipkill-correct. We showed a low-cost wear-out 
tolerance mechanism, fine-grained remapping (FR), and 
described FREE-p that integrates FR and ECC. Our 
scheme, unlike prior work, implements all the 
necessary functionality including error detecting and 
correcting at the memory controller, leaving NVRAM 
devices as simple and cheap as possible. This also 
provides end-to-end reliability that protects not only 
memory cells but also wires, packages, and periphery 
circuits. Overall, FREE-p increases lifetime by up to 
26%, and incurs less than 2% performance overhead for 
the initial 7 years and less than 10% even near end of 
life.  

In future work, we will explore the optimal 
partitioning of functionality between the memory 
controller and NVRAM devices, adapting hard error 
tolerance levels to process variation, the design space of 
the index cache architecture, and a detailed design of 
more aggressive chipkill solutions. 
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