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ABSTRACT. Avoidance properties such as cone avoidance or PA avoidance for a principle P in reverse
mathematics shows the effectiveness weakness of P. Strong avoidance, namely, avoidance even for
non-computable instances, expresses the combinatorial weakness of a principle. Some statements like
Ramsey’s theorem for pairs (RT2

2) are effectively weak in the sense that every computable instance
has a solution which does not compute the halting set. However RT2

2 is combinatorially strong as
there exists a (non-computable) stable 2-coloring of pairs such that every infinite homogeneous set
computes the halting set.

In this paper we study various notions of avoidance related to closed sets. These properties gen-
eralize in particular cone avoidance and PA avoidance. We show that even very weak statements in
reverse mathematics admit instances whose solutions compute a member of a special Π0

1 class, thereby
answering a question asked by Liu. We prove that many Ramsey-type theorems admit constant-bound
enumeration (c.b-enum) avoidance, and deduce several new separations over RCA0. In particular, we
answer a question asked by Hirschfeldt by proving that none of the free set theorem (FS), the thin set
theorem (TS) or the rainbow Ramsey theorem (RRT) imply weak weak König’s lemma (WWKL0). We
use simultaneous c.b-enum avoidance to reprove many recent separation results. Therefore, c.b-enum
avoidance can be seen as a powerful unifying framework for comparing the strength of statements in
reverse mathematics.

1. INTRODUCTION

Reverse mathematics is a program of mathematics which aims to find optimal (in a computational
sense) axioms necessary to prove theorems. It uses the framework of second-order arithmetic, with
a base theory called RCA0. RCA0, standing for recursive comprehension axiom, contains the basic
Peano axioms together with the ∆0

1-comprehension and Σ0
1 induction schemes. In this paper, we

shall focus on statements provable in the arithmetic comprehension axiom (ACA0) over RCA0. See
Simpson [40] for a general background on reverse mathematics and Hirschfeldt [17] for a gentle
introduction to the reverse mathematics below ACA0.

Models whose first-order part are the standard integers,ω-models, are of particular interest. They
are characterized by their second-order part. An ω-model satisfies RCA0 if and only if its second-
order part is a Turing ideal, i.e., a set of reals C ⊆ 2ω closed under the effective join and downward-
closed under the Turing reduction. RCA0 admits a minimalω-model whose second-order part is the
set of the computable reals. [15] Therefore RCA0 can be considered as representing computational
mathematics.

Many principles studied in reverse mathematics are Π1
2 statements of the form

(∀X )[Φ(X )→ (∃Y )Ψ(X , Y )]

where Φ and Ψ are arithmetic formulas. A real X such that Φ(X ) holds is called a P-instance and
every real Y such that Φ(X , Y ) holds is called a solution to X . Given two principles P and Q, proving
that P does not imply Q over RCA0 usually consists of creating a Turing ideal I such that every
P-instance X ∈ I has a solution in I , whereas there exists a Q-instance in I with no solution in I .
The process of building such a Turing ideal is usually the following.

1. Choose a particular Q-instance B admitting no B-computable solution.
2. Start with the Turing ideal I0 = {Z ∈ 2ω : Z ≤T B}.
3. Given a Turing ideal In containing no solution to B, take any P-instance X ∈ In having no

solution in In and add a solution Y to X . Let In+1 be the closure of In ∪ {Y } under the
effective join and the Turing reduction.
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4. Repeat step 3 to obtain a Turing ideal I =
⋃

nIn such that every P-instance in I admits a
solution in I .

The difficulty of such a construction is to avoid adding a solution to the instance B in In+1 during
step 3. One needs to ensure that every P-instance in In admits a solution Y such that Y ⊕ C avoids
computing a solution to B for each Y ∈ In. This leads to the following natural definition of avoidance.

Definition 1.1 (Avoidance) A Π1
2 statement P admits C avoidance for set of sequences C ⊆ ωω

closed upward under the Turing reduction if for every P-instance X 6∈ C , there exists a solution Y
to X such that Y ⊕ X 6∈ C .

The notion of C avoidance is extended to arbitrary sets of sequences C ⊆ ωω by taking their
upward-closure under the Turing reduction. Avoidance reflects the effective weakness of P. If P
admits C -avoidance for a fixed computable Q-instance B and C = {Z ∈ 2ω : Z is a solution to B},
then we can build a standard model of P that is not a model of Q. However it sometimes happens that
P is a principle so weak that even non-computable instances of P admit a solution which computes
no solution to B. Such a weakness is not due to the effectiveness of the instances of P, but rather to
the structural weakness of P. This leads to the notion of strong avoidance.

Definition 1.2 (Strong avoidance) A Π1
2 statement P admits strong C -avoidance for a set of se-

quences C ⊆ωω closed upward under the Turing reduction if for every P-instance X (in C or not)
and every sequence C 6∈ C , there exists a solution Y to X such that Y ⊕ C 6∈ C .

Again, we extend the notion of strong C avoidance to any set of sequences C ⊆ ωω by taking
their upward-closure under the Turing reduction. Beside the insights it gives over a principle, strong
avoidance is of practical interest: Some statements like Ramsey’s theorem are proven by induc-
tion over the size of the tuples. However, the induction hypothesis is applied over a non-effective
instance. In this case, strong avoidance of the principle over n-tuples becomes useful for proving
avoidance of the principle over (n + 1)-tuples. In particular, avoidance notions for Ramsey’s the-
orem for pairs are usually proven by considering first strong avoidance for Ramsey’s theorem for
singletons.

Some principles like SRT2
2 are effectively weak in the sense that every computable instance has

a solution avoiding the upper cone of the halting set [37]. However SRT2
2 is combinatorially strong

as there exists a (non-computable) stable 2-coloring of pairs such that every infinite homogeneous
set computes the halting set [41].

Of course, if a principle P admits C -avoidance for each class C then every computable instance
of P has a computable solution, as witnessed by taking C = {Z ∈ 2ω : Z is not computable}. We
then focus on particular classes of reals.

1.1. Constant-bound enumeration avoidance

C.b-enum avoidance has been introduced by Liu in [30] for separating RT2
2 from weak weak

König’s lemma (WWKL0), defined below. Liu deduced from this general notion of avoidance various
strong results concerning computability theory, algorithmic randomness and reverse mathematics.

Definition 1.3 (Constant-bound enumeration avoidance)

1. A k-enumeration (or k-enum) of a class D ⊆ 2ω is a sequence D0, D1, . . . such that for each
n ∈ ω, |Dn| ≤ k, (∀σ ∈ Dn)|σ| = n and D ∩ [Dn] 6= ; where Dn is seen as a clopen set of
reals in the Cantor space. A constant-bound enumeration (or c.b-enum) of D is a k-enum of
D for some k ∈ω.

2. A principle P admits (strong) c.b-enum avoidance if it admits (strong) {Z : Z is a c.b-enum ofD}
avoidance for every class D ⊆ 2ω.

C.b-enum avoidance is a unifying avoidance notion generalizing cone avoidance [37] and PA
avoidance [29].
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Definition 1.4 (Weak (weak) König’s lemma) A tree T ⊆ 2<ω is of positive measure if

lim
s

|{σ ∈ T : |σ|= s}|
2s

> 0

WKL0 is the statement “Every infinite subtree of 2<ω has an infinite path” and WWKL0 is the
restriction of WKL0 to trees of positive measure.

Despite its seemingly artificial definition, WWKL0 has very natural characterizations in terms
of algorithmic randomness. As shown by Avigad et al. in [2], it is equivalent over RCA0 to the
statement “For every set X , there exists a Martin-Löf random real relative to X ”. A particular kind of
computable tree of positive measure is the tree Tc whose paths are the c-incompressible sequences:

[Tc] = {Z : (∀n)K(Z�n)≥ n− c}

where K is the prefix-free Kolmogorov complexity. Of course, every path through Tc computes a
1-enum of [Tc], and Liu proved that [Tc] has no computable c.b-enum. Therefore every principle
admitting c.b-enum avoidance has an ω-model that is not a model of WWKL0. Among Ramseyan
principles, the most famous are Ramsey theorems for tuples.

Definition 1.5 (Ramsey’s theorem) RTn
k is the statement “Given a function f : [ω]n → k, there

exists an infinite set X ⊆ω such that f is constant on [X ]n. RTn
<∞ is the statement (∀k)RTn

k.

When considering colorings of integers RT1
<∞, the statement can be reformulated into “Every

finite partition ofω, has an infinite subset of one of its parts”. Liu proved in [30] that RT1
<∞ admits

strong c.b-enum avoidance and that both COH and RT2
2 admit c.b-enum avoidance. RT2

2 does not
admit strong c.b-enum avoidance as there exists a ;′-computable coloring of pairs into two colors
such that every infinite homogeneous set computes the halting set.

Hirschfeldt asked in [17] whether some consequences of Ramsey’s theorem like the free set theo-
rem (FS) and thin set theorem (TS) imply WKL0 over RCA0. We answer negatively by proving the
existence of an ω-model of simultaneously the Erdős Moser theorem (EM), FS, TS, the rainbow
Ramsey theorem RRT and the thin set theorem (TS), which is not a model of WWKL0. Strong
c.b-enum avoidance being an avoidance schema, we use the same notion to prove the existence of
an ω-model of RT2

2∧TS∧FS∧WWKL0 that is not a model of WKL0.

Theorem 1.6 COH, FS, TS, RRT, EM and TS admit strong c.b-enum avoidance.

One may naturally want to strengthen this notion of avoidance by requiring to avoid computing
a 1-enum of a class C which has no computable one.

1.2. 1-enumeration avoidance

This notion, as we shall see in section 3, subsumes c.b-enum avoidance and coincides with mem-
ber avoidance for a lot of very natural classes of reals, namely homogeneous classes.

Definition 1.7 (1-enumeration avoidance) A principle P admits (strong) 1-enum avoidance if its
admits (strong) {Z : Z is a 1-enum of ~C -enum} avoidance for each class C ⊆ 2ω.

Liu asked in [30] whether every computable instance of RT2
2 has a solution which does not com-

pute a member in a closed set of reals C whenever C has no computable member. We answer
negatively using the notion of homogeneous class of reals.

Definition 1.8 A classC ⊆ 2ω is homogeneous if for everyσ,τ ∈ 2<ω such that |σ|= |τ|, [σ]∩C 6= ;
and [τ]∩C 6= ;, [σ]∩C = [τ]∩C .

In the case of homogeneous classes C , computing a 1-enum of C is equivalent to compute a
member of C . We construct a homogeneous class C which admits a computable 2-enum, but no
computable 1-enum. It follows immediatly that RT1

2 does not admit strong 1-enum avoidance as
every 2-enum induce a partition of the integers such that every infinite subset in one of its parts
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computes a 1-enum. With a more careful analysis of the computable power needed to construct C ,
we prove the existence of a∆0

2 set such that every infinite subset in either it or its complement com-
putes a 1-enum, hence a member, of our class C . A systematic study of other Ramseyan principles
gives the following theorem:

Theorem 1.9
1. The rainbow Ramsey theorem for singletons (RRT1

2) and the diagonally non-recursive prin-
ciple (DNR) admit strong 1-enum avoidance

2. RT1
<∞, cohesiveness (COH), the rainbow Ramsey theorem for pairs (RRT2

2), the thin set
theorem for singletons (TS(1)), and the free set theorem for singletons (FS(1)) admit 1-
enum avoidance but not strong 1-enum avoidance.

3. The stable ascending descending sequence principle (SADS), the stable thin set theorem for
pairs (STS(2)), and the rainbow Ramsey theorem for triples (RRT3

2) do not admit 1-enum
avoidance.

The case of Erdős Moser theorem remains open. We prove that if the Ramsey-type weak König’s
lemma (RWKL) introduced by Flood in [13] admits 1-enum avoidance, then so does EM. Proving
1-enum avoidance of RWKL would provide another proof of separation of EM from SRT2

2, after the
initial forcing from Lerman et al. in [28] and the notion of preservation of ∆0

2 definitions studied by
Wang in [42].

Question 1.10 Does RWKL admit 1-enum avoidance?

Before going into technical details, we present a few other avoidance notions subsumed by c.b-
enum avoidance.

1.3. Cone avoidance

ACA0, standing for arithmetic comprehension axiom, is the comprehension axiom restricted to
arithmetic formulas with parameters. It is known to be equivalent to the statement “for every X ,
the jump of X exists” over RCA0. In particular every model of ACA0 contains the halting set. Given
an instance I of a principle P, cone avoidance states the existence of a solution to I which avoids
the upper cone of a fixed non I -computable set A. This property has been successfully used within
reverse mathematics for separating principles from ACA0 by constructing ω-models of P avoiding
the halting set.

Definition 1.11 (Cone avoidance) A principle P admits (strong) cone avoidance if it admits (strong)
{A} avoidance for each set A.

We prove in section 3 that a set computes a c.b-enum of the singleton class {A} if an only if it
computes A. Therefore (strong) cone avoidance is equivalent to (strong) c.b-enum avoidance for
{A} for each set A. Seetapun proved in [37] that RT2

<∞ admits cone avoidance. Dzhafarov and
Jockusch proved in [12] that RT1

<∞ admits strong cone avoidance. Wang proved in [43] that FS –
hence RRT –, TSn

d for sufficiently large d ’s and COH admit strong cone avoidance and in [41] that
SRT2

2 does not. The equivalence between cone avoidance and {A}-enum avoidance enables us to
reprove Seetapun’s theorem, strong cone avoidance of RT1

<∞, COH and FS and to obtain strong
cone avoidance of EM which was unknown hitherto.

Remark that full Seetapun’s theorem states that the upper cone of a countable collection of non-
computable sets can be simultaneously avoided. We prove in section 6 that simultaneous cone
avoidance is still a consequence of c.b-enum avoidance, even though c.b-enum avoidance is strictly
weaker than simultaneous c.b-enum avoidance.

1.4. PA avoidance

WKL0 states that every infinite tree T ⊆ 2<ω admits an infinite path. It is a consequence of ACA0

incomparable with RT2
2 over RCA0. The question of implication of WKL0 by RT2

2 over RCA0 has
been a long-standing open problem until Liu answered it negatively by proving that every infinite



ON COMBINATORIAL WEAKNESSES OF RAMSEYAN PRINCIPLES 5

set X admits an infinite subset of non-PA degree in either X or X [29]. The forcing technique has
later been reused by Wang to build an ω-model of RRT3

2 which is not a model of WKL0 [41].

Definition 1.12 (PA avoidance) A principle P admits (strong) PA avoidance if it admits (strong) C
avoidance for C = {Z ∈ 2ω : (∀e)Φe(e) ↓→ Z(e) = Φe(e)}.

As proven in section 3, a set computes a c.b-enum of the class C defined above if and only if it
is of PA degree. Liu proved in [29] that RT1

<∞ admits strong PA avoidance. Wang proved in [41]
that COH and RRT2

2 admit strong PA avoidance and deduced that RRT3
2 admits PA avoidance. We

reprove through strong c.b-enum avoidance of RT1
<∞ and COH their strong PA avoidance, and

obtain as new results strong PA avoidance of FS, TS, RRT and EM.

1.5. Notation

String, sequence. Fix a function h : ω → ω. A string (over h) is an ordered tuple of integers
a0, . . . , an−1 (such that ai < h(i) for every i < n). A sequence (over h) is an infinite listing of integers
a0, a1, . . . (such that ai < h(i) for every i ∈ ω). We denote by � the prefix relation between two
strings or between a string and a sequence. For s ∈ ω, hs is the set of all the strings of length s
over h, h<s is the set of all the strings of length < s over h, h<ω is the set of all finite strings over h
and hω is the set of all sequences (i.e. infinite strings) over h. When h is the constant function k, we
write ks (resp. k<s, . . . ) for hs (resp. h<s, . . . ). Given a string σ ∈ h<ω, we denote by |σ| its length.
Given two strings σ,τ ∈ h<ω, σ is a prefix of τ (written σ � τ) if there exists a string ρ ∈ h<ω such
that σρ = τ. Given a sequence X , we write σ ≺ X if σ = X �n for some n ∈ ω, where X �n is the
restriction of the sequence X to its n first numbers. A real is a sequence over 2ω. We may identify a
real with a set of integers by considering that the real is its characteristic function.

Tree, path. A tree T ⊆ω<ω is a set downward-closed under the prefix relation. A tree T is finitely
branching if T ⊆ h<ω for a function h : ω → ω. A tree T is binary if T ⊆ 2<ω. A path through a
tree T is a sequence P ∈ωω such that σ ∈ T for every σ ≺ P. We denote by [T] the set of all paths
through T .

Baire space, Cantor space. The set of sequences ωω can be given a topology structure induced by
the basic open sets [σ] = {Z ∈ωω : σ ≺ω} where σ ∈ω<ω and is called the Baire space. A set of
sequences C is (effectively) closed if C = [T] for some (computable) tree T ⊆ ω<ω. If moreover
T is finitely branching, then C is compact. A set of sequences C is a clopen if C =

⋃

σ∈D[σ] for
some finite set D ⊂ω<ω. The restriction of the Baire space to the set of the reals 2<ω is the Cantor
space. When it is clear that we are working in the Cantor space, we will denote by [σ] the set of
reals {Z ∈ 2ω : σ ≺ Z} where σ ∈ 2<ω.

Mathias forcing. Given two sets E and F , we denote by E < F the formula (∀x ∈ E)(∀y ∈ F)x < y .
A Mathias condition is a pair (F, X ) where F is a finite set, X is an infinite set and F < X . A condition
(F1, X1) extends (F, X ) (written (F1, X1)≤ (F, X )) if F ⊆ F1, X1 ⊆ X and F1r F ⊂ X . A set G satisfies
a Mathias condition (F, X ) if F ⊂ G and Gr F ⊆ X .

Computable reduction. A principle P is computably reducible to Q (written P ≤c Q) if for every
instance I of P, there exists an I -computable instance J of Q such that for every solution X to J , X⊕ I
computes a solution to I . P is strongly computably reducible to Q (written P≤sc Q) if X computes a
solution to I without using I as an oracle.

2. AVOIDING CLOSED SETS

The results are proven. Redaction needed.
Thanks to Liu’s theorem [30], Ramsey’s theorem for pairs does not imply weak weak König’s

lemma over RCA0. Liu asked whether whenever an arbitrary tree T has no computable member,
any set A has an infinite subset in either in it or its complement which still does not compute a path
throught T . In this section, we answer negatively and give a general classification of the theorems
in reverse mathematics which admit such a property.

Definition 2.1 (Path avoidance) AΠ1
2 statement P admits (strong) path avoidance if it admits (strong)

C avoidance for every closed set C ⊆ωω.
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Unfolding the definition, a Π1
2 statements P admits path avoidance if for every set C , every closed

set C ⊆ ωω with no C-computable member, and every C-computable instance X , there is a solu-
tion Y to X such that C has no Y ⊕C-computable member. The notion of path avoidance is defined
for every closed set of the Baire space. However, it happens that whenever a principle is shown not
to admit path avoidance, the closed set witnessing the failure belongs to the Cantor space.

2.1. Cohen genericity

Cohen genericity has been introduced by Kleene and Post for exhibiting a degree strictly between
0 and 0′. Initially introduced in terms of forcing, the following modern presentation becomes stan-
dard.

Definition 2.2 (Genericity) Fix a set of strings S ⊆ 2<ω. The set S is dense if every string has an
extension in S. A real G meets S if it has some initial segment in S. A real G avoids S is it has an
initial segment with no extension in S. Given an integer n ∈ ω, a real is n-generic if it meets or
avoids each Σ0

n set of strings. A real is weakly n-generic if it meets each Σ0
n dense set of strings.

We say that a real is sufficiently Cohen generic if it is n-generic for a sufficiently large n. There
exists a profusion of literature around Cohen genericity. In particular, Kautz proved in [25] that the
measure of oracles computing a 1-generic real is positive, whereas it becomes null when considering
2-generic reals. See section 2.24 of [11] for an introduction to Cohen generics.

Theorem 2.3 Fix a set C computing no member some closed set C ⊆ωω. If G is a real sufficiently
Cohen generic, then G ⊕ C computes no member of C .

Proof. Given a Turing index e, consider the Σ0,C
2 sets of strings

De = {σ ∈ 2<ω : (∃n)(∀τ� σ)Φτ⊕C
e (n) ↑}

He = {σ ∈ 2<ω : [Φσ⊕C
e ]∩C = ;}

It suffices to prove that the set De∪He is dense. Letσ ∈ 2<ω. Suppose there exists no finite extension
τ ∈ De. Then for every extension τ � σ and every n ∈ ω, there is an extension ρ � τ such that
Φ
ρ⊕C
e (n) ↓. Define a C-computable sequence of binary strings σ0 ≺ σ1 ≺ . . . as follows. At stage 0,
σ0 = σ. At stage s+1, let σs+1 be the first string extending σs such that Φσs+1⊕C

e (s) ↓. Such a string
exists as σs � σ and therefore σs 6∈ De. We claim that σs ∈ He for some stage s ∈ ω. If this is not
the case, let G =

⋃

sσs. The real G is C-computable and ΦG⊕C
e is a member of C , contradiction. �

Corollary 2.4 OPT, AMT and Π0
1G admit path avoidance.

Proof. Hirschfeldt et al. [20] proved that OPT and AMT are both consequences of Π0
1G, which itself

is a restricted notion of Cohen genericity. �

Note that in the case of effectively closed sets, the sets De and He are Σ0,C
2 . Thus for every weakly

2-generic real G relative to C , G⊕C computes no member ofC . We now prove that if we furthermore
assume thatC is in the Cantor space and admits no C-computable 1-enum, then we can forget about
the set De and deduce that for every 1-generic real G relative to C , G⊕C computes no 1-enum of C .

Theorem 2.5 Fix a real C computing no 1-enum of some effectively closed set C ⊆ 2ω. If G is
1-generic real relative to C , then G ⊕ C computes no 1-enum of C .

Proof. Fix a functional Γ and any real G such that Γ G⊕C is a 1-enum of C . Consider the following
c.e. set of strings

W = {σ ∈ 2<ω : (∃n)Γσ⊕C(n) ↓6∈ 2n ∨ [Γσ⊕C(n)]∩C = ;}

As Γ G⊕C is a 1-enum of C , W contains no initial segment of G. If there exists a σ ≺ G such that for
every τ � σ, τ 6∈ W , then we can C-compute a 1-enum of C by searching on input n for a τ � σ
such that Γ τ⊕C(n) ↓. As τ 6∈ W , Γ τ⊕C(n) ∈ 2n and [Γ τ⊕C(n)] ∩C 6= ;. Such a τ must exist as any
sufficiently long initial segment of X satisfies the property. So G is not 1-generic. �
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2.2. The arithmetic hierarchy

By Simpson’s embedding lemma [39, Lemma 3.3] (see Corollary 2.12), there exists an effectively
closed setC ⊆ 2ω with no computable member, and a set A such that every infinite subset in either A
or its complement computes a member of C . Therefore, every degree d such that A is c.e. or co-c.e.
relative to d computes a member of C . However, when considering ∆0

2 approximations, we never
have enough computational power to compute a member of C , as states the following theorem.

Theorem 2.6 Fix a real C computing no member of some closed set C ⊆ωω. For every real A, there
exists a real X such that A is ∆0,X

2 and X ⊕ C computes no member of C .

Proof. For a given real A, we build a limit-computable function f∞ : ω2 → 2 such that f∞ ⊕ C
computes no member ofC and (∀x) lims f∞(x , s) = A(x). By Schoenfield’s limit lemma, the jump of
f∞ computes A. Our forcing conditions are tuples (g, n) such that g is a finite partial approximation
of f∞ and n is an integer. A condition (h, m) extends (g, n) if

(a) dom(g) ⊆ dom(h) and (∀(x , s) ∈ dom(g))g(x , s) = h(x , s)
(b) m≥ n and (∀(x , s) ∈ dom(h)r dom(g))[s < n→ h(x , s) = A(s)]

Informally, property (a) states that h is a function extending g and property (b) forces the n first
columns of g to converge to A � n. Therefore making n grow arbitrarily large will ensure that the
constructed function f∞ is a ∆0

2 approximation of A. Our initial condition is (;, 0). The following
lemma states that we can force the constructed function f∞ to be total.

Lemma 2.7 For every condition (g, n) and every t ∈ ω, there exists an extension (h, m) such that
m> n and [0, t]2 ⊆ dom(g)

Proof. Let h be the function over domain [0, t]2 ∪ dom(g) defined by h(x , s) = g(x , s) for (x , s) ∈
dom(g) and h(x , s) = A(x) for (x , s) 6∈ dom(g). (h, n+ 1) is a valid extension of (g, n). �

A function f∞ : ω2 → 2 satisfies a condition (g, n) if (∀(x , s) ∈ dom(g))g(x , s) = f∞(x , s) and
(∀(x , s) ∈ω2 r dom(g))[s < n→ f∞(x , s) = A(s)]. In other words, for every finite approximation
h of f∞ such that dom(h)≥ dom(g), (h, n) is a valid extension of (g, n). Note that f∞ may not be
limit-computable, and that if f∞ satisfies (g, n) and m< n, then f∞ satisfies (g, m). A condition c
forces Φ f∞⊕C

e to be partial if Φ f∞⊕C
e is partial for every function f∞ satisfying c.

Lemma 2.8 For every condition (g, n) and every e ∈ ω, there exists an extension (h, m) forcing
Φ

f∞⊕C
e to be partial, or [Φh⊕C

e ]∩C = ;.

Proof. If there is an extension (h, m) forcing Φ f∞⊕C
e to be partial or such that Φh⊕C

e � n= σ for some
string σ ∈ ωn such that C ∩ [σ] = ;, then we are done. So suppose that it is not the case. We
will describe how to C-compute a member of C and derive a contradiction. Define a C-computable
sequence of conditions (g, n) = (g0, n) ≥ (g1, n) ≥ . . . as follows: Given some condition (gi , n),
let (gi+1, n) be the least extension such that Φgi+1⊕C

e (i) ↓. Such extension exists as otherwise (gi , n)
would force Φ f∞⊕C

e to be partial. Let f∞ =
⋃

i gi . The function f∞ has been constructed C-

computably in such a way that Φ f∞⊕C
e is total and a member of C . This contradicts the assumption

that C does not compute a member of C . �

Let F = {c0, c1, . . . } be a sufficiently generic filter containing (;, 0), where cs = (gs, ns). The
filter F yields a unique partial function f∞ =

⋃

s gs. By Lemma 2.7, the function f∞ is total, and
by definition of a forcing condition, f∞ is a∆0

2 approximation of the real A. By Lemma 2.8, f∞⊕C
computes no member of C . �

Corollary 2.9 COH admits path avoidance.

Proof. Fix a real C computing no member of some closed set C ⊆ ωω and let R0, R1, . . . be a uni-
formly C-computable sequence of reals. By Theorem 2.6, there exists a real X such that X ⊕ C
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computes no member of C and the jump of X computes ;′′. Jockusch and Stephan [21] proved that
if R0, R1, . . . is a uniform sequence of reals, for real X whose jump if of PA degree relative to the jump
of ~R, X ⊕ ~R computes an infinite ~R-cohesive real. Therefore X ⊕ C computes an infinite ~R-cohesive
real. �

Corollary 2.10 For every real A and every non-computable real B, there exists a real X such that
A∈∆0,X

2 but X 6≥T B.

Proof. Apply Theorem 2.6 with C = {B} to obtain a real X such that A ∈ ∆0,X
2 and X computes no

member of C , hence X 6≥T B. �

We shall see in Corollary 2.17 that COH does not admit strong path avoidance since RT1
2 does

not.

2.3. The embedding lemma

The following application of Simpson’s embedding lemma is very useful for proving that some
principle does not admit path avoidance.

Lemma 2.11 If some principle P has a computable (resp. arbitrary) instance with no computable
solution and such that its collection of solutions is a Σ0

3 subset ofωω, then P does not admit (strong)
path avoidance.

Proof. We prove it in the case of path avoidance; Let X be a computable P-instance with no com-
putable solution, and let C ⊆ωω be its set of solutions. By Lemma 3.3 in Simpson [39], there exists
an effectively closed set class D ⊆ 2ω whose degrees are exactly the PA degrees and the degrees of
members of C . Since X has no computable solution, D has no computable member. Every solu-
tion to X is a member of C and thus computes a member of D. Therefore P does not admit path
avoidance. �

Note that the witness of failure of path avoidance is an effectively closed set.

Corollary 2.12 RT1
2 does not admit strong path avoidance.

Proof. Let A be a ∆0
2 bi-immune set. The collection of its infinite homogeneous sets a Π0

2 subset
of ωω:

C = {X ∈ωω : (∀i)[X (i)<N X (i + 1)∧ X (i) ∈ A↔ X (i + 1) ∈ A]}
Apply Lemma 2.11. �

Of course, if Q ≤c P and Q does not admit path avoidance, then so does P. We therefore want
to prove that very weak principles do not admit path avoidance to obtain the same conclusion for
many statements belonging to the reverse mathematics zoo.

Corollary 2.13 DNR does not admit path avoidance.

Proof. The collection d.n.c. functions is a Π0
1 subset of ωω with no computable member:

C = { f ∈ωω : (∀e, s)[Φe,s(e) ↓→ Φe,s(e) 6= f (e)]}

Apply Lemma 2.11. �

Corollary 2.14 SADS does not admit path avoidance.

Proof. Tennenbaum [36] constructed a computable linear order of order type ω+ω∗ with no com-
putable ascending or descending sequence. Given a linear order L , the collection of its infinite
ascending or descending sequence is a Π0

1 subset of ωω:

C = {X ∈ωω : (∀i)[X (i)<L X (i + 1)]∨ (∀i)[X i >L X (i + 1)]}

Apply Lemma 2.11. �
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The following lemma shows that avoidance is closed downward under computable reducibilty.
As many proofs of reductions in reverse mathematics are in fact computable reductions, this lemma
has many applications.

Lemma 2.15 If P is (strongly) computably reducible to Q and Q admits (strong) C avoidance, then
so does P.

Proof. We prove it in the case of computable reducibility. The strong case is similar. Let C be a real
computing no member of C and let I be a C-computable instance of P. As P ≤c Q, there exists an
I -computable instance J of Q such that for every solution X to J , X ⊕ I computes a solution to I . By
C avoidance of Q, there exists a solution X to J such that X ⊕ C computes no member of C . X ⊕ C
computes a solution Y to I , but computes no member of C . �

Corollary 2.16 None of RT2
2 ADS, CAC, EM, TS2 RRT2

2 admit path avoidance.

Proof. By Hirschfeldt et al. [18], DNR ≤c SRT2
2. By Hirschfeldt & Shore [19], SADS ≤c ADS ≤c

CAC. By Rice [35], DNR≤c TS2. By Miller [31], DNR≤c RRT2
2. By the author [33], DNR≤c EM.

Conclude by Lemma 2.15, Corollary 2.13 and Corollary 2.14. �

Corollary 2.17 COH does not admit strong path avoidance.

Proof. Immediate by Corollary 2.12, Lemma 2.15 and the fact that RT1
2 ≤sc COH. �

2.4. Simultaneous path avoidance

The notion of path avoidance expresses the ability for a principle to avoid computing a member
of a Π0

1 set of the Baire space. We now see that the notion of avoidance for Fσ sets coincides with
path avoidance.

Definition 2.18 (Simultaneous path avoidance) Fix a countable collection of closed setsC0,C1, · · · ⊆
ωω. A principle P admits (strong) path avoidance for ~C if it admits (strong)

⋃

iCi avoidance. A
principle P admits (strong) simultaneous path avoidance if it admits (strong) path avoidance for ~C
for every countable collection of closed sets C0,C1, · · · ⊆ωω

Remark that
⋃

iCi is not a closed set in general, even if theCi ’s are all closed. We start by proving
that path avoidance and simultaneous path avoidance coincide.

Definition 2.19 (Muchnik reducibility) Let C and D be two classes of reals. C is Muchnik reducible
to D (denoted by C ≤w D) if for every X ∈ D, there exists a Y ∈ C such that Y ≤T X .

Lemma 2.20 Let C0,C1, · · · ⊆ ωω be a countable collection of closed sets such that Ci has no
computable member for each i. There exists a closed setD ⊆ωω such thatD and

⋃

iCi are Muchnik
equivalent. Moreover, if the C ’s belong the Cantor space, then so does D.

Proof. We may assume that some Ci is non-empty as otherwise, D = ; is a trivial solution. Let X be
a member of some Ci and define D as follows:

D = {σ_(i + 1 mod 2)_Z : σ_i ≺ X ∧ Z ∈ C|σ|}

The set D is closed and Muchnik equivalent to
⋃

iCi . �

Corollary 2.21 If a principle P admits (strong) path avoidance, then it admits (strong) simultaneous
path avoidance.

Proof. We prove it in the case of path avoidance. Let C be a set computing no member of
⋃

iCi for
some countable collection of sets C0,C1, · · · ⊆ ωω, and let X be a C-computable instance of P. By
Lemma 2.20, there exists a closed set of realsD Muchnik equivalent to

⋃

iCi . Therefore C computes
no member of D. By path avoidance of P, there is a solution Y to X such that Y ⊕ C computes no
member of D and therefore computes no member of

⋃

iCi . �



10 LUDOVIC PATEY

3. AVOIDING THE ENUMERATIONS OF CLOSED SETS

The results are proven. Redaction needed.
In this section, we relate various notions of enumeration avoidance and state a few basic lemmas

which will be useful for the remainder of our developpment. The following notion of Medvedev
reducibility is a uniform variant of Muchnik reducibility.

Definition 3.1 (Medvedev reducibility) Let C ⊆ωω and D ⊆ωω be two sets of sequences. We say
that C is Medvedev reducible to D (denoted by C ≤s D) if there exists a Turing functional Γ such
that Γ X ∈ C for every sequence X ∈ D.

Lemma 3.2 LetC ⊆ωω be a set of sequences Medvedev below a compact set of sequences D ⊆ωω.
For every k ∈ω, every k-enum of D computes a k-enum of C .

Proof. Let Γ be the Turing functional witnessing the Medvedev reduction from C to D. We prove it
by induction over k. Let (Di : i ∈ ω) be a k-enum of D. Suppose that there exists a σ ∈ 2<ω such
that D ∩ [σ] = ; and for infinitely many i ∈ ω, σ � τ for some τ ∈ Di . Then k > 1 and we can
compute a (k − 1)-enum of D by computably finding on input i a j > i such that σ � τ for some
τ ∈ Dj and returning Ei = {σ � i : σ ∈ Djrτ}. ~E is a (k−1)-enum of D and by induction hypothesis,
it computes a (k− 1)-enum of C , so a fortiori a k-enum of C .

So suppose there exists no such σ. This means that for every i ∈ω, there exists a j > i such that
D ∩ [σ � i] 6= ; for each σ ∈ Dj . As C ⊆ hω, by the pigeonhole principle Γ will produce arbitrarily
large k-tuples of initial segments of members of C . We compute a k-enum of C as follows: For
each i ∈ ω, let Ei = {Γσ � i : σ ∈ Dj} for some j such that Γσ � i is defined on each σ ∈ Dj . Such
Ei has been shown to exist and can be found computably in ~D. As [σ] ∩ D 6= ; for some σ ∈ Dj ,
[Γσ � i]∩C 6= ;, hence (∃τ ∈ Ei)C ∩ [τ] 6= ; hence and ~E is a valid k-enum of C . �

3.1. Simultaneous enumeration avoidance

We can define a notion of simultaneous c.b-enum avoidance like we did for path avoidance.
However, we shall see that the notions do not coincide in the case of c.b-enum avoidance.

Definition 3.3 (Simultaneous c.b-enum avoidance) Fix a countable collection of sets of realsC0,C1,
· · · ⊆ 2ω. A principle P admits (strong) c.b-enum avoidance for ~C if it admits (strong) D avoidance,
where D = {Z : (∃i)Z is a c.b-enum ofCi}. A principle P admits (strong) simultaneous c.b-enum
avoidance if it admits (strong) c.b-enum avoidance for ~C for every countable collection of sets of
reals C0,C1, . . . Given some n ∈ ω, P admits (strong) n c.b-enum avoidance if it admits (strong)
c.b-enum avoidance for ~C for every sequence of n sets of reals C0, . . . ,Cn−1.

Simultaneous 1-enum avoidance and cone avoidance are defined similarly. Beware, a c.b-enum
of a collection of sets of reals ~C is a c.b-enum of Ci for some i ∈ω and not a c.b-enum of

⋃

iCi . Liu
defined in [30] c.b-enum avoidance for any increasing sequence (in inclusion order) of sets of reals.
In this subsection we prove that Liu’s apparently stronger notion of avoidance is in fact equivalent
to the avoidance of a single set of reals.

Lemma 3.4 Let C be real and C0,C1, · · · ⊆ 2ω be a countable collection of sets of reals with no
C-computable 1-enum of Ci for each i. There exists a set of reals D ⊆ 2ω Medvedev below each Ci
such that D admits no C-computable 1-enum.

Proof. Fix a X 6≤T C ′ and define D like in Lemma 2.20, that is,

D = {σ_(1− i)_Z : σ_i ≺ X ∧ Z ∈ C|σ|}

D is Medvedev below each Ci . Suppose for the contradiction that there is a C-computable 1-enum
of D (τn : n ∈ω). If there exists a ρ 6≺ X such that ρ � τn for infinitely many n, then because ~τ is
a 1-enum of D, there exists a σ ∈ 2<ω and an i ∈ {0, 1} such that σ_i ≺ X and σ_(1− i) ≺ ρ and
[τn]∩C|σ| 6= ; for every n such that ρ ≺ τn. We can C-compute a 1-enum of C|σ| by C-effectively
finding those n and removing the prefix σ to each string. If there exists no such ρ, then for every
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ρ 6≺ X , there exists an n0 such that ρ 6≺ τn for every n ≥ n0. Then the jump of C computes X ,
contradiction. �

Corollary 3.5 If a principle P admits (strong) 1-enum avoidance, then it admits (strong) simulta-
neous 1-enum avoidance.

Proof. We prove it in the case of 1-enum avoidance. Let C be a set computing no 1-enum of ~C for
some countable collection of sets C0,C1, · · · ⊆ 2ω, and let X be a C-computable instance of P. By
Lemma 3.4, there exists a set of reals D Medvedev below each Ci such that C computes no 1-enum
of D. By 1-enum avoidance of P, there is a solution Y to X such that Y ⊕ C computes no 1-enum
of D. By Lemma 3.2, Y ⊕ C computes no 1-enum of ~C . �

Corollary 3.6 For every set of reals C ⊆ 2ω admitting no computable c.b-enum, there exists a set
of reals D whith no computable 1-enum, such that every c.b-enum of C computes a 1-enum of D.

Proof. For each k > 0, let Dk = {Z ∈ 2ω : Z codes a k-enum of C}. Any 1-enum of Dk for some
k > 0 computes a c.b-enum of C . Therefore there exists no computable 1-enum of Dk for any k > 0.
By Lemma 3.4, there exists a class D Medvedev below Dk for each k > 0, such that D admits no
computable 1-enum. It remains to show that every c.b-enum of C computes a 1-enum of D. Fix any
c.b-enum of C . It is a k-enum of C for some k > 0, so computes a 1-enum of Dk, and by Lemma 3.2
it computes a 1-enum of D. �

The previous corollary shows that if a principle admits 1-enum avoidance, it admits c.b-enum
avoidance. However the set of reals D constructed in Lemma 3.4 depends on a set X 6≤T C ′. There-
fore it does not show that for a fixed set of reals C , there is a single set of reals D such that the
degrees bounding a c.b-enum ofC are exactly the degrees bounding a 1-enum of D. We can recover
this property if we use simultaneous avoidance.

Lemma 3.7 For every countable collection of set of reals ~C , there exists a countable collection of
sets of reals ~D such that the degrees bounding a c.b-enum of ~C are exactly the degrees bounding a
1-enum of ~D.

Proof. Fix a countable collection of sets of reals ~C . For each i, k ∈ω, define

Di,k = {Z ∈ 2ω : Z codes a k-enum of Ci}

Fix a degree d bounding a c.b-enum of ~C . By definition, there exists an i and a k ∈ ω suc that d
bounds a k-enum of Ci . Therefore d bounds a member of Di,k, hence a 1-enum of Di,k. Conversely,
suppose d bounds a 1-enum of Di,k for some i, k ∈ω. Then it bounds a member of Di,k, so bounds
a k-enum of Ci and therefore bounds a c.b-enum of ~C . �

Unlike 1-enum avoidance which has been proven equivalent to simultaneous 1-enum avoidance
of an arbitrary sequence of sets of reals, we will only be able to prove that c.b-enum avoidance of a
single set of reals is equivalent to simultaneous avoidance of an increasing sequence of sets of reals.
This restriction will be proven necessary through Theorem 3.10.

Lemma 3.8 Let C0 ⊆ C1 ⊆ · · · ⊆ 2ω be an increasing countable collection of sets of reals with no
computable c.b-enum. There exists a set D ⊆ 2ω Medvedev below each Ci such that D has no
computable c.b-enum.

Proof. Fix a set X 6≤T ;′ and defineD as in Lemma 3.4. D is Medvedev below eachCi . We prove that
there exists no computable c.b-enum of D. Fix a computable k-enum (Di : i ∈ω) of D. By thinning
out ~D, we can obtain a computable k-enum (Ei : i ∈ ω) of D together with a finite set of strings
(with possible duplications) σ0, . . . ,σr−1 for some r ≤ k and a computable injective function g :
ω× r → 2<ω such that

(i) (∀i < r)σi 6≺ X ∧ (σi�|σi| − 1)≺ X
(ii) (∀i ∈ω)(∀ j < r)[g(i, j) ∈ Ei ∧σ j ≺ g(i, j)]
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(iii) if σ 6≺ X then there are finitely many i such that σ ≺ τ for some τ ∈ Ei r {g(i, j) : j < r}.
If r = k then let n= max({|σ j| : j < r}). For each i ∈ω and j < k, let f (i, j) be the unique string ρ
of length i such that σ_j ρ ≺ g(n+ i, j) and let Fi = {g(i, j) : j < k}. We claim that the sequence ~F

is a k-enum of Cn. Indeed, since ~E is a k-enum of D, for each i, there exists a τ ∈ Ei+n such
that [τ]∩D 6= ;. Since f is injective, there is some j < k such that τ = g(i + n, j). By construction
of D, [ f (i, j)]∩C|σ j |−1 6= ; so [ f (i, j)]∩Cn 6= ; since Cn ⊇ C|σ j |−1.

If r < k then consider for each i the non-empty set Fi = Ei r {g(i, j) : j < r}. For every m >
max(|σ j| : j < r), (∀∞i)(∀τ ∈ Fi)τ�m ≺ X . Therefore we can ;′-compute X , contradicting our
choice of X . �

Lemma 3.8 is optimal in the sense that some principles admitting c.b-enum avoidance do not
admit n c.b-enum avoidance (see Theorem 3.10). Although some principles do not admit c.b-enum
avoidance of an arbitrary countable sequence of sets of reals, they can simultaneously avoid com-
puting a c.b-enum of all effectively closed set with no computable c.b-enum.

Lemma 3.9 Let C0,C1, · · · ⊆ 2ω be a countable collection of effectively closed sets with no com-
putable c.b-enum. There exists a (non-effectively) closed set D ⊆ 2ω Medvedev below each Ci such
that D has no computable c.b-enum.

Proof. Fix a set X 6≤ ;′ and define D as in Lemma 3.4. D is Medvedev below each Ci . We prove by
induction over k that there exists no computable k-enum ofD. Fix a computable k-enum (Di : i ∈ω)
of D. If there exists a σ 6≺ X and infinitely many i such that σ ≺ τ for some τ ∈ Di . As σ 6≺ X , there
exists ρ,ν ∈ 2<ω and j ∈ {0,1} such that ν_ j ≺ X and σ = ρ_(1− j)_ν. If there exists infinitely
many i such that σ ≺ τ for some τ ∈ Di and C|ρ| ∩ [ξ] = ; where τ = ρ_(1− j)_ξ, then we can
computably find infinitely many such τ and compute a (k−1)-enum by enumerating Dirτ for each
such i. If there are finitely many such i, then we can compute a 1-enum of D by enumerating each
such τ. So suppose that for every σ 6≺ X , there exists finitely many i such that σ ≺ τ for some
τ ∈ Di . Then the jump of ~D computes X , contradicting X 6≤T ;′. �

3.2. Negative simultaneous avoidance

We now prove that the notions of c.b-enum avoidance and simultaneous avoidance do not coin-
cide. Moreover, there is a whole hierarchy of avoidance relations based on how many closed sets
can be avoided simultaneously.

Theorem 3.10 There exists a countable collection of closed sets C0,C1, · · · ⊆ 2ω together with a∆0
2

function f :ω→ω and a 1-enum (ρi : i ∈ω) such that

(i)
⋃

j 6=iC j has no computable c.b-enum for each i
(ii) [ρi]∩C f (i) 6= ; for each i

Proof. Fix a non-computable ∆0
2 set X and a computable sequence X0, X1, . . . of reals pointwise

converging to X . We build the closed sets of reals ~C by forcing. Our forcing conditions are tuples
(k,C0, . . . ,Ck−1, E0, . . . , Ek−1) where

(a)
⋃

j 6=iC j are closed sets containing X and with no computable c.b-enum for each i < k
(b) Ei are finite sets of strings for each i < k
(c) (

⋃

j 6=iC j)∩ [Ei] = ; for each i < k
(d) (∀s)(∃i < k)([Xs � s] 6⊆ [

⋃

j 6=i E j])

A condition (m, C̃0, . . . , C̃m−1, Ẽ0, . . . , Ẽm−1) extends a condition (k,C0, . . . ,Ck−1, E0, . . . , Ek−1) if m≥
k, Ci ⊆ C̃i and Ei ⊆ Ẽi for each i < k. The set Ei is a forbidden open set for

⋃

j 6=iC j . We
forcing

⋃

j 6=iC j not to have computable c.b-enum, we shall put strings in it. Our initial condi-
tion is (2, {X }, {X },;,;) which is valid by Corollary 3.23. Note that given some condition c =
(k,C0, . . . ,Ck−1, E0, . . . , Ek−1), the condition (k + 1,C0, . . . ,Ck−1, {X }, E0, . . . , Ek−1,;) is a valid ex-
tension of c.
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We want our forcing to be ;′-effective to obtain a ∆0
2 function f : ω → ω such that prop-

erty (ii) holds. Given some condition c = (k,C0, . . . ,Ck−1, E0, . . . , Ek−1), a code of c is a tuple
〈k, e0, . . . , ek−1, E0, . . . , Ek−1〉 such that for each i < k, Φ;

′

ei
is the characteristic function of the set

of strings σ ∈ 2<ω such that [σ] ∩Ci 6= ;. Note that a condition may not have a code in general,
but our initial condition (2, {X }, {X },;,;) has one. We will show that we can ;′-effectively find an
infinite decreasing sequence of extensions having codes and forcing the desired properties.

Lemma 3.11 For every condition c = (k,C0, . . . ,Ck−1, E0, . . . , Ek−1) and s ∈ ω, there exists an ex-
tension d = (k, C̃0, . . . , C̃k−1, E0, . . . , Ek−1) and some i < k such that [Xs � s]∩C̃i 6= ;. Moreover, one
can ;′-effectively find a code of d given a code of c.

Proof. By property (d) of the condition c there is some i < k such that [Xs � s] 6⊆ [
⋃

j 6=i E j]. Let E =
⋃

j 6=i E j . As E is finite, there exists a finite τ � Xs � s such that [τ] ∩ [E] = ;. Moreover, those i
and τ can be ;′-effectively found. Let C̃i = Ci ∪ {τ_Z : Z ∈ Ci} and let C̃ j = C j for each j 6= i.
The closed set C̃i is Medvedev above Ci . Therefore, for each j < k,

⋃

r 6= j C̃r is Medvedev above
⋃

r 6= jCr and by Lemma 3.2 and property (a) of condition c, it admits no computable c.b-enum. The
condition d = (k, C̃0, . . . , C̃k−1, E0, . . . , Ek−1) satisfies therefore properties (a), (b) and (d). We check
property (c). If (

⋃

r 6= j C̃r)∩[E j] 6= ; for some j < k, then by property (c) of the condition c, j 6= i and
(
⋃

r 6= jCr)∩[E j] = ;. As (
⋃

r 6= j C̃r) ⊆ (
⋃

r 6= jCr)∪[τ], we obtain [τ]∩[E j] 6= ;, contradiction. Hence
property (c) holds and d is a valid extension of c. The Turing index of the characteristic function
of the strings extensible in C̃i can be effectively found from the Turing index of the characteristic
function of the strings extensible in Ci . Therefore the condition d has a code, which can be ;′-
effectively found from a code of c. �

Lemma 3.12 For every condition c = (k,C0, . . . ,Ck−1, E0, . . . , Ek−1), every i < k and every e ∈
ω, there exists an extension d = (k,C0, . . . ,Ck−1, Ẽ0, . . . , Ẽk−1) such that if Φe is an e-enum then
(∃n)Φe(n) ⊂ Ẽi . Moreover, one can ;′-effectively find a code of d given a code of c.

Proof. Let F =
⋃

j 6=i E j and let u = max(|σ| : σ ∈ F). We can ;′-effectively find some stage t > u
such that X t � u= X � u. By Lemma 3.11, we can assume that for every s < t, there is some j < k such
that [Xs � s]∩C j 6= ;. As by property (a) of the condition c,

⋃

j 6=iC j admits no computable c.b-enum,
there exists some n > t + e such that either Φe(n) ↑, or [Φe(n)]∩

⋃

j 6=iC j = ;. We can ;′-decide in
which case we are. In the first case, we take c as the desired extension. Set Ẽi = Ei∪Φe(n) and Ẽ j = E j

for each j 6= i. Properties (a), (b) and (c) hold for the condition d = (k,C0, . . . ,Ck−1, Ẽ0, . . . , Ẽk−1).
We now check property (d).

Suppose for the contradiction that for some s, for every j < k, [Xs � s] ⊆ [
⋃

r 6= j Ẽr]. In particular,
[Xs � s] ⊆ [F]. In this case s < t, otherwise [Xs � s] ⊆ [X � u]. But then [X � u] ∩ [F] 6= ; and
as u = max(|σ| : σ ∈ F), [X � u] ⊆ [E j] for some j < k, contradicting the fact that X ∈

⋃

r 6= jCr
and property (c) of the condition c. By property (d) of the condition c, there exists some j < k
such that [Xs � s] 6⊆ [

⋃

r 6= j Er]. Let µ be the Lebesgue measure. Since t > max(|σ| : σ ∈ F), t > s
and [Xs � s] 6⊆ [

⋃

r 6= j Er], µ([Xs � s] r [
⋃

r 6= j Er]) ≥ 2−t . Since Φe is an e-enum and n > t + e,
µ([Φe(n)]) ≤ e × 2−t−e < 2−t . Therefore, µ([Xs � s] r ([

⋃

r 6= j Er] ∪ [Φe(e)])) > 0 so [Xs � s] 6⊆
[
⋃

r 6= j Ẽr], contradiction. �

Thanks to Lemma 3.11 and Lemma 3.12, we build an infinite ;′-computable decreasing sequence
of conditions c0 = ({X }, {X },;,;)≥ c1 ≥ c2 ≥ . . . together with their codes, such that for each s ∈ω,
assuming cs = (ks,C0,s, . . . ,Cks−1,s, E0,s, . . . , Eks−1,s),

(i) ks ≥ s
(ii) If Φs is a total s-enum, then (∀i < ks)(∃n)Φs(n) ⊂ Ei,s

(iii) [Xs � s]∩
⋃

i<ks
Ci,s 6= ;
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This way, taking Ci =
⋃

s≥iCi,s, we obtain two closed sets admitting no computable c.b-enum by
(ii) and such that s 7→ Xs � s is a computable 1-enum of

⋃

iCi by (ii). This completes the proof of
Theorem 3.10. �

Corollary 3.13 TS1
n does not admit strong n c.b-enum avoidance for every n ≥ 2. In particular,

RT1
2 does not admit strong 2 c.b-enum avoidance. As well, TS1 does not admit strong simultaneous

c.b-enum avoidance.

Proof. Fix some n ≥ 2. Let C0,C1, · · · ⊆ 2ω be the collection of closed sets of reals, f : ω → ω
be the function and (ρi : i ∈ ω) be the 1-enum constructed in Theorem 3.10. For each i < n− 1,
let Di = Ci . As well, let Dn−1 =

⋃

i≥n−1Ci . By (i) of Theorem 3.10,
⋃

j 6=iD j admits no computable
c.b-enum for each i < n. Let g :ω→ n be defined by

g(i) =
§

f (i) if f (i)< n− 1
n− 1 otherwise

By (ii) of Theorem 3.10, [ρi]∩Dg(i) 6= ; for each i. Every infinite g-thin set H with witness color i < n
will compute an 1-enum of

⋃

j 6=iD j . Therefore TS1
n does not admit strong n c.b-enum avoidance.

The case of TS1 is similar. �

Corollary 3.14 Neither RT1
2, nor TS1 admit strong 1-enum avoidance.

Proof. We prove it for TS1, since the case of RT1
2 follows from Lemma 2.15. Let C0,C1, · · · ⊆ 2ω

be the collection of closed sets of reals, f : ω→ ω be the function and (ρi : i ∈ ω) be the 1-enum
constructed in Theorem 3.10. For every i,

⋃

j 6=iC j admits no computable c.b-enum, and a fortiori
no computable 1-enum. By Lemma 3.4, there is a set of reals D Medvedev below

⋃

j 6=iC j for each j
with no computable 1-enum. Every infinite f -thin set with color i computes a 1-enum of

⋃

j 6=iC j .

By Lemma 3.2, every 1-enum of
⋃

j 6=iC j computes a 1-enum ofD. Hence TS1 does not admit strong
1-enum avoidance. �

Using Schoenfield’s limit lemma [38], we obtain negative avoidance results about stable colorings
of pairs.

Corollary 3.15 STS2
n does not admit n c.b-enum avoidance for every n≥ 2. In particular, SRT2

2 does
not admit 2 c.b-enum avoidance. As well, STS2 does not admit simultaneous c.b-enum avoidance.

Corollary 3.16 Neither SRT2
2 nor STS2 admit 1-enum avoidance.

3.3. Comparing notions of avoidance

Simple coding arguments enables us to deduce that path avoidance implies 1-enum avoidance,
which itself implies c.b-enum avoidance. We start our comparison with path avoidance and 1-enum
avoidance. By a simple coding argument, if a principle admits path avoidance, then it admits 1-
enum avoidance. As we have seen (Corollary 2.13), DNR does not admit path avoidance. On the
other hand, DNR admits strong 1-enum avoidance by Theorem 4.36. Therefore the two notions are
distinct.

Lemma 3.17 Fix a principle P.
(i) If P admits (strong) path avoidance, then it admits (strong) 1-enum avoidance.

(ii) If P admits (strong) 1-enum avoidance, then it admits (strong) simultaneous c.b-enum
avoidance.

Proof. We prove (i) for path avoidance. The proof for strong path avoidance is similar. Fix a set
of reals C ⊆ 2ω with no C-computable 1-enum for some real C . The set of reals D = {Z ∈ 2ω :
Z codes a 1-enum of C} is closed and has no C-computable member. Fix any C-computable P-
instance X . By path avoidance of P, there is a solution Y to X such that Y ⊕C computes no member
of D and therefore no 1-enum of C .
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We now prove (ii) for simultaneous 1-enum avoidance since by Corollary 3.5, (strong) 1-enum
avoidance implies (strong) simultaneous 1-enum avoidance. Fix a countable collection of sets of
reals C0,C1, · · · ⊆ 2ω with no C-computable 1-enum for some real C . By Lemma 3.7, there exists a
countable collection of sets of reals D0,D1, · · · ⊆ 2ω such that the degrees bounding a c.b-enum of
~C are exactly the degrees bounding a 1-enum of ~D. In particular C computes no 1-enum of ~D. Fix

any C-computable P-instance X . By simultaneous 1-enum avoidance of P, there is a solution Y to X
such that Y ⊕ C computes no 1-enum of ~D, and therefore computes no c.b-enum of ~C . �

The following lemma curiously shows that in the case of effectively closed sets of reals, the ex-
istence of a computable 1-enum is purely presentational if we are interested only in the Turing
degrees.

Lemma 3.18 For every effectively closed set C ⊆ 2ω, there exists an effectively closed set D ⊆ 2ω

Medvedev above and Muchnik equivalent to C with a computable 1-enum.

Proof. Let T be a computable tree such that [T] = C . The set D = {σ_Z : σ ∈ T ∧ Z ∈ C} is
effectively closed, Medvedev above and Muchnik equivalent to C . For every σ ∈ T , [σ] ∩ D 6= ;,
therefore we can compute a 1-enum of D by returning on input n a string of length n in T . �

Altough the notions of 1-enum and c.b-enum avoidance differ for arbitrary closed sets, they co-
incide at least in the case of effectively closed sets.

Lemma 3.19 Every c.b-enum of an effectively closed set computes a 1-enum.

Proof. We prove by induction over k ≥ 1 that every k-enum of an effectively closed set C ⊆ 2ω

computes a 1-enum. Suppose that every k-enum of C computes a 1-enum of C . Let (Di : i < ω)
be a (k + 1)-enum of C . If for all but finitely many i, for each σ ∈ Di , C ∩ [σ] 6= ;, then we
can trivially compute a 1-enum of C by choosing for almost all i an arbitrary member of Di and
hardcoding remaining cases. So suppose that the previous case does not hold. There are infinitely
many i for which there exists a σ ∈ Di such that C ∩ [σ] = ;. Because C is effectively closed,
one can find an infinite subset of such i and compute a k-enum of C by removing all such σ. By
induction hypothesis, every k-enum of C computes a 1-enum of C . �

We have seen in Lemma 3.17 that if a principle P admits 1-enum avoidance, then it admits si-
multaenous c.b-enum avoidance as well. However, the proof transforms a countable sequence of
closed sets C0,C1, · · · ⊆ 2ω with no computable c.b-enum into another closed set D ⊆ 2ω admitting
no computable 1-enum, but the degrees bounding a c.b-enum of ~C and the degrees bounding a
1-enum of D do not necessarily coincide. Therefore, one cannot deduce from the conjunction of the
sentences “P admits simultaneous c.b-enum avoidance” and “if P admits 1-enum avoidance for some
closed setC , then so does Q forC as well” that Q admits simultaneous c.b-enum avoidance. Thanks
to Lemma 3.7, we can recover this property if we replace C by a countable sequence of closed sets.
The next two lemmas formalize this reasoning and will be heavily used in the remainder of this
paper.

Lemma 3.20 Let P and Q be two principles such that
(i) P admits c.b-enum (resp. simultaneous c.b-enum, n c.b-enum, 1-enum) avoidance,

(ii) For every closed set of reals C ⊆ 2ω, if P admits path avoidance for C then so does Q

Then Q admits c.b-enum (resp. simultaneous c.b-enum, n c.b-enum, 1-enum) avoidance. The same
statement holds if we replace avoidance by strong avoidance.

Proof. We prove it in the case of 1-enum avoidance. The cases of c.b-enum avoidance and of strong
avoidances are similar. Fix a set of reals C ⊆ 2ω. The set of reals

D = {Z ∈ 2ω : Z codes a 1-enum of C}
is closed, and the degrees bounding a member ofD are exactly the degrees bounding a 1-enum ofC .
Fix a real C computing no member of D, hence no 1-enum of C , and consider a C-computable P-
instance X . By (i), P admits 1-enum avoidance, so there is a solution Y to X such that Y⊕C computes
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no 1-enum of C , hence no member of D. Therefore P admits path avoidance for D, thus by (ii),
so does Q. Fix now a real C computing no 1-enum of C , hence no member of D and consider any
C-computable Q-instance X . By path avoidance of Q for D, there is a solution Y to X such that
Y ⊕ C computes no 1-enum of ~D, so Y ⊕ C computes no c.b-enum of C . �

Lemma 3.21 Let P and Q be two principles such that

(i) P admits c.b-enum (resp. simultaneous c.b-enum, n c.b-enum) avoidance,
(ii) For every countable collection of sets of reals C0,C1, · · · ⊆ 2ω, if P admits (strong) 1-enum

avoidance for ~C then so does Q

Then Q admits c.b-enum (resp. simultaneous c.b-enum, n c.b-enum) avoidance. The same state-
ment holds if we replace avoidance by strong avoidance.

Proof. We prove it in the case of c.b-enum avoidance. The case of strong avoidance is similar. Fix a
set of realsC ⊆ 2ω. By Lemma 3.7, there exists a countable collection of sets of realsD0,D1, · · · ⊆ 2ω

such that the degrees bounding a c.b-enum of C are exactly the degrees bounding a 1-enum of ~D.
Fix a real C computing no 1-enum of ~D, hence no c.b-enum of C and consider any C-computable
P-instance X . By (i), P admits c.b-enum avoidance, so there is a solution Y to X such that Y ⊕ C
computes no c.b-enum of C . In particular Y ⊕ C computes no 1-enum of ~D. Therefore P admits
1-enum avoidance for ~D and by (ii), so does Q. Fix now a real C computing no c.b-enum of C ,
hence no 1-enum of ~D and consider any C-computable Q-instance X . By 1-enum avoidance of Q
for ~D, there is a solution Y to X such that Y ⊕ C computes no 1-enum of ~D, so Y ⊕ C computes no
c.b-enum of C . �

3.4. Avoiding homogeneous closed sets

In the case of homogeneous closed sets C , every 1-enum of C computes a member of C . More-
over, Lemma 3.19 shows that 1-enum avoidance and c.b-enum avoidance coincide in the case of
effectively closed sets. Therefore, every statement which admits c.b-enum avoidance admits path
avoidance for homogeneous effectively closed sets. In the case of non-effectively closed sets, the
notions of 1-enum avoidance and c.b-enum avoidance differ, even when considering only homo-
geneous closed sets. However the notion coincide again when a homogeneous closed set is not
Muchnik below the closed set of completions of Peano arithmetic, as states the following theorem.

Theorem 3.22 Let P be a set of PA degree andC be a homogeneous closed set with no P-computable
member. There exists no computable c.b-enum of C .

Proof. We prove by induction over k that every k-enum of C P-computes a member of C . Case
k = 1 follows from the fact that C is homogeneous. Suppose it holds for k and let (Di : i <ω) be a
(k + 1)-enum of C . If there exists an n ∈ ω and a j ∈ {0,1} such that C ∩ {Z : Z(n) = j} = ; and
(∃∞i)(∃τ ∈ Di)τ(n) = j, then we can computably find infinitely many such i and by removing the
corresponding τ, we obtain a k-enum. It then suffices to apply the induction hypothesis to deduce
that ~D⊕ P computes a a member of C .

So suppose there is no such n. P computes a {0,1}-valued d.n.c. function f . We f -compute a
member of C by stages ; = σ0 ≺ σ1 ≺ . . . at follows. Suppose at stage s, σs is a string of length
s and C ∩ [σs] 6= ;. Let e be the Turing index of the program which on every input will search
for a time t and a value j ∈ {0, 1} such that τ(s) = j for each τ ∈ Dt if such t exists, and returns
1− j. Otherwise the program does not halt. Set σs+1 = σ f (e) and go on next stage. We claim that
C ∩ [σs+1] 6= ;. Otherwise, by previous case, there will be a stage t at which τ(s) = j for each
τ ∈ Dt and then Φe(e) ↓= 1− j. So f (e) = 1− Φe(e) = j. As ~D is a (k + 1)-enum, there must be a
τ ∈ Dt such that C ∩ [τ] 6= ;, and by homogeneity of C , C ∩ [σs j] 6= ;. �

The following corollary can be easily proven independently using Kolmogorov complexity. Indeed,
Chaitin [6] proved that a set A is computable iff C(A�n)≤ C(n)+O(1) for every n, where C denotes
the plain Kolmogorov complexity.

Corollary 3.23 A set A is computable iff {A} has a computable c.b-enum.
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Proof. If A is computable, the enumeration of its initial segments for a computable c.b-enum of {A}.
If A is not computable, by the cone avoidance basis theorem, there exists a set of PA degree which
does not compute A. Therefore by Theorem 3.22 {A} has no computable c.b-enum. �

Definition 3.24 Two disjoint sets A and B are computably inseparable if there exists no computable
set S such that A⊆ S ⊆ B.

Theorem 3.25 There exists a 2-c.e. set A and a countable sequence of 2-c.e. sets (Bi : i > 0) such
that A and Bi are disjoint and computably inseparable for each i > 0, together with a ∆0

2 partition
U0 ∪ U1 ∪ · · · =ω such that every infinite set thin for the U ’s computes a separation of A and Bi for
some i > 0.

Proof. We build our 2-c.e. set A= lims As and our countable sequence of sets Bi = lims Bi,s as well as
sets Ui = lims Ui,s by a finite injury priority argument. Let Φ0,Φ1, . . . be a computable enumeration of
all {0,1}-valued functionals. The requirements to ensure that A and Bi are computably inseparable
are the followings for each e ∈ω and i > 0:

Re,i : Φe total→ [(∃n ∈ A)Φe(n) ↓= 0∨ (∃n ∈ Bi)Φe(n) ↓= 1]

We also require that A∩ Bi = ; for each i > 0. The construction is done with a movable marker
procedure. Each requirement Re,i is given a marker ne,i = lims ne,i,s which may increase during
the construction, but eventually stabilizes. The requirements are given the usual priority order
(Re,i < Re′,i′ if 〈e, i〉 <lex




e′, i′
�

). A strategy for Re,i is satisfied at stage s if either Φe,s(ne,i,s) ↑ or
one of the following holds

(i) Φe,s(ne,i,s) ↓= 0 and ne,i,s ∈ As.
(ii) Φe,s(ne,i,s) ↓= 1 and ne,s ∈ Bi,s.

A strategy for Re requires attention at stage s if e, i, ne,i,s < s, it is not satisfied at stage s and
Φe(ne,i,s) ↓. At stage 0, ne,i,0 = 〈e, i〉, A0 = Bi,0 = ; for each i > 0 and U j,0 = ; for each j ∈ ω.
At stage s+ 1, if no strategy requires attention at stage s, set ne,i,s+1 = ne,i,s, As+1 = As, Bi,s+1 = Bi,s,
Ui,s+1 = Ui,s for each e ∈ ω, i > 0, and U0,s+1 = U0,s ∪ {s}. Otherwise take the least such strategy
(say for requirementRe,i). Set ne′,i′,s+1 = ne′,i′,s for each




e′, i′
�

≤ 〈e, i〉 and ne′,i′,s+1 =



e′, i′
�

+ s+1
for each




e′, i′
�

> 〈e, i〉.
(a) If Φe,s(ne,i,s) ↓= 0 then set As+1 = (As ∪ {ne,i,s})r [ne,i,s + 1, s], B j,s+1 = B j,s r [ne,i,s + 1, s],

U j,s+1 = U j,s r [ne,i,s, s] for each j > 0 and U0,s+1 = U0,s ∪ [ne,i,s, s].
(b) If Φe,s(ne,i,s) ↓= 1 then set As+1 = As r [ne,i,s, s], Bi,s+1 = (Bi,s ∪ {ne,i,s}) r [ne,i,s + 1, s],

B j,s+1 = B j,s r [ne,i,s + 1, s] for each j > 0 such that j 6= i, Ui,s+1 = Ui,s ∪ [ne,i,s, s] and
U j,s+1 = U j,s r [ne,i,s, s] for each j ∈ω such that j 6= i.

This finishes stage s+1. An easy induction shows that each marker eventually stabilizes. Therefore
each strategy has a finite number of injuries and is eventually satisfied. As movable markers are
non-decreasing, the resulting sets A and Bi are 2-c.e. for each i ∈ ω. Each element x changes
of set Ui at most twice, so the U ’s are uniformly ∆0

2. Moreover, at stage s + 1, s enters
⋃

i<s Ui,s
and an element is never removed from a set without being added to another one, so

⋃

i Ui = ω.
Each step also ensures that A ⊆ U0, Bi ⊆ Ui for each i > 0 and Ui ∩ U j = ; for every i 6= j. Let
Ci = {Z : Z separates A and Bi} for each i > 0.

Claim. Each Ci has a computable 2-enum.

Proof. On input s, return (σs,τs) where σs is the left-most string and τs the right-most string of
length s such that for each u< s, if u ∈ As thenσs(u) = τs(u) = 1 and if u ∈ Bi,s thenσs(u) = τs(u) =
0. Suppose for the sake of absurd that there exists a least s ∈ω such that Ci ∩ [σs] =Ci ∩ [τs] = ;.
By definition, there must be two least m0, m1 < s such that

m0 ∈ (Ar As)∧σs(m0) = 0∨m0 ∈ (Bi r Bi,s)∧σs(m0) = 1

m1 ∈ (Ar As)∧τs(m1) = 0∨m1 ∈ (Bi r Bi,s)∧τs(m1) = 1
Suppose that m0 ≤ m1. The other case is symmetric. Let t0 be the stage at which m0 enters A or Bi .
Then all the markers greater than m0 are moved to a value greater than t0 > s, contradicting the
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fact that m1 < s is in A or Bi . Therefore m0 = m1. As m0 is in neither As nor Bi,s and σn is left-most
and τn is right-most, σn(m0) = 0 and τn(m0) = 1 and so either m0 is not a witness of Ci ∩ [σs] = ;
or it is not a witness of Ci ∩ [τs] = ; contradicting our choice of m0. �

Claim. Every infinite set thin for the U ’s computes a member of some Ci .

Proof. Let (σs,τs : s ∈ω) be the computable 2-enum of Ci built in the previous claim. It suffices to
prove that U0 ⊆ {s : Ci ∩ [σs] 6= ;} and Ui ⊆ {s : Ci ∩ [τs] 6= ;} for each i > 0. Indeed, if H is an
infinite set thin for the U ’s with color 0 or some color i > 0, then it computes a 1-enum of Ci , and
therefore computes a member of Ci by homogeneity.

Let H be an infinite subset of Ui for some i > 0. The case i = 0 is similar. Fix any x ∈ Ui and let
s be the last stage at which x enters some U j for j 6= i. If no requirement caused this change, then
no Turing machine with a marker smaller than x will ever halt on its marker after stage x + 1 and
so by construction of the 2-enum, Ci ∩ [τx] 6= ;. So let Re, j be the requirement causing x to enter
in U j for some j 6= i. Suppose for the sake of contradiction that Ci ∩ [τx] = ;. Then there exists a
marker ne′,i < x such that ne′,i ∈ Bi and ne′,i enters Bi at some stage t ≥ x and no strategy of higher
priority injuresRe′,i after stage t. By construction, every integer between ne′,i and t enters Ui , so in
particular x enters Ui . As every marker of smaller priorities are moved to a value greater than t, x
never leaves Ui at a later stage, contradicting x ∈ U j for some j 6= i. �

This last claim finishes the proof. �

Corollary 3.26 STS2 (resp. STS2
k, SRT2

2) does not admit simultaneous (resp. k, 2) 1-enum avoid-
ance for homogeneous closed sets.

Proof. We first prove it for STS2. Let A, B1, B2, . . . and U0, U1, . . . be as in Theorem 3.25 and letCi =
{Z : Z separates A from Bi} for each i ≥ 1. Let f : [ω]2 → ω be a stable computable function
such that lims f (x , s) = i iff x ∈ Ui . Every f -thin set for color i is an infinite subset of Ui , and
therefore computes a member of any C j if i = 0 and of Ci if i > 1. Since the C ’s are homogeneous
closed sets with no computable 1-enum, STS2 does not admit simultaneous 1-enum avoidance for
homogeneous closed sets. The case of STS2

k is similar and consists of defining V0, . . . , Vk−1 by Vi = Ui

if i < k− 1 and Vk−1 =
⋃

i≥k−1 Ui . SRT2
2 is simply STS2

2. �

4. THE WEAKNESS OF RAMSEY’S THEOREM FOR PAIRS

4.1. Cohesiveness

As we saw, RT1
2 does not admit strong 1-enum avoidance. However, Lemma 3.21 shows that it can

be useful to prove relative strong 1-enum avoidance theorems to deduce strong c.b-enum avoidance
for other principles. For example, proving the theorem “if RT1

2 admits strong 1-enum avoidance of
~C for a countable collection of classes ~C , so does a principle P” enables to deduce strong c.b-enum

avoidance of P. In all proofs of relative strong 1-enum avoidance, we could slightly modify the
forcing notion to obtain a direct proof of strong c.b-enum avoidance, but this would weaken the
statement as there may exist other classes for which RT1

2 admits strong 1-enum avoidance.

Lemma 4.1 If RT1
2 admits strong C avoidance for some class C , then so does RT1

<∞.

Proof. By induction over n ≥ 2. Case n = 2 is the hypothesis. Let f : ω→ {0, . . . , n} be a function
and C be a set computing no member of C . Define the function g : ω→ {0, . . . , n− 1} by g(x) =
max( f (x), n − 1). By strong C avoidance of RT1

n for C , there exists an i < n and an infinite set
X such that g(X ) = i and X ⊕ C computes no member of C . If i < n − 1, then f (X ) = g(X ) and
X is f -homogeneous with color i. If i = n − 1. Let x0 < x1 < . . . be the elements of X . Define
the coloring h : ω → {n − 1, n} by h(m) = f (xm). By strong C avoidance of RT1

2 for C , there
exists a j ∈ {n − 1, n} and an infinite set Y such that Y ⊕ X ⊕ C computes no member of C and
h(Y ) = j. Let Z = {xm : m ∈ Y }. Z is Y ⊕ X -computable, so Z ⊕ C computes no member of C .
(∀xm ∈ Z) f (xm) = h(m) = j so Z is f -homogeneous with color j. �
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Corollary 4.2 (Liu in [30]) RT1
<∞ admits strong c.b-enum avoidance.

Remark 4.3 From now on, we may apply freely strong C avoidance for C not only for instances
of domain ω, but also on domain X for every infinite set X which computes no member of C . It
suffices to apply an X -computable bijection from X toω to obtain an instance of domainω and then
take the reverse image of the solution by the bijection, as we did in the proof of Lemma 4.1.

Definition 4.4 (Cohesiveness) Given a sequence of sets R0, R1, . . . , an infinite set C is ~R-cohesive if
C ⊆∗ Ri or C ⊆∗ Ri for every i. COH is the statement “Every uniform sequence of sets has a cohesive
set”.

COH is a consequence of RT2
2 over RCA0 [8]. It can be seen as a generalization of RT1

2 stating
the existence of a set eventually homogeneous for a countable collection of colorings of integers.
COH is very useful for reducing a computable instance of RT2

2 to a ;′-computable instance of RT1
2

[8]. Here, strong avoidance of RT1
2 becomes of practical interest for proving avoidance of RT2

2.
Since COH admits path avoidance (Corollary 2.9), then by Lemma 3.17 COH admits 1-enum

avoidance. By Corollary 3.13, RT1
2 does not admit strong simultaneous c.b-enum avoidance, and a

fortiori does not admit strong 1-enum avoidance (Lemma 3.17). Using Lemma 3.21, the following
theorem will enable us to prove that COH admits strong c.b-enum avoidance.

Theorem 4.5 If RT1
2 admits strong path avoidance for some closed set C ⊆ωω, then so does COH.

Proof. Let C ⊆ ωω be a closed set with no C-computable member for some set C , and let ~R be a
countable sequence of sets. Our forcing conditions are tuples (F, X ) forming a Mathias condition,
with the additional requirement that C has no X ⊕ C-computable member. Our initial condition is
(;,ω). We can easily force our satisfying sets to be infinite.

Lemma 4.6 For every condition c = (F, X ) and every e,∈ ω, there exists an extension (F̃ , X̃ ) of c
forcing ΦG⊕C

e not to be a member of C .

Proof. Suppose for the sake of absurd that there is no extension of c forcing ΦG⊕C
e to be partial or

ΦG⊕C
e �|σ|= σ for some σ ∈ 2<ω such that [σ]∩C = ;. We show how to X ⊕C-compute a member

of C . Define an X ⊕ C-computable sequence of sets F0 ⊆ F1 ⊆ · · · ⊆ X such that Φ(F∪Fi)⊕C
e (i) ↓ and

∀x ∈ Fi+1 r Fi , x ≥ max(Fi). Such a sequence exists since there is no extension of c forcing ΦG⊕C
e

to be partial. We claim that the set Y defined by Y (i) = Φ(F∪Fi)⊕C
e (i) is a member of C . If not, then

there is some i such that C ∩ [Y �i] = ;. In this case, (F ∪ Fi , X r [0, max(Fi)]) is an extension of c
forcing ΦG⊕C

e �|σ|= σ for some σ ∈ 2<ω such that [σ]∩C = ;, contradiction. �

Lemma 4.7 For every condition c = (F, X ) and every e, i ∈ ω, there exists an extension (F̃ , X̃ ) of c
such that X̃ ⊆ Ri or X̃ ⊆ Ri .

Proof. Consider the coloring f : X → {0,1} such that f (x) = 1 iff x ∈ Ri . By strong 1-enum
avoidance of RT1

2 for ~C , there exists an infinite subset X̃ ⊆ X such that X̃ ⊕ C does not compute a
1-enum of ~C and X̃ ⊆ Ri or X̃ ⊆ Ri . (F, X̃ ) is the desired extension. �

Let F = {c0, c1, . . . } be a sufficiently generic filter containing (;,ω), where cs = (Fs, Xs). The
filter F yields a unique infinite set G =

⋃

s Fs. By Lemma 4.7, G is ~R-cohesive and by Lemma 4.6,
C has no G ⊕ C-computable member. �

Corollary 4.8 COH admits strong c.b-enum avoidance.

Proof. By strong c.b-enum avoidance of RT1
2, Theorem 4.5 and Lemma 3.20. �

Lemma 4.9 If COH admitsC avoidance and RTn
2 strongC avoidance, then RTn+1

2 admitsC avoid-
ance.
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Proof. Let C be a set computing no member of C and f : [ω]n+1 → 2 be a C-computable coloring
function. For each σ ∈ [ω]n, let Rσ = {y : f (σ, y) = 1}. By C avoidance of COH applied to ~R,
there exists an infinite set U such that X ⊕ C computes no member of C and lims∈X f (σ, s) exists
for each σ ∈ [ω]n. Let f̃ : [ω]n→ 2 be the function defined by f (σ) = lims∈X f (σ, s). By strong C
avoidance of RTn

2, there exists an infinite set Y ⊆ X and an i ∈ {0, 1} such that (∀σ ∈ [Y ]n) f̃ (σ) =
i = lims∈X f (σ, s) and Y ⊕ X ⊕ C computes no member of C . Y ⊕ X ⊕ C computes an infinite set H
such that f ([H]n+1) = i. �

Corollary 4.10 If RT1
2 admits strong path avoidance for some set C ⊆ ωω, then RT2

2 admits path
avoidance for C .

Proof. It follows from Lemma 4.9 and Theorem 4.5. �

Corollary 4.11 (Liu in [30]) RT2
2 admits c.b-enum avoidance.

Proof. Apply Lemma 3.20 to Corollary 4.10, using strong c.b-enum avoidance of RT1
2 (Liu [30]). �

4.2. The Ramsey-type weak König’s lemma

Definition 4.12 (Ramsey-type weak König’s lemma)

1. A set H is homogeneous for σ ∈ 2<ω (resp. for X ∈ 2ω) if there is v ∈ {0,1} such that for
all i ∈ H, σ(i) = v (resp. X (i) = v). Given an infinite tree T , we say that H is homogeneous
for a path through T if the tree T ′ = {σ ∈ T : H is homogeneous for σ} is infinite.

2. RWKL is the statement “Every infinite tree T has an infinite set homogeneous for a path
through T”.

The complicated formulation of RWKL is for the purposes of reverse mathematics. One might
think of RWKL as the statement “for every Π0

1 class D, there exists an infinite set which is homoge-
neous for a member of D seen as a 2-coloring”. In this remaining of this section, we say that H is
D-homogeneous if it is homogeneous for a path through T where T is a computable tree such that
[T] = D.

RWKL has been introduced by Flood in [13] under the name RKL and proven to be a consequence
of both SRT2

2 and WKL0 over RCA0. Bienvenu & al. refined this result in [3] by proving that SEM
implies RWKL over RCA0. They built anω-model of WWKL0 not model of RWKL by constructing
a computable instance of RWKL such that the measure of oracles computing a solution is null.

The following theorem will be useful for proving simultaneous c.b-enum for the Erdős-Moser
theorem and n c.b-enum avoidance for the thin set theorem for pairs with (n+ 1)-colorings.

Theorem 4.13 RWKL admits simultaneous c.b-enum avoidance.

TODO

4.3. The Erdős-Moser theorem

Erdős Moser theorem provides, together with the ascending descending sequence principle, an-
other proof of Ramsey’s theorem for pairs. Due to its natural combination with ADS to obtain RT2

2,
many of the properties of EM can be deduced from known properties of RT2

2 and ADS. For exam-
ple, Kreuzer deduced in [27] the existence of a computable stable tournament with no low infinite
transitive subtournament by combining the know existence of a computable instance of SRT2

2 with
no low solution and the existence for every computable instance of SADS of a low solution.

Definition 4.14 (Erdös Moser theorem)

1. A tournament T is an irreflexive binary relation on ω such that for all x 6= y , exactly one
of T (x , y) and T (y, x) holds. T is transitive if for all x , y, z, if T (x , y) and T (y, z) hold
then T (x , z) holds. A tournament T is stable if for every x , either (∀∞ y)T (x , y) holds or
(∀∞ y)T (y, x) holds.
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2. EM is the statement “Every infinite tournament admits an infinite transitive subtourna-
ment”. SEM is the restriction of EM to stable tournaments.

Bovykin and Weiermann proved in [5] that EM+ADS is equivalent to RT2
2 over RCA0, equiva-

lence still holding between their stable versions. Lerman & al. [28] proved over RCA0+BΣ0
2 that

EM implies OPT and constructed ω-model of EM not model of STS(2). Wang proved in [24] that
EM implies RRT2

2 over RCA0. The author proved in [33] that RCA0 ` EM → [STS(2) ∨ COH].
Using Theorem 3.25, we deduce the existence of a closed set with no computable members C such
that every model of RCA0+EM containing no path of C is also a model of COH.

4.3.1. Enum avoidance of EM. The question of 1-enum avoidance of EM is open. However we are
able to prove it relatively to the 1-enum avoidance of the Ramsey-type weak König’s lemma.

Theorem 4.15 If RWKL admits 1-enum avoidance for some countable sequence of setsC0,C1, · · · ⊆
2ω then so does EM.

Before proving Theorem 4.15, we introduce some terminology coming from the computable anal-
ysis of the Erdős-Moser theorem by Lerman, Solomon and Towsner [28].

Definition 4.16 (Minimal interval) Let T be an infinite tournament and a, b ∈ T be such that T (a, b)
holds. The interval (a, b) is the set of all x ∈ T such that T (a, x) and T (x , b) hold. Let F ⊆ T be
a finite transitive subtournament of T . For a, b ∈ F such that T (a, b) holds, we say that (a, b) is a
minimal interval of F if there is no c ∈ F ∩ (a, b), i.e. no c ∈ F such that T (a, c) and T (c, b) both
hold.

The following notion of Erdős-Moser condition has been defined by the author in [32] and takes
its inspiration from [28].

Definition 4.17 An Erdős Moser condition (EM condition) for an infinite tournament T is a Mathias
condition (F, X ) where

(a) F ∪ {x} is T -transitive for each x ∈ X
(b) X is included in a minimal T -interval of F .

The extension is the usual Mathias extension. EM conditions have good properties for tourna-
ments as state following lemma. Given a tournament T and two sets E and F , we denote by E→T F
the formula (∀x ∈ E)(∀y ∈ F)T (x , y) holds.

Lemma 4.18 (Patey [32]) Fix an EM condition c = (F, X ) for a tournament T , an infinite subset
Y ⊆ X and a finite T -transitive set F1 ⊂ X such that F1 < Y and [F1 →T Y ∨ Y →T F1]. Then
d = (F ∪ F1, Y ) is a valid extension of c.

Proof of Theorem 4.15. Since COH admits 1-enum avoidance, it suffices to prove the result for sta-
ble tournaments. Fix a countable sequence of sets C0,C1, · · · ⊆ 2ω for which RWKL admits 1-enum
avoidance. Let C be a set computing no 1-enum of Ci for any i, and let T be a C-computable
tournament Our forcing conditions are EM conditions (F, X ) for T such that the C ’s have no X ⊕ C-
computable 1-enum. A set G satisfies a condition (F, X ) if it is T -transitive and satisfies the Mathias
condition (F, X ). Our initial condition is (;,ω). The first lemma shows that we can force the transi-
tive subtournament to be infinite.

Lemma 4.19 For every condition c = (F, X ), there is an extension (F̃ , X̃ ) such that |F̃ |> |F |.

Proof. Let x ∈ X . Since T is stable, there is some n such that {x} →T X∩[n,+∞) or X∩[n,+∞)→T
{x}. By Lemma 4.18, d = (F ∪ {x}, X ∩ [n,+∞) is a valid extension. �

Lemma 4.20 For every condition c = (F, X ) and every e, i ∈ω, there exists an extension (F̃ , X̃ ) of c
forcing ΦG⊕C

e not to be a 1-enum of Ci where G is the forcing variable.
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Proof. Suppose there exists a string σ ∈ 2<ω such that [σ] ∩ Ci = ; and a finite set E ⊂ X such
that for every 2-partition E0 ∪ E1 = E, there exists a finite T -transitive F ′ ⊆ E j for some j < 2 such
such that Φ(F∪F ′)⊕C

e (|σ|) ↓= σ. Then consider the 2-partition E0 ∪ E1 = E defined by E0 = {x ∈
E : (∀∞s)T (x , s)} and E1 = {x ∈ E : (∀∞s)T (x , s)}. Let F ′ ⊆ Ei be such that Φ(F∪F ′)⊕C

e (|σ|) ↓= σ.
In particular, there is some n ∈ ω such that F ′ →T X ∩ [n,+∞) or X ∩ [n,+∞) →T F ′, so by
Lemma 4.18, the condition (F ∪ F ′, X ∩ [n,+∞)) is a valid extension forcing ΦG⊕C

e not to be a
1-enum of Ci .

So suppose there is no such σ ∈ 2<ω. For each σ ∈ 2<ω, let Tσ denote the collection of the sets Z
such that for every finite T -transitive set F ′ ⊆ Z or F ′ ⊆ Z , Φ(F∪F ′)⊕C

e (|σ|) ↑ or Φ(F∪F ′)⊕C
e (|σ|) 6=

σ. Note that Tσ are uniformly Π0,X⊕C
1 classes. Because the previous case does not hold, then by

compactness Tσ 6= ; for each σ such that C ∩ [σ] = ;. The set {σ : Tσ = ;} is X ⊕C-c.e. If for each
u ∈ ω, there exists a σ ∈ 2u such that Tσ = ; then X ⊕ C computes a 1-enum of C , contradicting
our hypothesis. So there must be a u such that Tσ 6= ; for each σ ∈ 2u.

Thanks to 1-enum avoidance of RWKL for ~C , define a finite decreasing sequence X = X0 ⊇ · · · ⊇
X2u−1 = X̃ such that for each σ ∈ 2u

1. Xσ is homogeneous for a path in Fσ.
2. Xσ ⊕ C computes no 1-enum of any of the C ’s.

We claim that (F, X̃ ) is an extension forcing ΦG⊕C
e (u) ↑ or ΦG⊕C

e (u) 6∈ 2u. Suppose for the sake of
contradiction that there exists a σ ∈ 2u and a set G satisfying (F, X̃ ) such that ΦG⊕C

e (u) ↓= σ. By
continuity, there exists a finite set F ′ ⊆ G such that Φ(F∪F ′)⊕C

e (u) ↓= σ. The set F ′ is T -transitive
by definition of satisfaction of (F, X̃ ). It suffices to show that F ′ ⊆ Z or F ′ ⊆ Z for some Z ∈ Tσ to
obtain a contradiction. This is immediate since X̃ is homogeneous for a path in Tσ. �

Let F = {c0, c1, . . . } be a sufficiently generic filter containing (;,ω), where cs = (Fs, Xs). The
filter F yields a unique set G =

⋃

s Fs. By definition of a condition, the set G is a transitive subtour-
nament of T . By Lemma 4.19, G is infinite and by Lemma 4.20, G ⊕ C computes no 1-enum of Ci
for any i ∈ω. �

Corollary 4.21 EM admits simultaneous c.b-enum avoidance.

Proof. Apply Lemma 3.21 to Theorem 4.15 and simultaneous c.b-enum avoidance for RWKL (The-
orem 4.13). �

4.3.2. Strong c.b-enum avoidance of EM. The author proved in [32] that RT1
2 ≤sc EM. Therefore,

by Lemma 2.15, EM admits neither strong 1-enum avoidance, nor strong 2 c.b-enum avoidance.
Once again, we will use a relativized proof of strong 1-enum avoidance to deduce strong c.b-enum
avoidance of EM.

Theorem 4.22 If RT1
2 admits strong 1-enum avoidance for some countable sequence of classes

C0,C1, . . . then so does EM.

Corollary 4.23 EM admits strong c.b-enum avoidance.

Proof. Apply Lemma 3.21 to Theorem 4.22, knowing that RT1
2 admits strong c.b-enum avoidance.

�

We now turn to the proof of strong 1-enum avoidance of EM relative to 1-enum avoidance of
RT1

2.

Definition 4.24 A ⊕k-tournament is a set ~T = T0⊕· · ·⊕Tk−1 such that each Ti is a tournament. One
might think of a ⊕k-tournament as a conjunction of tournaments. Thus notions over tournaments
can be naturally extended to ⊕k-tournaments – e.g. A set U is a subtournament of a ⊕k-tournament
~T if it is a subtournament of Ti for each i < k –.
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Proof of Theorem 4.22. Fix a set C computing no 1-enum of ~C for some countable collection of
classes C1,C2, . . . such that RT1

2 admits strong 1-enum avoidance of ~C . Let T be an infinite tour-
nament. Our forcing conditions are tuples (k, F, X , ~U) such that

(a) ~U is a ⊕k-tournament
(b) X ⊕ C does not compute a 1-enum of ~C
(c) (F, X ) is an EM condition for each Ui ∈ ~U

A condition (m, F ′, X ′, ~U ′) extends another condition (k, F, X , ~U) if (F ′, X ′) Mathias extends (F, X ),
m ≥ k and {Ui : i < k} ⊆ {U ′i : i < m}. A set G satisfies a condition (k, F, X , ~U) if it is ~U-transitive
and satisfies the Mathias condition (F, X ). Our initial condition is (1,;,ω, T ).

Lemma 4.25 For every condition (k, F, X , ~U), there exists an extension
(k, F̃ , X̃ , ~U) such that |F̃ |> |F |.

Proof. Take any x ∈ X . Let f : X → 2k be the coloring defined by f (y) = σy where
�

�σy

�

�= k and for
each i < k, σy(i) = 1 iff Ui(x , y) holds. By strong 1-enum avoidance of RT1

<∞ for ~C , there exists
an infinite set X̃ and a σ ∈ 2k such that

(∀i < k)(∀y ∈ X̃ )(Ui(x , y) holds ↔ σ(i) = 1)

and X̃ ⊕ C does not compute a 1-enum of ~C . By Lemma 4.18, (F ∪ {x}, X̃ ) is a valid EM extension
for Ui for each i < k so (k, F ∪ {x}, X̃ , ~U) is a valid extension. �

Lemma 4.26 Fix a set C computing no 1-enum of ~C . Let X be an infinite C-computable set and
~T be a ⊕k-tournament. For each finite subset E ⊆ X , there is a 2k partition E =

⋃

σ∈2k Eσ and an
infinite set Y ⊆ X such that E < Y , Y ⊕ C does not compute a 1-enum of ~C and for all σ ∈ 2k and
i < k, if σ(i) = 0 then Eσ→Ti

Y and if σ(i) = 1 then Y →Ti
Eσ.

Proof. Given a set E, define PE to be the finite set or ordered 2k-partitions of E, i.e.

PE = {



Eσ : σ ∈ 2k
�

:
⋃

σ∈2k

Eσ = E and σ 6= τ→ Eσ ∩ Eτ = ;}

Define the coloring g : X → PE by g(x) =



E x
σ : σ ∈ 2k

�

where

E x
σ = {a ∈ E : (∀i < k)Ti(a, x) holds iff σ(i) = 0}

By strong 1-enum avoidance of RT1
<∞ for ~C , there exists an infinite set Y ⊆ X homogeneous for

g such that X ⊕ Y does not compute a 1-enum of ~C . Let



Eσ : σ ∈ 2k
�

be the color. By removing
finitely many elements of X , we can ensure that E < Y and by definition of g, for all σ ∈ 2k and
i < k, if σ(i) = 0 then Eσ→Ti

Y and if σ(i) = 1 then Y →Ti
Eσ. �

Lemma 4.27 For every condition (k, F, X , ~U) and every e, i ∈ω, there exists an extension (m, F̃ , X̃ , ~V )
forcing ΦG⊕C

e not to be a 1-enum of Ci where G is the forcing variable.

Proof. Suppose there exists a string σ ∈ 2<ω such that [σ]∩Ci = ; and a finite set E ⊂ X such that
for each 2k-partition E = E0 ∪ · · · ∪ E2k−1, there is a j < 2k and a ~U transitive set F ′ ⊆ E j such that
Φ(F∪F ′)⊕C

e (|σ|) ↓= σ. Take the partition E = E0 ∪ · · · ∪ E2k−1 and the infinite set X̃ ⊆ X guaranteed
by Lemma 4.26. Fix a j < 2k and an ~U-transitive set F ′ ⊆ E j such that Φ(F∪F ′)⊕C

e (|σ|) ↓= σ. By
Lemma 4.18, (F ∪ F ′, X̃ ) is a valid EM condition for Ui for each i < k so (k, F ∪ F ′, X̃ , ~U) is a valid
extension and forces ΦG⊕C

e not to be a 1-enum of Ci .
So suppose there is no such σ ∈ 2<ω and finite set E ⊂ X . For each σ ∈ 2<ω, let Tσ denote the

collection of ⊕k-tournaments ~W satisfying conditions (c) and (d) such that for each finite set E ⊂ X ,
there exists a 2k-partition E = E0∪· · ·∪E2k−1 such that for every j < 2k and ~W -transitive set F ′ ⊆ E j ,
Φ(F∪F ′)⊕C

e (|σ|) ↑ or Φ(F∪F ′)⊕C
e (|σ|) 6= σ. Note that Tσ are uniformly Π0,X⊕C

1 classes. Because above
case does not hold, ~U ∈ Tσ for each σ such that Ci ∩ [σ] = ;. The set {σ : Tσ = ;} is X ⊕ C-c.e.
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If for each u ∈ ω, there exists a σ ∈ 2u such that Tσ = ; then X ⊕ C computes a 1-enum of Ci ,
contradicting our hypothesis. So there must be a u such that Tσ 6= ; for each σ ∈ 2u.

Given a σ ∈ 2u, let ~Vσ ∈ Tσ. Define the (non-computable) predicate Q(E, E0, . . . , E2k−1) which
holds iff for each j < 2k and ~Vσ-transitive set F ′ ⊆ E j , Φ

(F∪F ′)⊕C
e (u) ↑ or Φ(F∪F ′)⊕C

e (u) 6= σ. For each
m ∈ ω, let S(m) be the set of all 2k-partitions E0 ∪ · · · ∪ E2k−1 of the m first elements E of X such
that Q(E, E0, . . . , E2k−1) holds. By definition of Tσ, S(m) is non-empty for each m ∈ ω. Moreover,
if Q(E, E0, . . . , E2k−1) holds then so does Q(E � s, E0 � s, . . . , E2k−1 � s). Therefore S is an infinite
finitely branching tree. Every infinite path in S is a 2k-partition Xσ0 ∪ · · · ∪ Xσ

2k−1
of X such that for

every j < 2k, and every ~Vσ-transitive set F ′ ⊆ Xσj , Φ(F∪F ′)⊕C
e (u) ↑ or Φ(F∪F ′)⊕C

e (u) 6= σ. By strong

1-enum avoidance of RT1
<∞ for ~C , there exists a j < 2k and an infinite set Xσ ⊆ X j such that Xσ⊕C

computes no 1-enum of ~C .
By repeating the process for eachσ ∈ 2u, we obtain an infinite set X̃ ⊆ X such that X̃⊕C computes

no 1-enum of ~C and for every (
⊕

σ∈2u ~Vσ)-transitive F ′ ⊆ X̃ , Φ(F∪F ′)⊕C
e (u) ↑ or Φ(F∪F ′)⊕C

e (u) ↓6∈ 2u.
((2u + 1)k, F, X̃ , ~U

⊕

σ∈2u ~Vσ) is the desired extension. �

LetF = {c0, c1, . . . } be a sufficiently generic filter containing (1,;,ω, T ), where cs = (ks, Fs, Xs, ~Us).
The filter F yields a unique set G =

⋃

s Fs. By definition of a forcing condition, the set G is a tran-
sitive subtournament of T . By Lemma 4.25, G is infinite and by Lemma 4.27, G ⊕ C computes no
1-enum of ~C . �

4.3.3. Negative strong cone avoidance of SADS. EM together with ADS leads to a second proof of
RT2

2 [5]. A function f : [ω]2→ 2 can be seen as a tournament, and every transitive subtournament
is a linear order. EM and ADS are both incomparable consequences of RT2

2 [28, 19].

Corollary 4.28 SADS does not admit strong cone avoidance.

Proof. As SRT2
2 does not admit strong cone avoidance, there exists a stable coloring of pairs f :

[ω]2 → ω, a set C and a non C-computable set A such that for every infinite set H homogeneous
for f , H ⊕ C computes A. By strong cone avoidance of EM, seeing f as a tournament T such that
T (a, b) holds iff f (a, b) = 1, there exists an infinite subtournament U such that U ⊕ C does not
compute A. Seeing U as an ordered set {a0 < a1 < . . . }, we can define a stable linear order L over
ω such that x <L y iff T (ax , ay) holds. For every infinite ascending or descending sequence S of L,
S ⊕ U computes an infinite set H homogeneous for f , hence S ⊕ U ⊕ C computes A. �

Wang gave a direct proof of Corollary 4.28 by constructing a stable linear order such that every
infinite ascending or descending sequence computes the halting set.

Direct proof of Corollary 4.28 by Wang. Let m : ω→ ω denote the modulus function of the halting
set, i.e. m(n) = µs(Ks�n = K�n). We can assume that m is strictly increasing. Define the ;′-
computable linear order L such that for each x <ω y , x <L y iff there is an n such x <ω m(n)≤ω y .

We claim that L is transitive and of order type ω. Suppose x <L y <L z.
− If x <ω y , then there is an n such that x <ω m(n) ≤ω y . If y <ω z then n witnesses

x <ω m(n)≤ω z so x <L z. If z <ω y then there is no n′ such that z <ω m(n′)≤ω y , hence
m(n)≤ω z. So x <ω m(n)≤ω z and x <L z.

− If x >ω y , then there is no n such that y <ω m(n) ≤ω x . If y <ω z then there is an n such
that y <ω m(n) ≤ω z, hence x <ω m(n) ≤ω z and so x <L z. If z <ω y then z <ω x and
there is no n′ such that z <ω m(n′)≤ω y hence there is no n such that z <ω m(n)≤ω x and
by definition x <L z.

As m is strictly increasing, for each x , there is an n such that m(n) >ω x , so for each y >ω m(n),
y >L x . Hence L is of order typeω. Let A= {a0 < a1 < . . . } be an ascending sequence. Its principal
function pA defined by pA(i) = ai majorizes m, hence computes the halting set. �

4.4. The rainbow Ramsey theorem for pairs

All the principles considered until now are consequences of RT2
2. However strong 1-enum avoid-

ance also holds for consequences of RTn
2 which are not consequences of RTn−1

2 for arbitrary n.
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Definition 4.29 (Rainbow Ramsey theorem) A function f : [ω]n→ω is k-bounded if
�

� f −1(c)
�

� ≤ k
for each c ∈ ω. Let f : [ω]n→ ω be a k-bounded coloring function. A set R is a rainbow for f if f
is injective on [R]n. RRTn

k is the statement “every k-bounded function f : [ω]n→ω has an infinite
rainbow for f ”. RRT is the statement (∀n)RRTn

2.

RRTn
2 is a strict consequence of RTn

2, i.e. RRTn
2 does not imply RTn

2 [43, 9]. Although RRTn
2

satisfies the same bounds as those proven by Jockush for RTn
2 in [22], RRTn

2 is combinatorially
weak. The author proved in [33] that RCA0 ` RRT3

2→ STS(2). Therefore RRT3
2 does not admit 2

c.b-enum avoidance and a fortiori does not admit 1-enum avoidance.

4.4.1. Strong 1-enum avoidance of RRT1
2. The rainbow Ramsey theorem for singletons is a principle

combinatorially equivalent to DNR, a basic statement of computability theory.

Definition 4.30 (Diagonally non-computable) A function f is diagonally non-computable (d.n.c.)
relative to a set X if (∀e) f (e) 6= ΦX

e (e). DNR is the statement “For every X , there exists a function
d.n.c. relative to X ”. DNR[;′] is the statement “For every X , there exists a function d.n.c. relative
to X ′”.

DNR is a very weak principle, proven to be a consequence of SRT2
2 [18], WWKL0 [1], SEM [33],

RWKL [13] and STS(2) [35] over RCA0. Hirschfeldt et al. constructed in [18] anω-model of COH
not model of DNR, Ambos & al. in [1] anω-model of DNR not model of WWKL0. Finally Bienvenu
& al. proved in [4] the existence of an ω-model of DNR model of neither RWKL nor AMT. We
start by proving strong 1-enum avoidance of RRT1

2. Strong 1-enum avoidance of DNR follows from
its strong computable reduction to RRT1

2.

Theorem 4.31 RRT1
2 admits strong 1-enum avoidance.

Definition 4.32 A 2-bounded ⊕k-function is a set ~f = f0 ⊕ · · · ⊕ fk−1 such that each fi is a coding of
a 2-bounded coloring over integers. One might think of an 2-bounded ⊕k-function as a conjunction
of 2-bounded functions. Thus notions over functions can be naturally extended to 2-bounded ⊕k-
functions: – e.g. A set F is a rainbow for a 2-bounded ⊕k-function ~f if it is an fi-rainbow for each
i < k –.

Proof of Theorem 4.31. Let C be a set computing no 1-enum of C for some class C ⊆ 2ω and f :
ω→ω be a 2-bounded coloring. Our forcing conditions are tuples (k, F, X , ~g) such that

(a) ~g is a normal 2-bounded ⊕k-function
(b) X is an infinite set such that F < X and X ⊕ C computes no 1-enum of C
(c) F is a finite ~g-rainbow.

A set G satisfies a condition (k, F, X , ~g) if it satisfies the Mathias condition (F, X ) and G if gi-free for
each i < k. Our initial condition is (1,;,ω, f ). A condition (m, F ′, X ′, ~g ′) extends another condition
(k, F, X , ~g) if (F ′, X ′) Mathias extends (F, X ), m≥ k and (∀i < k)gi = g ′i .

Lemma 4.33 For every condition (k, F, X , ~g) there exists an extension
(k, F̃ , X̃ , ~g) such that |H|> |F |.

Proof. Take x ∈ X r
⋃

i gi(F). F ∪ {x} is a ~g-rainbow, hence (k, F ∪ {x}, X r [0, x], ~g) is the desired
extension. �

Lemma 4.34 For every condition (k, F, X , ~g) and every e ∈ ω, there exists an extension (m, F̃ , X̃ ,~h)
forcing ΦG⊕C

e not to be a 1-enum of C , where G is the forcing variable.

Proof. Suppose there exists a σ ∈ 2<ω such that [σ]∩C = ; and a finite set F ′ ⊆ X such that F ∪ F ′

is gi-free for each i < k and Φ(F0∪F ′)⊕C
e (|σ|) ↓= σ. (k, F ∪ F ′, X r [0, max(F ′)], ~g) is a condition

forcing ΦG⊕C
e not to be a 1-enum of C .
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Suppose there is no such finite set F ′ ⊂ X . For each σ ∈ 2<ω, let Fσ denote the collection of
2-bounded ⊕k-functions ~h such that F is ~h-free and for each finite set F ′ ⊂ X such that F ∪ F ′ is
h j-free for each j < k, either Φ(F∪F ′)⊕C

e (|σ|) ↑ or Φ(F∪F ′)⊕C
e (|σ|) 6= σ. Note that Fσ are uniformly

Π
0,X⊕C
1 classes. Because above case does not hold, ~g ∈ Fσ for each σ such that C ∩ [σ] = ;. The

set {σ : Fσ = ;} is X ⊕ C-c.e. If for each u ∈ ω there exists a σ ∈ 2u such that Fσ = ; then X ⊕ C
computes a 1-enum ofC , contradicting our hypothesis. So there must be an u ∈ω such thatFσ 6= ;
for each σ ∈ 2u.

For each σ ∈ 2u, let ~hσ ∈ Fσ. ((2u + 1)k, F, X , ~g
⊕

σ∈2u ~hσ) is a condition forcing ΦG⊕C
e (u) ↑ or

ΦG⊕C
e (u) ↓6∈ 2u. �

LetF = {c0, c1, . . . } be a sufficiently generic filter containing (1,;,ω, f ), where cs = (ks, Fs, Xs, ~gs).
The filter F yields a unique set G =

⋃

s Fs. By Lemma 4.33, the set G is infinite. By definition of a
forcing condition, G is an f -rainbow, and by Lemma 4.34, G ⊕ C computes no 1-enum of C . �

Lemma 4.35 DNR≤sc RRT1
2[;
′]

Proof. Fix a set X and a canonical enumeration of all finite sets (Di : i ∈ ω). We construct a 2-
bounded coloring f : ω→ ω such that for every e ∈ ω, if ΦX

e (e) ↓ and DΦX
e (e)

has at least 2(e + 1)
elements, then either DΦX

e (e)
∩[0, e] 6= ; or it is not an f -rainbow. We first show how, given an infinite

f -rainbow H, we compute a function g d.n.c. relative to X . For every e ∈ω, g(e) = i where Di are
the first 2(e+1) elements of H greater than e. Suppose for the sake of absurd that g(e) = ΦX

e (e) for
some e. Then DΦX

e (e)
is not an f -rainbow and therefore DΦX

e (e)
6= Dg(e). Contradiction.

We now detail the construction of f by stages. At stage 0, dom( f0) = ;. Suppose that at stage s,
[0, s) ⊆ dom( fs) and |dom( fs)| ≤ 3s. If ΦX

s (s) ↓ and |DΦX
s (s)
| ≥ 2(s + 1) and has no element before

s, then by cardinality, there exists u, v ∈ DΦX
s (s)
r dom( fs). Set f (u) = f (v) and give a fresh color

to f (s) if s 6∈ dom( fs). Then go to stage s + 1. f =
⋃

s fs is the desired coloring. Note that f is
X ′-computable. �

Corollary 4.36 DNR admits strong 1-enum avoidance.

Proof. By Theorem 4.31, Lemma 4.35 and Lemma 2.15. �

4.4.2. Enum avoidance of RRT2
2. Miller proved [31] that RRT2

2 and DNR[;′] are computably equiv-
alent. By Corollary 4.36, DNR[;′] admits strong 1-enum avoidance, so a fortiori 1-enum avoidance,
and we deduce directly by Lemma 2.15 that RRT2

2 admits 1-enum avoidance. We provide another
proof of 1-enum avoidance of RRT2

2 without using the characterization by Miller.

Theorem 4.37 RRT2
2 admits 1-enum avoidance.

The proof of 1-enum avoidance of RRT2
2 follows a very standard technique in coloring principles:

we use avoidance of COH to reduce the problem of avoidance of a coloring of n-tuples into strong
avoidance of a coloring of (n + 1)-tuples. This is where the notion of strong avoidance begins to
have a direct practical application. Before proving Theorem 4.37, we need to focus on a canonical
class of coloring over tuples.

Definition 4.38 A coloring f : [ω]n+1 → ω is normal if f (σ, a) 6= f (τ, b) for each σ,τ ∈ [ω]n,
whenever a 6= b.

Wang proved in [41] that for every 2-bounded coloring f : [ω]n→ω, every f -random computes
an infinite set X on which f is normal. The author refined in [33] this result by proving that every
function d.n.c. relative to f computes such a set.

Lemma 4.39 Let f : [ω]2 → ω be a 2-bounded coloring. Every function d.n.c. relative to f com-
putes a set H such that f is normal on H.
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Proof. By [26], every function d.n.c. relative to f computes a function g such that if |W f
e | ≤ n

then g(e, n) 6∈ W f
e . Given a finite f -normal set F , there exists at most

�|F |
r

�

elements x such that
F ∪ {x} is not f -normal. We can define an infinite f -normal set H by stages. H0 = ;. Given a
finite f -normal set Hs of cardinal s, set Hs+1 = Hs ∪ {g(e,

�s
r

�

)} where e is a Turing index such that

W f
e = {x : Hs ∪ {x} is not f -normal}. �

Corollary 4.40 If RRTn
2 for normal colorings admits (strong) 1-enum avoidance for some countable

collection of sets C0,C1, . . . , then so does RRTn
2.

Proof. We prove it in the case of strong 1-enum avoidance for ~C . The non-strong case is similar. Fix
a set C computing no 1-enum of ~C . Let f : [ω]n → ω be a 2-bounded coloring. By Lemma 4.39,
every function d.n.c. relative to f computes a set H such that f is normal on H. By Corollary 4.36
and Lemma 3.4, DNR admits strong 1-enum avoidance for ~C , so we can assume that H⊕C computes
no 1-enum of ~C . By strong 1-enum avoidance of RRTn

2 for ~C and normal colorings, there exists an
infinite set G ⊆ H such that G ⊕H ⊕ C computes no 1-enum of ~C . �

The following lemma has been proven by Wang [41] for n = 2 in the context of PA avoidance.
The same proof holds for every notion of avoidance.

Lemma 4.41 If RRTn
2 admits strong C avoidance and COH admits C avoidance, then RRTn+1

2
admits C avoidance.

Proof. Fix a set C computing no member of C and f : [ω]n+1 → ω a 2-bounded coloring. By
Corollary 4.40, we can assume w.l.o.g. that f is normal. Consider the following sets:

Rσ,τ = {s : f (σ, s) = f (τ, s)}

By C -avoidance of COH applied to ~R, there exists an infinite ~R-cohesive set G such that G ⊕ C
computes no member of C . Define f̃ : [ω]n→ω as

f̃ (σ) = min({ρ <lex σ : lim
s∈G

f (σ, s) = f (τ, s)})

f̃ is 2-bounded, and by strong C avoidance of RRTn
2, there exists an infinite f̃ -rainbow H such that

H ⊕ G ⊕ C computes no member of C . H ⊕ G computes an infinite f -rainbow. �

Proof of Theorem 4.37. Immediate by Corollary 4.40, Lemma 4.41 and Theorem 4.31. �

5. THE WEAKNESS OF THE THIN SET AND FREE SET THEOREMS

Ramsey’s hierarchy is known to collapse at level 3 in reverse mathematics. Indeed, RTn
2 is equiv-

alent to ACA0 over RCA0 for every n ≥ 3 (see Simpson [40]). In this section, we study some
combinatorial consequences of Ramsey’s theorem which happen to be computationally weak, in
that the whole hierarchy is strictly below ACA0 (see Wang [43]).

5.1. The thin set theorem

The thin set theorem is a natural weakening of Ramsey’s theorem, in which we allow more than
one color in the solution. It turns out that allowing sufficiently many colors in the output changes
radically the computational power of the resulting principle, which does not even imply stable Ram-
sey’s theorem for pairs over RCA0 (see Patey [34]).

Definition 5.1 (Thin set theorem) Given a coloring f : [ω]n → k (resp. f : [ω]n → ω), an infinite
set H is f -thin if | f ([H]n)| ≤ k − 1 (resp. f ([H]n) 6= ω). For every n ≥ 1 and k ≥ 2, TSn

k is the
statement “Every coloring f : [ω]n→ k has an f -thin set” and TSn is the statement “Every coloring
f : [ω]n → ω has an f -thin set”. STSn

k is the restriction of TSn
k to stable colorings. TS is the

statement (∀n)TSn.

The thin set theorem for unbounded colorings has been introduced by Friedman [14, 16], together
with the free set theorem. Dorais, Dzhafarov, Hirst, Mileti and Shafer [10] proved that TSn+2

2n for
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n> 0 is equivalent to ACA0, hence does not admit strong c.b-enum avoidance. On the other hand,
Wang proved in [43] that TSn

d admits strong cone avoidance for sufficiently large d ’s. For every
d ≥ 2, TS2

d implies TS2 over RCA0 and therefore does not admit 1-enum avoidance. We now
develop a framework to prove that TSn

d admits strong c.b-enum avoidance for every n and sufficiently
large d ’s.

5.1.1. A framework of pseudo partitions. We need to extend the notion of k-partition of the integers
to colorings over arbitrary tuples. The forcing in Liu’s theorem involved Π0

1 classes of ordered k-
partitions of ω. Those partitions correspond to the sets which are simultaneously homogeneous for
a finite number of 2-colorings of the integers. For example, three functions g0, g1, g2 :ω→ 2 induce
the 6-partition

X g0
0 ∩ X g1

0 , X g0
0 ∩ X g2

0 , X g1
0 ∩ X g2

0 , X g0
1 ∩ X g1

1 , X g0
1 ∩ X g2

1 , X g1
1 ∩ X g2

1

where X g
i is the set of the integers x such that g(x) = i.

In our case, we are not manipulating colorings of integers but of tuples of integers. The sets
homogeneous for a function g : [ω]n→ k do not form a partition of the integers. This is why have
to make explicit the formulas expressing the homogeneity constraints.

Definition 5.2 (Coloring formula) Fix some d ≥ 1 and some finite set S.

1. A coloring d-atom over S is a pair (g, J) (written g[J]) where g is a function symbol and
J ⊂ S is a set of size d. A coloring d-formula over S is a (possibly empty) conjunction of
coloring d-atoms over S. We denote by ε the empty conjunction of coloring d-atoms.

2. A valuation of a set of coloring d-formulas over S with function symbols g0, . . . , gt−1 is a
function π with dom(π) ⊇ {g0, . . . , gt−1} and such that for every g ∈ dom(π), π(g) is a
finite set J ⊂ S of size d.

3. A valuation π satisfies a coloring d-formula ϕ = g0[J0] ∧ · · · ∧ gt−1[Jt−1] (written π |= ϕ)
if π(gi) = J j for each i < t.

4. A pseudo k-partition of coloring d-formulas is an ordered k-set of coloring d-formulas (ϕν :
ν < k) such that for every valuation π, π |= ϕν for some ν < k.

In particular, the singleton {ε} is trivially a pseudo 1-partition. Given a coloring formula ϕ =
g0[J0]∧ · · · ∧ gk[Jk], we write dom(ϕ) for the set {g0, . . . , gk}. The domain of a pseudo k-partition
is the union of the domain of its coloring d-formulas. We now prove some closure properties.

Lemma 5.3 For every pseudo k-partition of coloring d-formulas ~ϕ = (ϕν : ν < k) over a finite set S,
every µ < k and every function symbol g, the set ~ψ = (ϕν : ν 6= µ)∪ (ϕµ ∧ g[I] : I ⊆ S ∧ |I | = d) is

a pseudo (k+
�|S|

d

�

− 1)-partition of coloring d-formulas.

Proof. Fix some valuation π with dom(π) ⊇ dom( ~ϕ)∪ {g}. As (ϕν : ν < k) is a pseudo k-partition,
there exists a ν < k such that π |= ϕν. If µ 6= ν, then we are done since ϕν ∈ ~ψ. If µ = ν, then
π |= ϕµ ∧ g[π(g)] and we are also done since ϕµ ∧ g[π(g)] ∈ ~ψ. �

We now need to redefine a few notions introduced by Liu in [30]. In the following, a k-cover of
a set X is a k-tuple of sets X0, . . . , Xk−1 such that X0 ∪ · · · ∪ Xk−1 = X . We do not require the sets X i
to be pairwise disjoint.

Definition 5.4 Fix some integers k and q.

1. A k-supporter ~K of {1, . . . , q} is k-tuple (Kν : ν < k) where Kν = {Kν,i : i < qν} such that
each Kν,i is a subset of {1, . . . q} and for every ordered k-cover (Pν : ν < k) of {1, . . . , q},
there exists some Kν and some Kν,i ∈Kν such that Kν,i ⊆ Pν.

2. A sequence of q clopen sets V (1), . . . , V (q) is k-disperse if for every ordered k-cover (Pν : ν < k)
of {1, . . . , q}, there exists a ν < k such that

⋂

i∈Pν
V (i) = ;.
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3. Given q pseudo k-partitions of coloring d-formulas ~ϕ1 = (ϕ1
ν : ν < k), . . . , ~ϕq = (ϕq

ν : ν < k)
and a k-supporter ~K = (Kν : ν < k) of {1, . . . , q}, let

C ross( ~ϕ1, . . . , ~ϕq, ~K ) =

(

∧

i∈Kν, j

ϕi
ν : Kν, j ∈Kν,ν < k

)

Lemma 5.5 Let ~ϕ1 = (ϕ1
ν : ν < k), . . . , ~ϕq = (ϕq

ν : ν < k) be q pseudo k-partitions of coloring
d-formulas, let ~K = (Kν : ν < k) be a k-supporter of {1, . . . , q} and let K ′ =

∑

ν<k |Kν|. Then
C ross( ~ϕ1, . . . , ~ϕq, ~K ) is a pseudo K ′-partition of coloring d-formulas.

Proof. Fix a valuation π with dom(π) ⊇
⋃

i dom( ~ϕi). For every i ∈ (0, q], since (ϕi
ν : ν < k) is a

pseudo k-partition of coloring d-formulas, there is some νi < k such that π |= ϕi
νi

. This induces an
ordered k-partition (Pν : ν < k) of {1, . . . , q} where Pν = {i ∈ {1, . . . , q} : νi = ν}. By definition of
being a k-supporter of {1, . . . , q}, there exists someKν and someKν, j ∈Kν such thatKν, j ⊆ Pν. By
definition of Pν and of the cross operator,

∧

i∈Kν, j

ϕi
νi

is the same as
∧

i∈Kν, j

ϕi
ν which is in C ross( ~ϕ1, . . . , ~ϕq, ~K )

and π |=
∧

i∈Kν, j
ϕi
νi

. Hence π |=ψ for some ψ ∈ C ross( ~ϕ1, . . . , ~ϕq, ~K ). �

A particular way of constructing k-supporters consists of using a k-disperse sequence of clopen
sets.

Lemma 5.6 Let (eν : ν < k) be k natural numbers and let k′ =
∑

ν<k eν. If V (1), . . . , V (q) is a k′-
disperse sequence of clopen sets, then ~K = {Kν : ν < k} where

Kν = {K ⊆ {1, . . . , q} : {V (i)}i∈K is an eν-disperse sequence}

is a k-supporter of {1, . . . , q}.

Proof. Suppose for the sake of absurd that there exists a k-cover (Pν : ν < k) of {1, . . . , q} such that
for all ν < k, Pν 6∈ Kν, i.e., {V (i)}i∈Pν is not an eν-disperse sequence of clopen sets. Then for each
ν < k, there exists an eν-cover (Pν, j : j < eν) of Pν such that (∀ j < eν)(

⋂

i∈Pν, j
V (i) 6= ;). However

then (Pν, j : j < eν,ν < k) is a k′-cover of {1, . . . , q} that contradicts the assumption that V (1), . . . , V (q)

is a k′-disperse sequence of clopen sets. �

The following lemma is a pure application of the pigeonhole principle.

Lemma 5.7 Let ~ψ0 = (ϕ0
ν : ν < k), . . . , ~ψk = (ϕk

ν : ν < k) be k + 1 pseudo k-partitions of coloring

d-formulas. The set ~ψ = {ϕi
ν ∧ ϕ

j
ν : i < j ≤ k,ν < k} is a pseudo (k

�k+1
2

�

)-partition of coloring
d-formulas.

Proof. First, notice that ~ψ= C ross( ~ϕ0, . . . , ~ϕk, ~K ), where ~K = {Kν : ν < k} is defined by

Kν = {{i, j} : i < j ≤ k}

Thanks to Lemma 5.5, it suffices to prove that ~K is a k-supporter of {0, . . . , k}. Fix some k-cover
(Pν : ν < k) of {0, . . . , k}. For each i ≤ k, let νi < k be such that i ∈ Pνi

. By the pigeonhole principle,
there are some i < j ≤ k such that νi = ν j . Hence {i, j} ⊆ Pνi

. Since {i, j} ∈ Kνi
, we conclude. �

Given a set C ⊆ 2ω and some n ∈ω, define

Cn = {ρ ∈ 2n : [ρ]∩C 6= ;}

Lemma 5.8 . For every set D computing no c.b-enum of C and every Σ0,D
1 formula ϕ(V ) where V

is a clopen variable, one of the following must hold.

1. ϕ(Cn) holds for some n ∈ω.
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2. For every k ∈ ω, there exists a k-disperse sequence of clopen sets V (1), . . . , V (m) such that
for every i = 1, . . . , m, ϕ(V (i)) does not hold.

Proof. Define the following D-c.e. set.

E = {W ⊆ 2<ω : (∀ρ,σ ∈W )|ρ|= |σ| ∧ϕ(W )}

Suppose case 1 does not hold. In other words Cn 6∈ E for every n ∈ω. We prove that for every k ∈ω
and almost every n ∈ω, the following is a k-disperse:

Wn = {W ⊆ 2<ω : (∀ρ ∈W )|ρ|= n∧W 6∈ E}

Note that Wn is co-D-c.e. uniformly in n. Fix some k ∈ ω. Let Wn,t denote Wn at stage t. We have
Wn,t+1 ⊆Wn,t . Therefore if there exists a k-cover (Pν : ν < k) of Wn such that (∀ν < k)

⋂

W∈Pν
W 6=

;, then this cover can be found in a finite amount of time. Furthermore Cn ∈ Pν for some ν < k, so

(∀ρ ∈
⋂

W∈Pν

W )[ρ]∩C 6= ;

It follows that if there exists infinitely many n such that such a k-cover exists, we can D-computably
find infinitely of them and define the D-computable enumeration h which on input n returns (ρν :
ν < k) such that there exists some t, m ≥ n and a k-cover (Pν : ν < k) of Wm,t such that (∀ν <
k)
⋂

W∈Pν
W 6= ; and ρν is the leftmost string in

⋂

W∈Pν
W . This contradicts the fact that D computes

no c.b-enum of C . �

5.1.2. Strong PA avoidance of TS2
3. Before proving strong c.b-enum avoidance of TSn

d for every n
and sufficiently large d ’s, we prove strong PA avoidance of TS2

3 as a warm-up. It already contains
the core tools used for the general case. In this section, we shall consider only coloring 1-formulas
over {0,1, 2}. We therefore omit the parameters and simply say “coloring formula”.

Theorem 5.9 TS2
3 admits strong PA avoidance.

Proof. Fix a set C of non-PA degree and let f : [ω]2 → 3 be a coloring. By strong PA avoidance of
COH (Wang [41, Theorem 3.1]), there exists an infinite set X0 such that X0 ⊕ C is not of PA degree
and

(∀x)(∃i < 3)(∀∞s ∈ X0) f (x , s) = i

By strong PA avoidance of RT1
3 (Liu [29]) there exists an infinite set X1 ⊆ X0 and a color i f < 3

such that X1 ⊕ C is not of PA degree and

(∀x ∈ X1)(∀∞s ∈ X1) f (x , s) = i f

We will construct simultaneously three infinite sets G0, G1, G2 such that one of the Gi ⊕ C ’s is not
of PA degree, and for each i < n, f ([Gi]2) ⊆ {i, i f }. Thus the G’s are all f -thin. The requirements
to ensure that all the Gi ’s are infinite are

Qm : (∀i < 3)(∃w> m)(w ∈ Gi)

whereas the requirements to ensure that Gi ⊕ C is not of PA degree for some i < 3 are

Re0,e1,e2
: (∃i < 3)(ΦGi⊕C

ei
total→ (∃w)ΦGi⊕C

ei
(w) 6= Φw(w) ↓)

Before defining our notion of forcing, we need to provide some semantics to the notion of partition
of coloring formulas. The way we understand the notion of partition of coloring formulas strongly
depends on the notion of forcing we consider. In our case, the function symbols are interpreted by
functions of type [ω]2→ 3.

Definition 5.10 (Assignment) An assignment of a coloring formulaϕ is a function κ such that dom(κ) ⊇
dom(ϕ) and for every g ∈ dom(κ), κ(g) is a function of type [ω]2 → 3. Given a coloring formula
ϕ = g0[J0] ∧ · · · ∧ gt−1[Jt−1] over {0,1, 2} and an assignment κ, a set F ⊆ ω satisfies ϕ (written
(F,κ) |= ϕ) if κ(g j)([F]2) ∈ J j ∪ {i f } for each j < t.
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In other words, (F,κ) |= ϕ iff there is a valuation π |= ϕ such that κ(g j)([F]2) ⊆ π(g j)∪ {i f } for
each j < t. Note that this definition of satisfaction is parameterized by the color i f . Given an assign-
ment κ, we let κ+ be the assignment of domain dom(κ)t{ f } extending κ and such that κ+( f ) = f .
Here, we identify the function symbol f and the actual function f of type [ω]2→ 3. Now we have
defined the suitable interpretation of the notion of pseudo k-partition of coloring formula, we can
define our notion of forcing to build an infinite f -thin set for some coloring f : [ω]2→ 3.

Definition 5.11 (Single condition)

1. A single condition is a tuple (F0, F1, F2, X ,ϕ,κ) where (Fi , X ) is a Mathias condition, ϕ is a
coloring formula and κ is an assignment such that for each i < 3,

(∀x ∈ Fi)(∀t ∈ Fi ∪ X )({x , t},κ+) |= ϕ ∧ f [{i}]

2. A single condition d = ( ~H, Y,ψ,γ) extends c = (~F , X ,ϕ,κ) if for each i < 3, (Hi , Y ) extends
the Mathias condition (Fi , X ), κ ⊆ γ and there exists a coloring formula θ such that ψ =
ϕ ∧ θ .

3. An 3-tuple of sets ~G satisfies a single condition (~F , X ,ϕ,κ) if Gi satisfies the Mathias condi-
tion (Fi , X ) and (Gi ,κ

+) |= ϕ ∧ f [{i}] for each i < 3.

Definition 5.12 (Condition)

1. A condition is a tuple (k, ~F , X , D, ~ϕ,P ) where k > 0, ~F is a 3k-tuple of finite sets (Fνi : ν <
k, i < 3), D is not of PA degree, X ⊕ C ≤T D, ~ϕ = (ϕν : ν < k) is a pseudo k-partition of
coloring formulas,P is a non-emptyΠ0,D

1 class of assignments and for each κ ∈ P and each
ν < k, (Fν0 , Fν1 , Fν2 , X ,ϕν,κ) is a single condition.

2. A condition d = (m, ~H, Y, E, ~ψ,Q) extends c = (k, ~F , X , D, ~ϕ,P ) if D ≤T E and there is a
function f : m→ k with the following property: for each γ ∈ Q, there is some κ ∈ P such
that the single condition (Hν0 , Hν1 , Hν2 , Y,ψν,γ) extends (F f (ν)

0 , F f (ν)
1 , F f (ν)

2 , X ,ϕ f (ν),κ). In
this case, the function f witnesses the extension and part ν of d refines part f (ν) of c.

3. A 3-tuple of sets ~G satisfies some condition (k, ~F , X , D, ~ϕ,P ) on part ν if there is some κ ∈ P
such that ~G satisfies the single condition (Fν0 , Fν1 , Fν2 , X ,ϕν,κ). ~G satisfies d if it satisfies d
on some of its parts.

4. A condition (k, ~F , X , D, ~ϕ,P ) forces Qm on part ν if for every i < 3, there exists w> m such
that w ∈ Fνi .

5. A condition d forces Re0,e1,e2
on part ν if every 3-tuple of sets ~G satisfying d on part ν satisfies

Re0,e1,e2
.

6. Part ν of (k, ~F , X , D, ~ϕ,P ) is acceptable if there is an infinite set Y ⊆ X such that Y ⊕ D is
not of PA degree and there is some κ ∈ P such that

(∀x ∈ Y )(∀∞ t ∈ Y )({x , t},κ) |= ϕν

The three following lemma are sufficient to build the desired infinite f -thin set.

Lemma 5.13 Every condition has an acceptable part.

Lemma 5.14 For every condition c and every m, there is a condition d extending c such that d forces
Qm on each of its acceptable parts.

Lemma 5.15 For every condition c and every e0, e1, e2 ∈ω there exists an extension d forcing Re0,e1,e2

on each of its acceptable parts.

The construction of the sets G0, G1 and G2 given the three lemmas above is strictly the same as
in [17, Lagniappe]: We build an infinite, decreasing sequence of conditions c0 ≥ c1 ≥ . . . starting
with c0 = (1,;,;,;,ω, C , {ε},;) where ε is the empty conjunction, with the following properties
assuming that cs = (ks, ~Fs, Xs, Ds, ~ϕsPs):

1. Each condition cs has an acceptable part.
2. If part ν of cs is acceptable, then cs forces Re0,e1,e2

, where s = 〈e0, e1, e2〉.
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3. If part ν of cs is acceptable, then cs forces Qs on part ν.
If part ν of cs+1 is acceptable and refines part µ of cs, then so is part µ of cs. Hence the acceptable
parts of the sequence of conditions form an infinite, finitely branching tree. By König’s lemma, there
exists an infinite sequence ν0,ν1, . . . where part νs+1 of cs+1 refines part νs of condition cs. One
easily checks that Gi =

⋃

s Fνs
s,i is the desired set.

Proof of Lemma 5.13. Let c = (k, ~F , X , D, ~ϕ,P ) be a condition. As P is non-empty, there exists
an assignment κ ∈ P . Suppose that dom(κ) = {g0, . . . , gt−1}. Thanks to strong PA avoidance
of COH (Wang [41, Theorem 3.1]) and of RT1

3 (Liu [29]), define a finite decreasing sequence
X ⊇ Y0 ⊇ · · · ⊇ Yt−1 such that for each i < t

1. Yi ⊕ D is not of PA degree
2. there is some ci < 3 such that,

(∀x ∈ Yi)(∀∞s ∈ Yi)κ(gi)(x , s) = ci

Indeed, at step i, first apply strong PA avoidance of COH to the sequence of sets ~R defined by Rx ,c =
{s : κ(gi)(x , s) = c} to obtain a set Ỹi such that

(∀x ∈ Ỹi)(∃c < 3)(∀∞s ∈ Ỹi)κ(gi)(x , s) = ci

Then apply strong PA avoidance of RT1
3 to the function h̃ : Ỹi → 3 defined by h̃(x) = lims∈Ỹi

κ(gi)(x , s)
to obtain a color ci < 3 and the set Yi .

Let π be the valuation defined by π(gi) = {ci} for each i < t. Since ~ϕ = (ϕν : ν < k) is a pseudo
k-partition, there is some ν < k such that π |= ϕν. We claim that ν and Yt−1 satisfy the desired
properties. For each i < t, by definition of π,

(∀x ∈ Yt−1)(∀∞s ∈ Yt−1)κ(gi)(x , s) ∈ π(gi)

Therefore
(∀x ∈ Yt−1)(∀∞s ∈ Yt−1)(∀i < t)κ(gi)(x , s) ∈ π(gi)

Since ({x , s},κ) |= ϕ iff (∀i < t)κ(gi)(x , s) ∈ π(gi) for some valuation π |= ϕ,

(∀x ∈ Yt−1)(∀∞s ∈ Yt−1)({x , s},κ) |= ϕν
Therefore part ν of c is acceptable. �

Proof of Lemma 5.14. Fix some m≥ 0. It suffices to prove that given some condition c = (k, ~F , X , D,
~ϕ,P ), if part µ is acceptable, then there exists an extension d = (k, ~H, Y, Y ⊕ D, ~ϕ,Q) which forces
Qm on part µ and whose extension is witnessed by the identity map. By iterating the process at
most k times, we obtain an extension satisfying the statement of the lemma. Fix an acceptable part
µ. By definition of being acceptable, there is some κ ∈ P and an infinite subset Y0 ⊆ X such that
Y0 ⊕ D is not of PA degree and

(∀x ∈ Y0)(∀∞s ∈ Y0)({x , s},κ) |= ϕµ
Recall that given a set F , the statement (F,κ) |= g[I] is defined by (∀{x , y} ∈ [F]2)κ(g)(x , y) ∈
I ∪ {i f }. By the choice of our initial condition, ∀x ∈ Y0 and ∀∞s ∈ Y0, f (x , s) = i f , therefore for
every i < 3

(∀x ∈ Y0)(∀∞s ∈ Y0)({x , s},κ+) |= f [{i}]
By choosing some y ∈ Y0 ∩ (m,+∞) and removing finitely many elements from Y0, we obtain a set
Y ⊆ Y0 such that Y ⊕ D is not of PA degree and

(∀i < 3)(∀s ∈ Y )({y, s},κ+) |= ϕµ ∧ f [{i}]

By the fact that (Fµ0 , Fµ1 , Fµ2 , Y,ϕµ,κ) is a single condition,

(∀i < 3)(∀x ∈ Fi ∪ {y})(∀s ∈ Fi ∪ {y} ∪ Y0)({x , s},κ+) |= ϕµ ∧ f [{i}]

For each i < 3, let Hνi = Fνi if ν 6= µ and Fµi ∪ {y} otherwise. Let Q be the Π0,Y⊕D
1 class of

assignments κ ∈ P such that (∀i < 3)(∀s ∈ Y )({y, s},κ+) |= ϕµ∧ f [{i}]. The condition (k, ~H, Y, Y ⊕
D, ~ϕ,Q) is an extension forcing Qm on part µ. �
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It remains to prove Lemma 5.15. Given a condition c, and any e0, e1, e2 ∈ω, let Ue0,e1,e2
(c) be the

set of the acceptable parts ν such that c does not force Re0,e1,e2
on part ν. If Ue0,e1,e2

(c) = ;, we are
already done as condition c already forces Re0,e1,e2

of each of its acceptable parts. In order to prove
Lemma 5.15, it suffices to prove and iterate the following lemma.

Lemma 5.16 For every condition c and every e0, e1, e2 ∈ω such that Ue0,e1,e2
(c) 6= ;, there exists an

extension d of c such that
�

�Ue0,e1,e2
(d)
�

�<
�

�Ue0,e1,e2
(c)
�

�.

We need first to redefine a few notions introduced in [17, Lagniappe].

Definition 5.17
1. A valuation is a finite partial function of type ω → 2. A valuation α is correct if α(n) =
Φn(n) ↓ for all n ∈ dom(α). Two valuations α and β are incompatible if there is an n such
that α(n) 6= β(n).

2. Let c = (k, ~F , X , D, ~ϕ,P ) be a condition and α be a valuation. We say that part µ of c
disagrees with α if for every κ ∈ P and every function h : [ω]2 → 3, there is an i <
3, a w ∈ dom(α) and a finite set F ′ ⊂ X such that (F ′,κ) |= ϕµ, h([F ′]2) ⊆ {i, i f } and

Φ
(Fµi ∪F ′)⊕C
ei

(w) ↓6= α(w).

Note that the set E of all valuations α such that part µ of c disagrees with α is C-c.e. The following
lemma has exactly the same proof as Lemma L.33 in [17, Lagniappe].

Lemma 5.18 . For every condition c and e0, e1, e2 ∈ω, one of the following must hold.
1. There is a correct valuation α and a µ ∈ Ue0,e1,e2

(c) such that α disagrees with part µ of c.
2. There are infinitely many pairwise incompatible valuations α0,α1, . . . such that for every
µ ∈ Ue0,e1,e2

(c) and every i <ω, αi does not disagree with part µ of c.

We need one last definition before proving Lemma 5.16. The acceptation of a part ν of a condition
c = (k, ~F , X , D, ~ϕ,P ) intuitively means that we can find an infinite set Y ⊆ X such that (k, ~F , Y, Y ⊕
D, ~ϕ,P ) is a valid extension and there exists an assignment κ ∈ P such that

(∀x ∈ Y )(∀∞s ∈ Y )({x , s},κ) |= ϕν
The condition (k, ~F , Y, Y ⊕ D, ~ϕ,P ) has the same number of parts and its part ν can take Y as
a witness of being acceptable. This process can be iterated so that we obtain a condition d =
(k, ~F , Z , E, ~ϕ,P ) such that for every acceptable part ν of d, there exists an assignment κ ∈ P such
that Z is a witness of acceptation of part ν. Such a condition is said to witness its acceptable parts.
Every condition can be extended to a condition witnessing its acceptable parts. We are now ready
to prove Lemma 5.16.

Proof of Lemma 5.16. Fix an extension d = (k, ~F , Y, D, ~ϕ,P ) of c witnessing its acceptable parts.
The proof is done by a case analysis of Lemma 5.18 applied to d. In the first case, we will construct
an extension d ′ whose witnessing function is the identity function and forcing Re0,e1,e2

on an part
of d ′ refining a part in Ue0,e1,e2

(d). Therefore |Ue0,e1,e2
(d ′)| < |Ue0,e1,e2

(d)|. In the other case, we
will construct an extension d ′ forcing Re0,e1,e2

simultaneously on every part of d ′ refining any part
in Ue0,e1,e2

(d). In this case Ue0,e1,e2
(d ′) = ; and we are done.

Suppose that case 1 of Lemma 5.18 holds for d. Fix the correct valuation α and the accepting
part µ of d. By choice of d, there exists an assignment κ ∈ P such that

(∀x ∈ Y )(∀∞s ∈ Y )({x , s},κ) |= ϕµ
Take f as the function h is the definition of disagreeing with α. There exists a finite set F ′ ⊆ X ,

an i < 3 and a w ∈ ω such that (F ′,κ) |= ϕµ, f ([F ′]2) ⊆ {i, i f } and Φ
(Fµi ∪F ′)⊕C
ei

(w) ↓6= α(w). Set
Hνj = Fµi ∪ F ′ if µ = ν and i = j. Otherwise set Hνj = Fνj . By removing finitely many elements from
Y , we obtain a set Z ⊆ Y such that

(∀x ∈ Fµi ∪ F ′)(∀s ∈ Fµi ∪ F ′ ∪ Z)({x , s},κ+) |= ϕµ ∧ f [{i}]
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Let Q be the Π0,D
1 class of all the assignments κ ∈ P satisfying the above property. The condition

(k, ~H, Z , D, ~ϕ,Q) is a valid extension forcing Re0,e1,e2
on part µ.

Suppose now that case 2 of Lemma 5.18 holds for d. Let α0, . . . ,α3k be pairwise incompatible
valuations such that for all ` < 3k+1 and all ν ∈ Ue0,e1,e2

(d), part ν of d does not disagree with α`.
For each ` < 3k+ 1, let ~ϕ` = (ϕν ∧ gν[i] : ν < k, i < 3) be the set of coloring formulas obtained by
adding k new function symbols (gν : ν < k). By Lemma 5.3, ~ϕ` is a pseudo 3k-partition of coloring
formulas. LetQ` be the Π0,Y⊕D

1 class of all assignments κ such that dom(κ) ⊇ dom( ~ϕ)∪{gν : ν < k}
and such that for every w ∈ dom(α`), ν ∈ Ue0,e1,e2

(d), every i < 3, every finite set F ′ ⊂ Y such that
(F ′,κ) |= ϕν ∧ gν[{i}],

Φ
(Fνi ∪F ′)⊕C
ei

(w) ↑ or Φ
(Fνi ∪F ′)⊕C
ei

(w) = α`(w)

Q` is non-empty since for every ν ∈ Ue0,e1,e2
(d), part ν of d does not disagree with any of the α’s.

By renaming the constant symbols, we now suppose that the pseudo 3k-partitions dom( ~ϕ0), . . . , ~ϕ3k

have pairwise disjoint domains.
Let ~ψ = {ϕi

ν ∧ϕ
j
ν : i < j < 3k + 1,ν < 3k}. By Lemma 5.7, ~ψ is a pseudo (3k

�3k+1
2

�

)-partition
of coloring formulas. Let Q be the Π0,Y⊕D

1 class of all assignements κ such that κ = κ0 t · · · t
κ3k+1 for some κ` ∈ Q`. Let ~H be obtained from ~F by duplicating the sets 3

�3k+1
2

�

times. The

condition (3k
�3k+1

2

�

, ~H, Y, Y ⊕D, ~ψ,Q) is an extension forcing Re0,e1,e2
on each part refining any part

of Ue0,e1,e2
(d). �

This last lemma finishes the proof. �

5.1.3. Strong 1-enum avoidance of generalized cohesiveness. Before proving strong c.b-enum avoid-
ance of TSn

dn+1, we need to prove strong c.b-enum avoidance of a generalized notion of cohesiveness.

Cohesiveness can be seen as taking a coloring function over pairs f : [ω]2 → k, fixing the first pa-
rameter to obtain an infinite sequence of colorings of the integers fx : ω→ k for each x ∈ ω and
creating a set which will be eventually homogeneous for each coloring fx .

Going further in the reasoning, we can consider that cohesiveness is a degenerate case of taking
a coloring function over pairs f : [ω]2→ω, fixing the first parameter to obtain an infinite sequence
of colorings of integers fx : ω→ ω and creating a set such that for each color i, either eventually
the color will be avoided, by fx or fx will be eventually homogeneous with color i.

We can also generalize the notion to colorings over tuples f : [ω]n → ω, seeing them as an
infinite sequence of colorings over k-uples fσ : [ω]k→ω for each σ ∈ [ω]n−k. We will create a set
such that at most dk colors will appear arbitrarily far for each function fσ by applying TSk

dk+1 to fσ.

Theorem 5.19 Fix a coloring f : [ω]n→ω, some t ≤ n and a closed set C ⊆ωω for which TSs
ds+1

admits strong path avoidance for each s ∈ (0, t]. For every set C computing no member of C , there
exists an infinite set G such that G ⊕ C computes no member of C and for every σ ∈ [ω]<ω such
that n− t ≤ |σ|< n,

�

�

�

x : (∀b)(∃τ ∈ [G ∩ (b,+∞)]n−|σ|) f (σ,τ) = x
	�

�≤ dn−|σ|

Proof. Our forcing conditions are Mathias conditions (F, X ) where X ⊕C computes no member of C .
By Lemma 4.6, it suffices to prove the following lemma.

Lemma 5.20 For every condition (F, X ) and σ ∈ [ω]<ω such that n− t ≤ |σ| < n, for every finite
set I such that |I |= dn−|σ|, there exists an extension (F, X̃ ) such that

{ f (σ,τ) : τ ∈ [X̃ ]n−|σ|} ⊆ I or I 6⊆ { f (σ,τ) : τ ∈ [X̃ ]n−|σ|}

Proof. Define the function g : [X ]n−|σ| → I ∪ {⊥} by g(τ) = f (σ,τ) if f (σ,τ) ∈ I and g(τ) = ⊥
otherwise. Since n− |σ| ∈ (0, t], then by strong path avoidance of TSn−|σ|

dn−|σ|+1 for C , there exists an

infinite subset X̃ ⊆ X such that X̃⊕C computes no member ofC and
�

�{g(τ) : τ ∈ [X̃ ]n−|σ|}
�

�≤ dn−|σ|.
The condition (F, X̃ ) is the desired extension. �
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Let F = {c0, c1, . . . } be a sufficiently generic filter containing (;,ω), where cs = (Fs, Xs). The
filter F yields a unique infinite set G =

⋃

s Fs. By Lemma 4.6, G ⊕ C computes no member of C .
We claim that G satisfies our hypothesis. Fix a σ ∈ [ω]<ω such that n− t ≤ |σ|< n. Suppose there
exists dn−|σ| + 1 elements x0, . . . , xdn−|σ|

such that (∀b)(∃τ ∈ [G ∩ (b,+∞)]n−|σ|) f (σ,τ) = x i for
each i ≤ dn−|σ|. Let I = {x0, . . . , xdn−|σ|−1}. By Lemma 5.20, the set G satisfies some condition cs ∈ F
such that { f (σ,τ) : τ ∈ [Xs]n−|σ|} ⊆ I or I 6⊆ { f (σ,τ) : τ ∈ [Xs]n−|σ|}. In the first case it contradicts
the choice of xdn−|σ|

and in the second case it contradicts the choice of an element of I . �

When considering a function f : [ω]n → k and taking t = n− 1, we obtain a set similar to the
one constructed in section 3.1 in [43].

Theorem 5.21 Fix a coloring f : [ω]n→ k and a closed set C ⊆ωω for which TSs
ds+1 admits strong

path avoidance for each s ∈ (0, n). For every set C which does not compute a member of C , there
exists an infinite set G such that G⊕C computes no member of C and a sequence (Iσ : 0< |σ|< n)
such that for each ` ∈ (0, n) and each σ ∈ [ω]`

(a) Iσ is a subset of {0, . . . , k− 1} with at most dn−` elements
(b) (∃b)(∀τ ∈ [G ∩ (b,+∞)]n−`) f (σ,τ) ∈ Iσ

Proof. Let G be the set constructed by Theorem 5.19 for t = n− 1. For each σ ∈ [ω]<ω such that
0< |σ|< n, let

Iσ = {x < k : (∀b)(∃τ ∈ [G ∩ (b,+∞)]n−|σ|) f (σ,τ) = x

By choice of G, |Iσ| has at most dn−|σ| many elements. Moreover, for each y < k such that y 6∈ Iσ,
there exists a bound by such that (∀τ ∈ [G ∩ (by ,+∞)]n−|σ|) f (σ,τ) 6= y . So taking b = max(by :
y < k ∧ y 6∈ Iσ

(∀τ ∈ [G ∩ (b,+∞)]n−|σ|) f (σ,τ) ∈ Iσ

�

In the proof of strong PA avoidance of TS2
3, cohesiveness is always followed by an application of

RT1
<∞ in order to obtain an infinite subset on which the coloring f : [ω]2→ 3 eventually uses one

fixed color. This is also the case for proving strong c.b-enum avoidance of TSn
dn+1. Therefore we

need to prove the following theorem.

Theorem 5.22 Fix a coloring f : [ω]n→ k and a closed set C ⊆ωω for which TSs
ds+1 admits strong

path avoidance for each s ∈ (0, n). For every set C with does not compute a member of C , there
exists an infinite set G such that G ⊕ C computes no member of C and a finite set (Is : 0 < s < n)
such that for each s ∈ (0, n)

(a) Is is a finite set of at most ds sets of colors, and |I | ≤ dn−s for each I ∈ Is.
(b) (∀σ ∈ [G]s)(∃b)(∃I ∈ Is)(∀τ ∈ [G ∩ (b,+∞)]n−s) f (σ,τ) ∈ I

Proof. Let X be the infinite set and (Iσ : 0 < |σ| < n) be the infinite sequence constructed in Theo-
rem 5.21. For each s ∈ (0, n) and σ ∈ [G]s, let Fs(σ) = Iσ. Using strong path avoidance of TSs

ds+1
for C , we build a finite sequence X ⊇ X1 ⊇ · · · ⊇ Xn−1 such that for each s ∈ (0, n)

1. Xs ⊕ C computes no member of C
2. |Fs([Xs]s)| ≤ ds

Let G = Xn−1 and Is = Fs([G]s) for each s ∈ (0, n). We now check that property (b) is satisfied. Fix a
σ ∈ [G]s. Because G ⊆ X , (∃b)(∀τ ∈ [G ∩ (b,+∞)]n−s) f (σ,τ) ∈ Iσ. So Fs(σ) = Iσ, but σ ∈ [G]s,
hence Iσ ∈ Is. �

In particular, in our ongoing forcing, we will use the following corollary.

Corollary 5.23 Fix a coloring f : [ω]n→ k and some setC ⊆ 2ω for which TSs
ds+1 admits strong c.b-

enum avoidance for each s ∈ (0, n). For every set C which does not compute a c.b-enum of C , there
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exists an infinite set G such that G⊕C computes no c.b-enum of C and a finite set I ⊆ {0, . . . , k−1}
such that

|I | ≤
∑

0<s<n

dsdn−s

and for each s ∈ (0, n)

(∀σ ∈ [G]s)(∃b)(∀τ ∈ [G ∩ (b,+∞)]n−s) f (σ,τ) ∈ I

Proof. Apply Theorem 5.22 taking I =
⋃

I and Lemma 3.20 using strong c.b-enum avoidance of
TSs

ds+1 for C . �

5.1.4. Strong c.b-enum avoidance of TS. The thin set theorem is, together with the Ramsey-type
weak König’s lemma, the only statement studied in the paper whose strong c.b-enum avoidance is
not proved using a relative simultaneous 1-enum avoidance. It is unknown whether such a relative
proof exists.

Theorem 5.24 TSn
d admits strong c.b-enum avoidance for every n≥ 1 and sufficiently large d ’s.

Corollary 5.25 TS admits strong c.b-enum avoidance.

Proof. Wang proved in [43] that TS ≤sc (∀n)(∃dn)TSn
dn+1. Apply Lemma 2.15 and Theorem 5.24.

�

The proof of Theorem 5.24 is done by induction over n≥ 1, assuming that TSs
ds+1 admits strong

c.b-enum avoidance for every s < n. Define dn inductively as follows:

d1 = 1 dn = 2
∑

0<s<n

dsdn−s for n> 1

The case of n= 1 is nothing but Liu’s theorem since TS1
d1+1 is RT1

2.

Proof of Theorem 5.24. Fix a set C computing no c.b-enum of C for some set C ⊆ 2ω and let f :
[ω]n → dn + 1 be a coloring. Let d =

∑

0<s<n dsdn−s. By Corollary 5.23, there exists a finite set I f
of cardinality d and an infinite set X0 such that X0 ⊕ C computes no c.b-enum of C and for every
s ∈ (0, n),

(∀σ ∈ [G]s)(∃b)(∀τ ∈ [G ∩ (b,+∞)]n−s) f (σ,τ) ∈ I f

Let p =
�dn+1

d

�

and let I0, . . . , Ip−1 be the sequence of all finite d-subsets of {0, . . . , dn}. We will
construct simultaneously p sets G0, . . . , Gp−1 such that Gi ⊕ C computes no c.b-enum of C for some
i < p. We furthermore ensure that for each i < p,

f ([Gi]
n) ⊆ Ii ∪ I f

therefore Gi will be f -thin, as |Ii∪ I f | ≤ 2d = dn. The requirements to ensure that all Gi ’s are infinite
are

Qs : (∀i < p)(∃w> s)(w ∈ Gi)
The requirements to ensure that Gi ⊕ C computes no c.b-enum of C for some i < p are

Re0,...,ep−1
: Re0

∨ · · · ∨ Rep−1

where
Rei

: (ΦGi⊕C
ei

total→ (∃w)|ΦGi⊕C
ei
(w) 6= Φw(w)|> ei ∨ [ΦGi⊕C

ei
(w)]∩C = ;

Once again, we shall define some suitable semantics to the notion of coloring formula, as we did
for the thin set theorem for pairs. We shall only consider coloring d-formulas over {0, . . . , dn}. In
the following, we will omit the parameters d and {0, . . . , dn}.

Definition 5.26 (Assignment) An assignment of a coloring formulaϕ is a function κ such that dom(κ) ⊇
dom(ϕ) and for every g ∈ dom(κ), κ(g) is a function of type [ω]n → dn + 1. Given a coloring for-
mula ϕ = g0[J0]∧· · ·∧ gt−1[Jt−1] and an assignment κ, a set F ⊆ω satisfies ϕ (written (F,κ) |= ϕ)
if κ(g j)([F]n) ⊆ J j ∪ I f for each j < t.
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In other words, (F,κ) |= ϕ iff there is a valuation π |= ϕ such that κ(g j)([F]n) ⊆ π(g j) ∪ I f for
each j < t. Again, given an assignment κ, we let κ+ be the assignment of domain dom(κ) t { f }
extending κ and such that κ+( f ) = f .

Definition 5.27 Given a Turing functional Φe, a finite set F , a clopen V , a coloring formula ϕ, and
assignment κ and a set X , we say that ΦF⊕C

e abandons V on ϕ, κ and X if there is a w ∈ ω and a
finite set F ′ ⊂ X such that (F ′,κ) |= ϕ and

|Φ(F∪F ′)⊕C
e (w)|> e ∨ [Φ(F∪F ′)⊕C

e (w)]∩ V = ;

The following lemma tells us that computing an e-enum and not abandoning an e-disperse se-
quence of clopen sets is incompatible.

Lemma 5.28 Let V (1), . . . , V (q) be an e-disperse sequence of clopen sets. Suppose ΦF⊕C
e does not

abandon V ( j) on ϕ, κ and X for every j = 1, . . . , q. Then for every set G satisfying the Mathias
condition (F, X ) such that (G,κ) |= ϕ, ΦG⊕C

e is not total or is not an e-enum.

Proof. Fix such a set G and a j ∈ {1, . . . , q}. Because ΦF⊕C
e does not abandon V ( j) on ϕ, κ and X , for

every w ∈ω such that ΦG⊕C
e (w) ↓, the following holds

|ΦG⊕C
e (w)| ≤ e ∧ [ΦG⊕C

e (w)]∩ V ( j) 6= ;

By convention, if ρ ∈ ΦG⊕C
e (w) then |ρ|= w. Taking w large enough, we have for every j ∈ {1, . . . , q}

and every ρ ∈ ΦG⊕C
e (w)

[ρ]∩ V ( j) 6= ; → [ρ] ⊆ V ( j)

For i < e, let ρi be the ith string in ΦG⊕C
e (w). The string ρi induces an e-cover (Pi : i < e) of the

clopen sets defined by
Pi = {V ( j) : [ρi] ⊆ V ( j)}

But then for each i < e, [ρi] ⊆
⋂

j∈Pi
V ( j) 6= ; contradicting the assumption that V (1), . . . , V (q) is

e-disperse. �

We are now ready to define the actual notion of forcing and prove that every sufficiently generic
filter yields the desired p-tuple of sets.

Definition 5.29 (Single condition)

1. A single condition is a tuple (F0, . . . , Fp−1, X ,ϕ,κ) where (Fi , X ) is a Mathias condition, ϕ is
a coloring formula and κ is an assignment such that for each i < p and each s ∈ (0, n),

(∀σ ∈ [Fi]
s)(∀τ ∈ [Fi ∪ X ]n−s)(στ,κ+) |= ϕ ∧ f [Ii]

2. A single condition d = ( ~H, Y,ψ,γ) extends c = (~F , X ,ϕ,κ) if for each i < p, (Hi , Y ) extends
the Mathias condition (Fi , X ), κ ⊆ γ and there exists a coloring formula θ such that ψ =
ϕ ∧ θ .

3. A p-tuple of sets ~G satisfies a single condition (~F , X ,ϕ,κ) if Gi satisfies the Mathias condition
(Fi , X ) and (Gi ,κ

+) |= ϕ ∧ f [Ii] for each i < p.

Definition 5.30 (Condition)

1. A condition is a tuple (k, ~F , X , D, ~ϕ,P ) where k > 0, ~F is a kp-tuple of finite sets (Fνi :
ν < k, i < p), D computes no c.b-enum of C , X ⊕ C ≤T D, ~ϕ = (ϕν : ν < k) is a pseudo
k-partition of coloring formulas, P is a non-empty Π0,D

1 class of assignments and for each
κ ∈ P , each ν < k, (Fν0 , . . . , Fνp−1, X ,ϕν,κ) is a single condition.

2. A condition d = (m, ~H, Y, E, ~ψ,Q) extends c = (k, ~F , X , D, ~ϕ,P ) if D ≤T E and there is a
function f : m → k with the following property: for each γ ∈ Q, there is some κ ∈ P
such that the single condition (Hν0 , . . . , Hνp−1, Y,ψν,γ) extends (F f (ν)

0 , . . . , F f (ν)
p−1 , X ,ϕ f (ν),κ).

In this case, the function f witnesses the extension and part s of d refines part f (s) of c.
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3. A p-tuple of sets ~G satisfies some condition (k, ~F , X , D, ~ϕ,P ) on part ν if there is some κ ∈ P
such that ~G satisfies the single condition (Fν0 , . . . , Fνp−1, X ,ϕν,κ). ~G satisfies d if it satisfies
d on some of its parts.

4. A condition (k, ~F , X , D, ~ϕ,P ) forces Qu on part ν if for every i < p, there exists w > u such
that w ∈ Fνi .

5. A condition d forces Re0,...,ep−1
on part ν if every tuple of sets ~G satisfying d on part ν satisfies

Re0,...,ep−1
.

6. Part ν of (k, ~F , X , D, ~ϕ,P ) is acceptable if there is an infinite set Y ⊆ X such that Y ⊕ D
computes no c.b-enum of C and there is a κ ∈ P such that for each s ∈ (0, n),

(∀σ ∈ [Y ]s)(∃b)(∀τ ∈ [Y ∩ (b,+∞)]n−s)(στ,κ) |= ϕν

Lemma 5.31 Every condition has an acceptable part.

Lemma 5.32 For every condition c and every u ∈ω, there is a condition d extending c such that d
forces Qu on each of its acceptable parts.

Lemma 5.33 For every condition c and every e0, . . . , ep−1 ∈ ω there exists an extension d forcing
Re0,...,ep−1

on each of its acceptable parts.

The construction of G0, . . . , Gp−1 given the three lemmas above is strictly the same as in [17,
Lagniappe]: We build an infinite, decreasing sequence of conditions c0 ≥ c1 ≥ . . . starting with c0 =
(1,;, . . . ,;,ω, C , {ε},;) where ε is the empty conjunction, with the following properties assuming
that cs = (ks, ~Fs, Xs, Ds, ~ϕs,Ps):

1. Each cs has an acceptable part.
2. If part ν of cs is acceptable, then cs forces Re0,...,ep−1

if s =



e0, . . . , ep−1

�

.
3. If part ν of cs is acceptable, then cs forces Qs on part ν.

If part ν of cs+1 is acceptable and refines part µ of cs, then part µ of cs is also acceptable. Hence the
acceptable parts of the conditions form an infinite finitely branching tree. By König’s lemma, there
exists an infinite sequence ν0,ν1, . . . where part νs+1 of cs+1 refines part νs of condition cs. One
easily checks that Gi =

⋃

s Fνs
s,i is the desired set,.

Proof of Lemma 5.31. Let c = (k, ~F , X , D, ~ϕ,P ) be a condition. As P is non-empty, there exists an
assignment κ ∈ P . Thanks to Corollary 5.23, define a finite decreasing sequence X ⊇ Y0 ⊇ · · · ⊇ Yt−1
such that for each i < t

1. Yi ⊕ D computes no c.b-enum of C
2. there is a set Ji of size d such that for each s ∈ (0, n),

(∀σ ∈ [Yi]
s)(∃b)(∀τ ∈ [Yi ∩ (b,+∞)]n−s)κ(gi)(σ,τ) ∈ Ji

Let π be the valuation defined by π(gi) = Ji for each i < t. Since ~ϕ = (ϕν : ν < k) is a pseudo
k-partition, there is some ν < k such that π |= ϕν. We claim that ν and Yt−1 satisfy the desired
properties. For each s ∈ (0, n) and i < t, by definition of π,

(∀σ ∈ [Yt−1]
s)(∃b)(∀τ ∈ [Yt−1 ∩ (b,+∞)]n−s)κ(gi)(σ,τ) ∈ π(gi)

Therefore, for each s ∈ (0, n),

(∀σ ∈ [Yt−1]
s)(∃b)(∀τ ∈ [Yt−1 ∩ (b,+∞)]n−s)(∀i < t)κ(gi)(σ,τ) ∈ π(gi)

Since (στ,κ) |= ϕ iff (∀i < t)κ(gi)(σ,τ) ∈ π(gi) for some valuation π |= ϕ,

(∀σ ∈ [Yt−1]
s)(∃b)(∀τ ∈ [Yt−1 ∩ (b,+∞)]n−s)(στ,κ) |= ϕν

Therefore part ν of c is acceptable. �

Proof of Lemma 5.32. Fix some u ∈ω. It suffices to prove that given a condition c = (k, ~F , X , D, ~ϕ,P ),
if part µ is acceptable, then there exists an extension d = (k, ~H, Y, Y ⊕ D, ~ϕ,Q) which forces Qu on
part µ and whose extension is witnessed by the identity map. By iterating the process, we obtain an
extension satisfying the statement of the lemma.
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Fix an acceptable part µ. By definition, there exists an assignment κ ∈ P and an infinite subset
Y0 ⊆ X such that Y0 ⊕ D computes no c.b-enum of C and for each s ∈ (0, n),

(∀σ ∈ [Y0]
s)(∃b)(∀τ ∈ [Y0 ∩ (b,+∞)]n−s)(στ,κ) |= ϕµ

By the choice of our initial condition and since the statement (F,κ) |= g[J] is defined by κ(g)([F]n) ⊆
J ∪ I f , for every i < p and each s ∈ (0, n),

(∀σ ∈ [Y0]
s)(∃b)(∀τ ∈ [Y0 ∩ (b,+∞)]n−s)(στ,κ+) |= f [Ii]

By the fact that (Fµ0 , . . . , Fµp−1, Y0,ϕµ) is a single condition, for each s ∈ (0, n),

(∀i < p)(∀σ ∈ [Fi]
s)(∀τ ∈ [Fi ∪ Y0]

n−s)(στ,κ+) |= ϕµ ∧ f [Ii]

therefore by taking y ∈ Y0∩ (u,+∞) and removing finitely many elements from Y0, we obtain a set
Y such that for each s ∈ (0, n),

(∀i < p)(∀σ ∈ [Fi ∪ {y}]s)(∀τ ∈ [Fi ∪ Y ]n−s)(στ,κ+) |= ϕµ ∧ f [Ii]

For each i < p, let Hνi = Fνi if ν 6= µ and Fµi ∪ {y} otherwise. Let Q be the Π0,Y⊕D
1 collection of all

the assignments κ ∈ P such that the above formula holds. The condition (k, ~H, Y, Y ⊕ D, ~ϕ,Q) is
an extension forcing Qu on part µ. �

It remains to prove Lemma 5.33. Given a condition c, and any e0, . . . , ep−1 ∈ ω, let Ue0,...,ep−1
(c)

be the set of all acceptable parts ν such that c does not force Re0,...,ep−1
on part ν. If Ue0,...,ep−1

(c) = ;,
we are already done as condition c already forces Re0,...,ep−1

of each of its acceptable parts. In order
to prove Lemma 5.33, it suffices to prove and iterate the following lemma.

Lemma 5.34 For every condition c and every e0, . . . , ep−1 ∈ω such that Ue0,...,ep−1
(c) 6= ;, there exists

an extension d such that
�

�

�Ue0,...,ep−1
(d)
�

�

�<
�

�

�Ue0,...,ep−1
(c)
�

�

�.

The proof of Lemma 5.34 is divided into three main lemmas: Lemma 5.8 asserts that only two
cases can happen: a case where we can find a piece of oracle in a part of Ue0,...,ep−1

(d), forcing
the Turing functional we consider to halt on a “wrong” input, i.e., on a clopen set which does not
intersect C . In the other case, it states the existence of many clopen sets which are intersected by
the Turing functional whenever it halts. The second lemma states the existence of a finite extension
forcing the Turing functional to halt on a wrong input on a part of Ue0,...,ep−1

(d) when the first case of
the previous lemma holds. The third lemma states the existence of an extension forcing the Turing
functionals to diverge or not to be an ei-enum on each of the parts of Ue0,...,ep−1

(d) when the second
case of the first lemma holds. Before stating and proving the three lemmas, we need to extend the
abandoning terminology to a condition.

Definition 5.35 Let c = (k, ~F , X , D, ~ψ,P ) be a condition and V be a clopen set.
1. We say that part µ of c abandons V on some assignment κ if for every function h : [ω]n→

dn + 1, there is an i < p, such that Φ
Fµi ⊕C
ei

abandons V on ϕµ ∧ g[Ii], κ+ {g 7→ h} and X .
2. We say that part µ of c abandons V if for every assignment κ ∈ P , part µ of c abandons V

on κ. The condition c abandons V if it abandons V on some part µ ∈ Ue0,...,ep−1
(c).

Given a condition c = (k, ~F , X , D, ~κ,P ), k new function symbols (gν : ν < k) and a clopen set
V , let ~ϕV = {ϕν ∧ gν[Ii] : i < p,ν < k}. By Lemma 5.3, ~ϕV is a pseudo pk-partition of coloring
formulas. Moreover, define the following Π0,D

1 class of assignments for ~ϕV :

PV = {κ+ {gν 7→ hν : ν < k} : κ ∈ P ∧ (∀ν ∈ Ue0,...,ep−1
(c))(∀i < p)

Φ
Fi⊕C
ei

does not abandon V on ϕν ∧ gν[Ii],κ+ {gν 7→ hν} and X }

Notice that c abandons V iff PV = ;, hence the set E of all clopens V such that (k, ~F , X , D, ~ϕ,P )
abandons V is X ⊕ C-c.e. as it can be written {V : PV = ;}. We are now about to prove the second
lemma, but need one last definition. The acceptation of a part ν of a condition c = (k, ~F , X , D, ~ϕ,P )



40 LUDOVIC PATEY

intuitively means that we can find an infinite set Y ⊆ X such that (k, ~F , Y, Y ⊕ D, ~ϕ,P ) is a valid
extension and there exists an assignment κ ∈ P such that for each s ∈ (0, n),

(∀σ ∈ [Y ]s)(∃b)(∀τ ∈ [Y ∩ (b,+∞)]n−s)(στ,κ) |= ϕν

The condition (k, ~F , Y, Y ⊕ D, ~ϕ,P ) has the same number of parts and its part ν can take Y as
a witness of being acceptable. This process can be iterated so that we obtain a condition d =
(k, ~F , Z , E, ~ϕ,P ) such that for every acceptable part ν of d, there exists an assignment κ ∈ P such
that Z is a witness of acceptation of part ν. Such a condition is said to witness its acceptable parts.
Every condition can be extended to a condition witnessing its acceptable parts. Recall that for each
n ∈ω,

Cn = {ρ ∈ 2n : [ρ]∩C 6= ;}

Lemma 5.36 Let c = (k, ~F , X , D, ~ϕ,P ) be a condition witnessing its acceptable parts, and let µ ∈
Ue0,...,ep−1

(c) such that part µ of c abandons Cn for some n ∈ ω. There exists an extension d with
the same parts as c, such that for every p-tuple of sets G0, . . . , Gp−1 satisfying d on part µ and every

i < p, ΦGi⊕C
ei

is not an ei-enum of C .

Proof. By definition of witnessing its acceptable parts, there exists an assignment κ ∈ P such that
for each s ∈ (0, n),

(∀σ ∈ [X ]s)(∃b)(∀τ ∈ [X ∩ (b,+∞)]n−s)(στ,κ) |= ϕµ

As part µ of c abandons Cn, then for every function h : [ω]n → dn + 1, there is an i < p, such that

Φ
Fµi ⊕C
ei

abandons Cn on ϕµ∧ g[Ii], κ+{g 7→ h} and X . In particular, for h= f , there is an i < p such

that Φ
Fµi ⊕C
ei

abandons Cn on ϕµ∧ f [Ii], κ+ and X . Unfolding the definition, there exists a w ∈ω and
finite set F ′ ⊆ X , such that (F ′,κ+) |= ϕµ ∧ f [Ii] and

|Φ(F
µ
i ∪F ′)⊕C

ei
(w)|> ei ∨ [Φ

(Fµi ∪F ′)⊕C
ei

(w)]∩ Cn(⊇ C ) = ;

Set Hνj = Fµi ∪ F ′ if µ = ν and i = j. Otherwise set Hνj = Fνj . By removing finitely many elements
from X , we obtain a set Y ⊆ X such that for each s ∈ (0, n),

(∀σ ∈ [Fµi ∪ F ′]s)(∀τ ∈ [Fµi ∪ F ′ ∪ Y ]n−s)στ |= ϕµ ∧ f [Ii]

Let Q be the Π0,D
1 class of all the assignments κ ∈ P satisfying the above property. The condition

(k, ~H, Y, D, ~ϕ,P ) is a valid extension forcing Re0,...,ep−1
on part µ. �

We now prove the third lemma stating the existence of an extension forcing ΦGi⊕C
ei

to diverge or
not to be a ei-enum on each of the parts refining a part in Ue0,...,ep−1

(c).

Lemma 5.37 Let V (1), . . . , V (q) be an e-disperse sequence of clopen sets for e = k
∑

i<p ei and let

c = (k, ~F , X , D, ~ϕ,P ) be a condition which does not abandon V ( j) for every j = 1, . . . , q. There
exists an extension d such that for every p-tuple of sets G0, . . . , Gp−1 satisfying d and every i < p,

Φ
Gi⊕C
ei

is either partial or is not an ei-enum of C .

Proof. By the hypothesis that c does not abandon V ( j) for every j ∈ {1, . . . , q}, the Π0,D
1 class PV ( j)

is non-empty. Let ~K be the e-supporter of {1, . . . , q} constructed in Lemma 5.6 and let K ′ =
∑

Ki∈K |Ki|. By renaming the function symbols, we can suppose that ~ϕV (1) , . . . , ~ϕV (q) have a pairwise

disjoint domain. By Lemma 5.5, ~ψ= C ross( ~ϕV (1) , . . . , ~ϕV (q) , ~K ) is a pseudo K ′-partition of coloring
formulas. LetQ be the Π0,D

1 class of all assignments κ such that κ= κ1t· · ·tκq for some κ j ∈ PV ( j) .
For each µ < K ′, let Hµ = Fν if part µ refines part ν of c. Then the condition d = (K ′, ~H, X , D, ~ψ,Q)
is a valid extension of c. We claim that d forces ΦGi⊕C

ei
to be either partial or not to be an ei-enum of

C for each p-tuple of sets ~G satisfying d.
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Fix such a p-tuple of sets G0, . . . , Gp−1 satisfying c on some part µ < K ′ of d. If part µ of d refines

a part of c which is not in Ue0,...,ep−1
(c) then by definition part µ of d already forces ΦGi⊕C

ei
not to be

an ei-enum of C . So suppose that part µ of d refines a part ν of c such that ν ∈ Ue0,...,ep−1
(c).

By definition of satisfaction and the definition of the cross operator, there exists a K ∈Kν and for
each j ∈ {1, . . . , q} an assignment κ j ∈ PV ( j) such that ~G satisfies the single condition

(Fν0 , . . . , Fνp−1, X ,
∧

j∈K

ϕ j
ν ∧ g j

ν[Ii j
],κ j)

In particular, Gi satisfies the Mathias condition (Fνi , X ) and

(Gi ,κ
j) |=

∧

j∈K

ϕ j
ν ∧ g j

ν[Ii j
]

Fix some i < p. By construction of ~K , {V ( j) : j ∈ K} is an ei-disperse sequence of clopen sets. By

definition of PV ( j) , Φ
Fνi ⊕C
ei

does not abandon V ( j) on ϕ j
ν ∧ g j

ν[Ii j
], κ j and X . So in particular Φ

Fνi ⊕C
ei

does not abandon V ( j) on
∧

j∈K ϕ
j
ν ∧ g j

ν[Ii j
], κ1 t · · · tκq and X . Applying Lemma 5.28, we deduce

that Gi is not total or does not compute an ei-enum. �

Proof of Lemma 5.34. Fix a condition c = (k, ~F , X , D, ~ϕ,P ). We can furthermore assume without
loss of generality that c witnesses its acceptable parts. If Ue0,...,ep−1

(c) = ;, we are done. So suppose

Ue0,...,ep−1
(c) 6= ;. By Lemma 5.8 applied to the Σ0,D

1 formula “c abandons V ”, we have two cases:

1. There exists an n ∈ω and a part µ ∈ Ue0,...,ep−1
(c) such that part µ of c abandons Cn. In this

case, by Lemma 5.36 there exists an extension d having the same parts as c, and such that
for every p-tuple of sets G0, . . . , Gp−1 satisfying d on part µ and every i < p, ΦGi⊕C

ei
is not an

ei-enum of C . Therefore, Ue0,...,ep−1
(d) = Ue0,...,ep−1

(c)r {µ} and we are done.

2. For e = k
∑

i<p ei , there exists an e-disperse sequence of clopen sets V (1), . . . , V (m) such that

for every i = 1, . . . , m, c does not abandon V (i). By Lemma 5.37, there exists an extension d
such that for every p-tuple of sets G0, . . . , Gp−1 satisfying d and every i < p, ΦGi⊕C

ei
is either

partial or is not an ei-enum of C . In this case we have Ue0,...,ep−1
(d) = ;.

�

This last lemma finishes the proof. �

5.1.5. Π0
1 classes of coloring of tuples. As well as there exists a ;′-computable coloring of pairs f :

[ω]2→ 2 such that every infinite set homogeneous for f computes the halting set, one may wonder
whether there exists a Π0

1 class of colorings of pairs P such that for every f ∈ P , every infinite
f -homogeneous set is of PA degree.

Definition 5.38 For every principle P, Π0
1(P) is the statement “For every Π0

1 class P of instances of
P, there exists a solution to one of the instances of P .”

In particular, Π0
1(RT1

2) is RWKL.

Theorem 5.39 Suppose that TSs
ds+1 admits strong c.b-enum avoidance for each s < n. ThenΠ0

1(TSn
d+1)

admits c.b-enum avoidance with
d =

∑

0<s<n

dsdn−s

Proof. The proof is almost exactly the same as the one of Theorem 5.24. The main difference comes
from the satisfaction of a coloring formula. The set of colors I f does not any more exist, so given an
assignment κ, a set F satisfies a coloring formula ϕ = g0[J0]∧ · · · ∧ gt−1[Jt−1] (written (F,κ) |= ϕ)
if g j([F]n) ⊆ J j for each j < t. Therefore g j([F]n) will use at most |J j| ≤ d colors and not |J j ∪ I f | ≤
2d colors. Given a Π0,C

1 class P of colorings of n-tuples into d + 1 colors, the initial condition is
(n, F0, . . . , F n−1, C , ~ϕ,P ) where ~ϕ = (g[Ji] : i < p). �
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Corollary 5.40 Π0
1(RT2

2) admits c.b-enum avoidance.

Proof. RT1
1 admits strong c.b-enum avoidance, so we can apply Theorem 5.39 taking d1 = 1. �

5.2. The free set theorem

The free set theorem is, together with the thin set theorem, another consequence of full Ramsey’s
theorem which is sufficiently weak to admit strong c.b-enum avoidance. Altough it is not known to
be a consequence of TS, its proof of strong c.b-enum avoidance of FS seems to deeply rely on strong
c.b-enum avoidance of TS.

Definition 5.41 (Free set theorem) Let f : [ω]n → ω be a coloring function. A set A is free for f
if for every x1 < · · · < xn ∈ A, if f (x1, . . . , xn) ∈ A then f (x1, . . . , xn) ∈ {x1, . . . , xn}. FSn is the
statement “every function f : [ω]n→ω has an infinite set free for f ”.

FSn lies in between RTn
2 and RRTn

2 [43, 7]. Wang proved in [43] that FSn does not imply RTn
2

for n 6= 3. Lerman & al. [28] and Wang [42] proved independently that EM does not imply FS2

over ω-models. FS2 implies TS2, therefore FSn does not admit 1-enum avoidance. However, for
any fixed class C for which the thin set theorem admits 1-enum avoidance, so does FS. We first
restrict our study of FS to particular functions – trapped functions –. This notion will be useful for
talking about Π0

1 classes of functions.
The thin set theorems are useful in particular for proving avoidance theorems for principles like

the free set theorem.

Theorem 5.42 If TSs
ds+1 admits simultaneous strong 1-enum avoidance for some countable collec-

tion of classes C0,C1, . . . and each 0< s ≤ n, then so does FSn.

Corollary 5.43 FS admits strong c.b-enum avoidance.

Proof. By strong c.b-enum avoidance of TSs
ds+1 for every s and sufficiently large ds, Theorem 5.42

and Lemma 3.21. �

Lemma 5.44 (Wang [43]) For each n ≥ 1, if FSn and COH admit strong C avoidance, then FSn+1

admits C avoidance.

Before proving Theorem 5.42, we deduce strong c.b-enum avoidance for the rainbow Ramsey
theorem.

Corollary 5.45 RRT admits strong c.b-enum avoidance.

Proof. Wang proved in [43] that RRT≤sc FS. Apply Lemma 2.15 and Corollary 5.43. �

The proof of strong 1-enum avoidance of FS relative to strong 1-enum avoidance of TS uses a
case analysis only on two kinds of functions: left trapped and right trapped functions.

Definition 5.46 A function f : [ω]n → ω is left (resp. right) trapped if for every σ ∈ [ω]n, f (σ) ≤
σ(n− 1) (resp. f (σ)> σ(n− 1)).

Lemma 5.47 (Wang in [43]) For each n≥ 1, if FSn for trapped functions admits (strong) C avoid-
ance for some set C ⊆ωω, then so does FSn.

Proof. We prove it in the case of strong C avoidance. The proof of C avoidance is similar. Let
f : [ω]n→ω be a coloring and C be set computing no member of C . For each σ ∈ [ω]n and i ≤ n,
let

f0(σ) = min( f (σ), max(σ)) f1(σ) = max( f (σ), max(σ) + 1)
By strong C avoidance of FSn for trapped functions, we can define a finite sequence ω ⊇ H0 ⊇ H1
such that for each i ≤ n

1. Hi is an infinite fi-free set
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2. Hi ⊕ C computes no member of C .

We claim that H1 is f -free. Let σ ∈ [Hn]n. f (σ) = fi(σ) for some i ∈ {0, 1}. As H1 is free for fi ,
f (σ) 6∈ H1rσ. �

5.2.1. Case of right trapped functions.

Lemma 5.48 Let f : [ω]n → ω be a right trapped function. Every function d.n.c. relative to f
computes an infinite set free for f .

Proof. By [26], every function d.n.c. relative to f computes a function g such that if |W f
e | ≤ m

then g(e, m) 6∈ W f
e . Given a finite f -free set F , there exists at most

�|F |
n

�

elements x such that
F ∪ {x} is not f -free. We can define an infinite f -free set H by stages. H0 = ;. Given a finite
f -free set Hs of cardinal s, set Hs+1 = Hs ∪{g(e,

�s
n

�

)} where e is a Turing index such that W f
e = {x :

F ∪ {x} is not f − free}. �

Lemma 5.49 For each n≥ 1, if FSn for left trapped functions admits (strong) C avoidance for some
set C ⊆ωω, then so does FSn.

Proof. Again, we prove it in the case of strongC avoidance. By Lemma 5.47, it suffices to prove that
FSn for right trapped functions admits strong C avoidance. Let f : [ω]n → ω be a right trapped
function and C be a set computing no member of C . By Rice [35], there exists an f -computable
stable left trapped function g such that every infinite set thin for g computes a function d.n.c. relative
to f . By [7, Theorem 3.2], every infinite set free for g is, up to finite variation, a set thin for g. By
strongC avoidance of FSn for left trapped functions, there is an infinite g-free set H such that H⊕C
computes no member of C . By Lemma 5.48, H computes an infinite f -free set. �

By Lemma 5.49 it remains to prove strong 1-enum avoidance of FSn for left trapped functions,
assuming strong 1-enum avoidance of TSm

d for each m≤ n and sufficiently large d ’s.

5.2.2. Case of left trapped functions.

Theorem 5.50 If TSs
ds+1 admits simultaneous strong 1-enum avoidance for some countable collec-

tion of classes ~C and each 0< s ≤ n, then so does FSn for left trapped functions.

The proof will be by induction over n. Base case is easy and follows directy from strong 1-enum
avoidance of TS1

2 for ~C .

Lemma 5.51 If RT1
2 admits strong 1-enum avoidance for ~C then so does FS1.

Proof. Cholak et al. proved in [7] that FS1 for left trapped functions is strongly computably reducible
to RT1

4. Apply Lemma 2.15 to deduce strong 1-enum avoidance of FS1 for left trapped functions for
~C . Conclude with Lemma 5.49. �

The two following lemmas will ensure that promise sets of our forcing conditions will have good
properties, so that conditions will be extensible.

Lemma 5.52 Suppose FSs admits strong C avoidance for each s < n for some class C . Fix a set C
computing no member of C , a finite set F and an infinite set X computable in C . For every function
f : [X ]n → ω there exists an infinite set Y ⊆ X such that Y ⊕ C computes no member of C and
(∀σ ∈ [F]t)(∀τ ∈ [Y ]n−t) f (σ,τ) 6∈ Y rτ for each 0< t < n.

Proof. Fix the finite enumeration σ1, . . . ,σk for all σ ∈ [F]t for some 0 < t < n. Start with Y0 = X .
Suppose that Ym−1 ⊕ C computes no member of C and for all i < m, ∀τ ∈ [Ym−1]n−|σi | f (σi ,τ) 6∈
Ym−1rτ. Define the function fσm

: [Ym−1]n−|σm|→ω by fσm
(τ) = f (σm,τ). By strongC avoidance

of FSn−|σm|, there exists an infinite set Ym ⊆ Ym−1 such that Ym ⊕ C computes no member of C and
(∀τ ∈ [Ym]n−|σm|) f (σm,τ) 6∈ Ymrτ. Yk is the desired set. �
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Lemma 5.53 Suppose that TSs
ds+1 admits strong 1-enum avoidance for ~C and for each 0< s ≤ n and

FSs admits strong 1-enum avoidance for ~C and for each 0< s < n. For every function f : [ω]n→ω
and every set C computing no 1-enum of ~C , there exists an infinite set X such that X ⊕ C computes
no 1-enum of ~C and for every σ ∈ [G]<ω such that 0≤ |σ|< n,

(∀x ∈ Grσ)(∃b)(∀τ ∈ [G ∩ (b,+∞)]n−|σ|) f (σ,τ) 6= x

Proof. Let X be an infinite set satisfying property of Theorem 5.19 with t = n. For each s < n and
i < dn−s, let fs,i : [X ]s→ω be the function such that fs,i(σ) is the ith element of the set

{x : (∀b)(∃τ ∈ [X ∩ (b,+∞)]n−s) f (σ,τ) = x}

if it exists, and 0 otherwise. Define a finite sequence X ⊇ X0 ⊇ · · · ⊇ Xn−1 such that for each s < n
1. Xs is fs,i-free for each i < dn−s

2. Xs ⊕ C computes no 1-enum of ~C
We claim that Xn−1 is the desired set. Fix s < n and take any σ ∈ [Xn−1]s and any x ∈ Xn−1 rσ.
If (∀b)(∃τ ∈ [G ∩ (b,+∞)]n−s) f (σ,τ) = x , then by choice of X , there exists an i < dn−s such that
fs,i(σ) = x , contradicting fs,i-freeness of Xn−1. So (∃b)(∀τ ∈ [G ∩ (b,+∞)]n−s) f (σ,τ) 6= x . �

Proof of Theorem 5.50. Fix a countable collection of classes C0,C1, . . . for which TSs
ds+1 admits

strong 1-enum avoidance for each 0 < s ≤ n. Let f : [ω]n → ω be a left trapped function and
C be a set computing no 1-enum of ~C . Our forcing conditions are tuples (k, ~F , X , ~g) such that

(a) ~g is a left trapped ⊕k-function, ~F is a finite ⊕k-set
(b) X is an infinite set such that F0 < X and X ⊕ C computes no 1-enum of ~C
(c) (∀σ ∈ [Fi ∪ X ]n)gi(σ) 6∈ Fi rσ for each i < k
(d) (∀σ ∈ [Fi ∪ X ]t)(∀x ∈ (Fi ∪ X )rσ)(∃b)(∀τ ∈ [(Fi ∪ X )∩ (b,+∞)]n−t)

gi(σ,τ) 6= x for each i < k and 0≤ t < n.
(e) (∀σ ∈ [Fi]t)(∀τ ∈ [X ]n−t)gi(σ,τ) 6∈ X rτ for each i < k and 0< t < n

Properties (d) and (e) will be obtained by Lemma 5.53 and Lemma 5.52 and are present to ensure to
have extensions such that (c) holds. A set G satisfies a condition (k, ~F , X , ~g) if it satisfies the Mathias
condition (F0, X ) and Gr (F0r Fi) if gi-free for each i < k. Our initial condition is (1,;, Y, f ) where
Y is obtained by Lemma 5.53. A condition (m, ~F ′, X ′, ~g ′) extends another condition (k, ~F , X , ~g) if
X ′ ⊆ X , m≥ k, (∀i < k)gi = g ′i and there is a finite E ⊂ X such that

(i) for every i < k, Fi ⊆ F ′i and F ′i r Fi = E
(ii) for every k ≤ i < m, F ′i = E

Lemma 5.54 For every condition (k, ~F , X , ~g) there exists an extension (k, ~H, X̃ , ~g) such that |Hi| >
|Fi| for each i < k.

Proof. Choose an x ∈ X such that (∀ j < k)(∀σ ∈ [F j]n)g j(σ) 6= x and set Hi = Fi ∪ {x} for
each i < k. By property (d) of (k, ~F , X , ~g), there exists a b such that (∀i < k)(∀σ ∈ [Fi]t)(∀τ ∈
[X ∩ (b,+∞)]n−t)gi(σ,τ) 6= {x}rσ for each 0 ≤ t ≤ n. By k applications of Lemma 5.52, there
exists a X̃ ⊆ X r [0, b] such that X̃ ⊕ C computes no 1-enum of ~C and property (e) is satisfied
for (k, ~H, X̃ , ~g). We claim that (k, ~H, X̃ , ~g) is a valid condition. Properties (a), (b) and (d) trivially
hold. It remains to check property (c). By property (c) of (k, ~F , X , ~g), we only need to check that
(∀σ ∈ [Fi ∪ X̃ ]n)gi(σ) 6= x for each i < k. This follows from our choice of b. �

Lemma 5.55 For every condition (k, ~F , X , ~g) and every e, i ∈ω, there exists an extension (m, ~H, X̃ ,~h)
forcing ΦG⊕C

e not to be a 1-enum of Ci , where G is the forcing variable.

Proof. By removing finitely many elements to X , we can suppose w.l.o.g. that (∀ j < k)(∀σ ∈
[F j]n)g j(σ) 6∈ X . Suppose there exists aσ ∈ 2<ω such that [σ]∩Ci = ; and a finite set F ′ ⊆ X which

is g j-free for each j < k and Φ(F0∪F ′)⊕C
e (|σ|) ↓= σ. Set H j = F j ∪ F ′ for each j < k. By property (d)

of (k, ~F , X , ~g), there exists a b such that (∀σ ∈ [Hi]t)(∀x ∈ Hi)(∀τ ∈ [X ∩ (b,+∞)]n−t)gi(σ,τ) 6=
{x} r σ for each i < k and 0 ≤ t < n. By k applications of Lemma 5.52, there exists a X̃ ⊆
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X ∩ (b,+∞) such that X̃ ⊕C computes no 1-enum of ~C and property (e) is satisfied for (k, ~H, X̃ , ~g).
We claim that (k, ~H, X̃ , ~g) is a valid condition.

Properties (a), (b), (d) and (e) trivially hold. It remains to check property (c). By our choice of
b, we need only to check that (∀σ ∈ [Hi]n)(∀x ∈ Hi)gi(σ) 6= {x}rσ for each i < k. By property
(c) of (k, ~F , X , ~g), it suffices to check that (∀σ ∈ [Hi]n)gi(σ) 6∈ F ′ rσ for each i < k. By property
(e) of (k, ~F , X , ~g), it remains the case (∀σ ∈ [F ′]n)gi(σ) 6∈ F ′ rσ for each i < k, which is exactly
~g-freeness of F ′.

Suppose there is no such finite set F ′ ⊂ X . For each σ ∈ 2<ω, let Fσ denote the collection of left
trapped ⊕k-functions ~g such that for each finite set F ′ ⊂ X which is g j-free for each j < k, either

Φ
(F0∪F ′)⊕C
e (|σ|) ↑ or Φ(F0∪F ′)⊕C

e (|σ|) 6= σ. Note that Fσ are uniformly Π0,X⊕C
1 classes. Because above

case does not hold, ~g ∈ Fσ for each σ such that Ci ∩ [σ] = ;. The set {σ : Fσ = ;} is X ⊕ C-c.e.
If for each u ∈ ω there exists a σ ∈ 2u such that Fσ = ; then X ⊕ C computes a 1-enum of Ci ,
contradicting our hypothesis. So there must be an u ∈ω such that Fσ 6= ; for each σ ∈ 2u.

For each σ ∈ 2u, let ~hσ ∈ Fσ. Set H j = F j for each j < k and H j = ; for each k ≤ j < (2u + 1)k.
By 2u applications of Lemma 5.53, there exists an infinite set X̃ ⊆ X such that X̃ ⊕ C computes no
1-enum of ~C and property (d) of ((2u + 1)k, ~H, X̃ , ~g

⊕

σ∈2u ~hσ) holds. As conditions (a-c) and (e)
trivially hold, ((2u + 1)k, ~H, X̃ , ~g

⊕

σ∈2u ~hσ) is a valid condition. Moreover it forces ΦG⊕C
e (u) ↑ or

ΦG⊕C
e (u) ↓6∈ 2u. �

Let F = {c0, c1, . . . } be a sufficiently generic filter containing (1,;, Y, f ), where cs = (ks, ~Fs, ~gs).
The filter F yields a unique real G =

⋃

s Fs,0. By definition of a forcing condition, G is an f -free set.
By Lemma 5.54, G is infinite, and by Lemma 5.55, G ⊕ C computes no 1-enum of ~C . �

6. REMARKS AND APPLICATIONS

We now prove corollaries stated in introduction and study some equivalent formulations of strong
c.b-enum avoidance.

6.1. Avoiding countably many cones

Original Seetapun’s theorem states strong cone avoidance of RT1
<∞ for countably many cones

simultaneously. We prove now that this stronger statement is still subsumed by the notion of strong
c.b-enum avoidance. Of course, given a countable collection of non-computable reals A0, A1, · · · ⊆ω,
the set of reals C = {Ai : i ∈ ω} has no computable member but may have a computable 1-enum.
For example, fix any non-computable set A and set Ai to be A prefixed by i zeros. No Ai is computable,
but corresponding set of realsC will have a trivial 1-enum consisting of all finite sequences of zero’s.
However, even for such a collection of sets, we can construct an increasing sequence of sets of reals
C0 ⊆ C1 ⊆ · · · ⊆ 2ω such that computing a c.b-enum of ~C is equivalent to compute one of the
reals Ai .

Lemma 6.1 Let A0, A1, · · · ⊆ω be a countable collection non-computable reals. There exists a count-
able collection of closed sets of reals C0 ⊆ C1 ⊆ . . . such that there is no computable c.b-enum of
Cn and for every n, An computes a c.b-enum of Cn.

Proof. By induction over n. Case n = 0 is satisfied by defining C0 = {A0}. As by Corollary 3.23,
every c.b-enum of {A0} computes A0, there exists no computable c.b-enum of C0. Suppose we have
defined Cn and consider An+1. If An+1 computes a c.b-enum of Cn, then set Cn+1 =Cn.

Suppose now that An+1 computes no c.b-enum of Cn. Set Cn+1 = Cn ∪ {An+1}. If there exists a
computable c.b-enum ofCn+1 (Di : i <ω), then An+1 6∈ [Di] for infinitely many i, otherwise it would
be a computable c.b-enum of {An+1} and would compute An+1 by Corollary 3.23. So An+1 computes
a c.b-enum of Cn by looking on input i to the least j ≥ i such that An+1 6∈ Dj and returning Dj � i.
This contradicts our hypothesis. �

Corollary 6.2 (Seetapun [37]) Let A0, A1, . . . be a countable collection non C-computable reals.
Every function f : [ω]2 → 2 has an infinite set of integerss H homogeneous for f such that H ⊕ C
computes no An for every n ∈ω.
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Proof. Apply c.b-enum avoidance of RT2
2 with ~C defined as in Lemma 6.1 to obtain an infinite set

of integers H homogeneous for f such that H ⊕ C computes no c.b-enum of ~C . H ⊕ C computes no
real An for every n ∈ω as otherwise it would compute a c.b-enum of ~C . �

6.2. From the Cantor space to the Baire space

The proofs of strong enum avoidance can be easily adapted to consider compacts sets in the Baire
space. However, there is no need to go into the forcing arguments to extend the results to the Baire
space. We will now prove that c.b-enum avoidance for compact sets in the Baire space is equivalent
to c.b-enum avoidance for closed sets in the Cantor space.

For each n ∈ ω, let σn ∈ 2<ω be the binary representation of n. In particular σ0 is the empty
string. Given n ∈ ω, let g(n) be the unique τ ∈ 22|σn|+2 such that τ(2i) = 1, τ(2i + 1) = σn(i) for
each i < |σn| and τ(2|σn|) = τ(2|σn| + 1) = 0. The function g is a computable bijection. Given
a sequence X ∈ ωω, let ΨX be the sequence g(X (0))_g(X (1))_ . . . . For example, the sequence
〈3,4, . . .〉 is transformed into g(3)_g(4)_ · · ·= 111100_11101000_ . . . .

Lemma 6.3 Every set of sequencesC ⊆ωω is Medvedev equivalent to the set of reals {ΨX : X ∈ C}.

Proof. Ψ is a functional witnessing the Medvedev reduction of {ΨX : X ∈ C} to C . Conversely,
given a real Y = ΨX for some X ∈ C , we can compute X �n by looking for a string ρ ≺ Y such
that |{ j : ρ(2 j) = 0}| = n, and decode the string σ ∈ ωn using the bijection g. By definition of Ψ,
σ ≺ X . �

Corollary 6.4 The degrees bounding a c.b-enum of a set of sequences C ⊆ωω and those bounding
a c.b-enum of {ΨX : X ∈ C} coincide.

Proof. Since C is compact, Ψ is continuous and Cantor space is separated, {ΨX : X ∈ C} is compact.
Conclude by Lemma 6.3 and Lemma 3.2. �

Corollary 6.5 For every (arbitrary) function h, there exists an ω-model of RT2
2+RRT containing

no h-bounded d.n.c. function.

Proof. Apply c.b-enum avoidance of RT2
2+FS to the effectively closed setC = { f ∈ hω : (∀x) f (x) 6=

Φx(x)}. Note that C is homogeneous, so by Lemma 5.6 of [30], every c.b-enum of C computes a
member of C . �

Corollary 6.6 For every set X and every (non-necessarily computable) function h, there exists a
function d.n.c. relative to X computing no h-bounded d.n.c. function.

Proof. Consider the effectively closed setC of Corollary 6.5. By applying strong c.b-enum avoidance
of RT1

2 to any Martin-Löf random R relative to X , we obtain an infinite subset Y in R or R computing
no c.b-enum of C . By [26], Y computes a function d.n.c. relative to X but computes no h-bounded
d.n.c. function. �

6.3. Restricting the scheme

Here, we explain that c.b-enum is really a scheme of avoidance, and so it can even be used
to separate statements which do not admit c.b-enum avoidance in its full generality. Algorithmic
randomness is very useful for studying how a typical set behaves with a computability theoretic
notion.

Definition 6.7 (Martin-Löf randomness) A set R is Martin-Löf random if there exists a constant c ∈ω
such that (∀n)[K(R�n)≥ n− c] where K is the prefix-free Kolmogorov complexity.

Martin-Löf randomness is a very robust notion admitting various characterizations in terms of
Martin-Löf tests, martingales, etc... In a reverse mathematical point of view, the existence for every
set X of a Martin-Löf random relative to X is equivalent to the principle WWKL0 over RCA0 [2]. The
initial purpose of c.b-enum avoidance has been the separation of RT2

2 from WWKL0 overω-models.



ON COMBINATORIAL WEAKNESSES OF RAMSEYAN PRINCIPLES 47

Theorem 6.8 (Liu [30]) WWKL0 does not admit c.b-enum avoidance.

Proof. Consider the effectively closed set of positive measure C = {Z : (∀n)K(Z � n) ≥ n}. By
Lemma 3.19, every c.b-enum of C computes a 1-enum of C . By [26], every 1-enum of C computes
a d.n.c. function, therefore C has no computable 1-enum. �

It is currently unknown whether every 1-enum of C computes a member of C for the class
C = {Z : (∀n)K(Z � n)≥ n}.

Theorem 6.9 (Jockusch & al. [23]) Fix a set C computing no 1-enum of some homogeneous closed
set C ⊆ 2ω.

µ({Z : Z ⊕ C computes a member of C}) = 0

Corollary 6.10 WWKL0 admits strong C -avoidance for every homogeneous closed set C .

Proof. Fix a set C computing no 1-enum of C and consider a tree T of positive measure. By Theo-
rem 6.9, µ({Z : Z ⊕ C computes a member of C}) = 0, so there exists an infinite path P in T such
that Z P ⊕ C computes no member of C . By homogeneity of C , every 1-enum of C computes a
member of C , so P ⊕ C computes no 1-enum of C . �

Corollary 6.11 There exists anω-model of RT2
2∧TS∧FS∧WWKL0 which is not a model of WKL0.

Proof. Consider the effectively closed set C of all completions of Peano arithmetic. By definition,
WKL0 does not admit C -avoidance. By Corollary 4.11, Theorem 5.24 and Corollary 5.43, RT2

2, TS
and FS admit c.b-enum avoidance ofC . By Lemma 5.6 of [30], the degrees of members ofC and of
c.b-enum ofC coincide. By Corollary 6.10, WWKL0 admitsC -avoidance. Therefore RT2

2∧TS∧FS
admit C -avoidance and we conclude. �

6.4. Open questions

Question 6.12 Does RWKL admit 1-enum avoidance ?
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