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Figure 1: We reconstruct a stationary sleeve using thousands of markers to estimate the geometry (texture added with bump mapping).

Abstract

We capture the shape of moving cloth using a custom set of color
markers printed on the surface of the cloth. The output is a se-
quence of triangle meshes with static connectivity and with detail at
the scale of individual markers in both smooth and folded regions.
We compute markers’ coordinates in space using correspondence
across multiple synchronized video cameras. Correspondence is
determined from color information in small neighborhoods and re-
fined using a novel strain pruning process. Final correspondence
does not require neighborhood information. We use a novel data
driven hole-filling technique to fill occluded regions. Our results
include several challenging examples: a wrinkled shirt sleeve, a
dancing pair of pants, and a rag tossed onto a cup. Finally, we
demonstrate that cloth capture is reusable by animating a pair of
pants using human motion capture data.

1 Introduction
We capture the motion of cloth using multiple video cameras and
specially tailored garments. The resulting surface meshes have an
isometric parameterization and maintain static connectivity over
time. Over the course of roughly half a dozen papers on cloth cap-
ture a prevailing strategy has emerged. First, a pattern is printed on
the cloth surface such that small regions of the pattern are unique.
Next, correspondence is determined by matching regions across
multiple views. The 3D location of a region is determined by inter-
secting rays through the corresponding observations in the image
set (figure 4). Reconstruction is done independently on a frame
by frame basis and the resulting data is smoothed and interpolated.
Previous work, such as [Scholz et al. 2005], yields pleasing results.

Little work has been done to capture garments with folds and scenes
with occlusion. In this paper we use folding to refer to local phe-
nomena such as wrinkles around a knee and occlusion to refer to
large scale effects such as one limb blocking the view of another.
Folds and occlusion are common, especially when dealing with real
garments such as pants where limbs block interior views and cloth
collects around joints. Both phenomena are symptoms of the same
problem: views of the surface are blocked by other parts of the sur-
face. However, there is a distinction in scale and different methods
are required to solve each problem.

When a surface is heavily folded, contiguous visible regions are
often small and oddly shaped. In these regions correspondence is
essential for detailed reconstruction yet can be challenging to iden-
tify. We solve the correspondence problem both by improving the
pattern printed on the surface of the cloth and by improving the
method used to match regions. Our method gets more informa-
tion per pixel than previous methods by drawing from the full col-
orspace instead of a small finite set of colors in the printed pattern.
Additionally, because cloth cannot stretch much before ripping, we
use strain constraints to eliminate candidates in an iterative search
for correspondence. In combination, these two modifications elim-
inate the need for neighborhood information in the final iteration
of our algorithm. As a result, we determine correspondence using
regions that are 25 times smaller than in previous work (figure 6).

Many regions on the surface are impossible to observe due to oc-
clusion. We fill these holes using reconstructions of the same sur-
face region taken from other points in time. We found that MeshIK
([Sumner et al. 2005]), a tool originally developed for mesh pos-
ing and animation, is appropriate for filling holes in cloth. In fact,
MeshIK is well-suited to cloth data and we use it to bind recon-
struction of our pants to motion capture data.

We suggest two tools to evaluate marker-based capture systems.
The first, markers per megapixel, is a measure of efficiency in cap-
ture systems. Efficiency is important because camera resolution and
bandwidth are expensive: the goal is to get more performance from
the same level of equipment. This metric is designed to predict scal-
ing as technology moves from the research lab to the professional
studio. The second tool is information theory: we look at the pre-
dictive power of different cues in a capture system. By doing simple
bit calculations, we direct our design efforts more appropriately.
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Figure 2: We construct an animated sequence of surface meshes in two stages: acquisition and mesh processing. In acquisition, we convert
raw images into a 3D point cloud. In mesh processing, we triangulate the mesh, fill the holes and apply temporal smoothing.

2 Previous Work
Previous work in cloth motion capture has focused on placing high
density markers in correspondence between multiple views. The
primary challenge is to increase marker density while correctly as-
signing correspondence between markers. We suggest markers
per megapixel as an appropriate metric for comparison (figure 3)
because it measures the method instead of the equipment. Most
high density full frame-rate capture has focused on cloth, however,
there has been some recent work enhancing human motion capture
[Park and Hodgins 2006]. These methods have far fewer markers
per megapixel because they affix individual markers.

When working with cloth, markers are typically painted on the sur-
face. These markers can be broken into three categories: complex
surface gradients [Pritchard and Heidrich 2003; Scholz and Magnor
2004; Hasler et al. 2006] (typically detected using SIFT descrip-
tors [Lowe 2004]), intersecting lines [Tanie et al. 2005] and regions
of constant color [Guskov and Zhukov 2002; Guskov et al. 2003;
Scholz et al. 2005]. Our work falls in the third category: regions of
contant color. We evaluate previous work by examining the qual-
ity of the reconstructed cloth in still images and video. The most
common errors are marker mismatches and are observable in recon-
structions by local strain in the reconstructed surface. Overall, we
observe that constant color markers perform the best.

[Pritchard and Heidrich 2003] used cloth with unique line draw-
ings as markers. Their work identifies parameterization as one of
the key aspects of cloth capture. They use a stereo camera to ac-
quire 3D and SIFT descriptors to establish correspondence. These
descriptors are often mismatched and require significant pruning.
They introduce a rudimentary strain metric, as measured along the
surface, to rule out incorrect matches. While successful, their static
reconstructions show numerous correspondence errors.

The real-time system described in [Guskov et al. 2003] introduces
markers of constant color, resulting in significantly fewer corre-
spondence errors than in [Pritchard and Heidrich 2003]. This sys-
tem uses a Kalman smoothing filter and is heavily damped. Ad-
ditionally, the complexity of the color pattern limits the method to
simple geometry.

[Scholz et al. 2005] improve upon [Guskov et al. 2003] by creating
a non-repeating grid of color markers. Each marker has five pos-
sible colors and all three by three groups are unique. This allows
substantially larger sections of cloth and virtually eliminates corre-
spondence errors. Results include a human wearing a shirt and a
skirt captured using eight 1K x 1K cameras. However, the range of
motion is limited to avoid occlusion (e.g., arms are always held at
90 degrees to the torso). They use thin-plate splines to fill holes.

[White et al. 2005] introduce a combined strain reduction/bundle
adjustment that improves the quality of the reconstruction by mini-
mizing strain while reconstructing the 3D location of the points on
the surface of the cloth. [White et al. 2006] introduce the use of
silhoutte cues to improve reconstruction of difficult to observe re-
gions. While silhouette cues improve reconstruction, hole filling is

Markers per
Work Megapixels Markers† Megapixel
Park 2006 48 ≤ 350 ≤ 7.3
Tanie 2005 10 407.9 40
Guskov 2003 0.9 ≤ 136 ≤ 148
Scholz 2005 8 ≤ 3500 ≤ 434
Sleeve 15 7557 504
Pants 2.5 2405.3 979

Figure 3: We suggest markers per megapixel as a comparison
metric. Because pixels are expensive, efficient use of pixels is
necessary. In the pants video, our markers average 56 pixels per
camera: the rest of the pixels are consumed by multiple views and
background (discussed in section 6.1). †When possible we com-
pare recovered markers, however some papers exclusively report
total markers.

more effective in many circumstances because it enforces an appro-
priate prior on the shape of the cloth.

We make three main contributions: we improve the color pattern
and matching procedure to get more information per marker, we in-
troduce strain constraints to simplify correspondence and we create
a data driven hole filling technique that splices previously captured
cloth into the mesh. As a result, our system is capable of capturing
a full range of motion with folding and occlusion.

3 Analyzing Acquisition Methods

To acquire a 3D point cloud of the cloth surface, we print a colored
pattern on the cloth, sew it together, and record its motion using
multiple synchronized cameras. We then reconstruct the 3D loca-
tion of surface points by detecting corresponding points in multi-
ple views (figure 4).

Our goal is high marker density in the 3D reconstruction – espe-
cially in regions with high curvature. To achieve this, we need
markers that are both small in scale and highly discriminative.
These two goals are in tension: small markers are less discrimi-
native. In addition, we cannot increase camera resolution without
bound because camera bandwidth becomes very expensive. As a
result, we opt for the smallest markers that we can reliably detect
and we make small markers more distinctive.

We combine information from three cues to establish correspon-
dence: marker color, neighboring markers and strain constraints in
the reconstruction. Marker color and strain constraints are more
useful than neighboring markers because they place fewer require-
ments on local cloth geometry. Specifically, neighboring markers
are observed only when the cloth is relatively flat. When the sur-
face is heavily curved only small portions of the surface are visi-
ble before the cloth curves out of view. In subsequent sections we
adopt the following strategy: maximize information obtained from
marker color and eliminate the information needed from neighbors.
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parametric domain

Figure 4: Above: We identify corresponding markers in multiple
views in reference to the parametric domain. Below: Once corre-
sponding image points are identified, we intersect eye rays to deter-
mine the 3D location.

3.1 Entropy as an Analytical Tool

We optimize our correspondence technique by analyzing the in-
formation provided by different cues. In this framework we can
accurately minimize the number of neighbors required for corre-
spondence and observe folds better. We can compare our work to
previous methods using this framework (figure 6).

It takes log2 M bits to determine the identity of each observed
marker on a garment with M total markers. Because independent in-
formation adds linearly, we can compute the information needed to
meet this threshold by adding information from the different cues:
color, neighbors and strain. However, structural ambiguities in the
pattern subtract information lost to determine which neighbor is
which. As a result, we compute our information budget (I ) as:

N = number of observed neighbors
C = color information per marker
A = information lost to structural ambiguities
S = information gained from strain constraints

I = (N +1)∗C +S−A

As an example, imagine a rectangular grid of markers and a cor-
respondence method that uses a single immediate neighbor. This
neighbor is one of four possible neighbors – thus it takes two bits to
specify which neighbor we found (A = 2). In this case, the equation
reduces to I = 2∗C−2+S.

Given almost any structured pattern, we can detect regions by in-
creasing N until I > log2(M) bits. However, larger marker regions
have the disadvantage that curvature can cause local occlusions and
prevent observation of the entire region. Our best efforts are to im-
prove C – the number of bits from each marker observation. We do
this by picking marker color from the full colorspace instead of a
small discrete set of colors.

Figure 5: Neighborhood detection methods require that all markers
in a fixed geometric pattern in the image neighborhood be neighbors
on the cloth. Occluding contours break up neighborhood regions
and limit the effectiveness of neighborhood methods in folded re-
gions. We eliminate neighborhood requirements in the final stage
of our correspondence algorithm.

3.2 Garment Design and Color Processing

We print a random colored pattern on the surface of cloth in an at-
tempt to maximize the information available per pixel. While our
pattern is composed of tesselated triangles (figure 5), any shape
that tiles the plane will work (squares and hexagons are also nat-
ural choices). To maximize the density of reconstructed points, we
print the smallest markers that we can reliably detect. To maximize
the information contained in the color of each marker, we print col-
ors that span the gamut of the printer-camera response, then use a
gaussian color model (section 4.1).

From a system view, the printer-camera response is a sequence of
lossy steps: we generate a color image on a computer, send the
image to the printer, pose the cloth, and capture it with a camera.
Our experiments suggest that loss is largely attributable to camera
response because larger markers produced substantially more in-
formation. Illumination is also problematic and takes two forms:
direct illumination on a lambertian surface and indirect illumina-
tion. To correct for variations in direct illumination, we remove the
luminosity component from our color modelling. We do not correct
for indirect illumination.

Each marker in the printed pattern has a randomly chosen color,
subject to the constraint that neighboring marker colors must be dis-
similar. In the recognition stage, we detect markers by comparing
colors to a known color. These comparisons must be made in the
proper color space: we photograph the surface of the printed cloth
with our video cameras to minimize the effect of non-linearities in
the printing process.

4 Acquisition
The goal of our acquisition pipeline is to compute correspondence
using minimal neighborhoods. We accomplish this through an iter-
ative algorithm where we alternate between computing correspon-
dence and pruning bad matches based on those correspondences.
After each iteration we shrink the size of the neighborhood used
to match. We start with N = 3 and end with N = 0. In the final
iteration, markers are matched using color and strain alone.

This iterative approach allows us to match without neighborhoods.
This is better than label propagation methods. To be successful,
propagation methods [Guskov et al. 2003; Scholz et al. 2005; Lin
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1st 2nd 4th [Scholz
iteration iteration iteration 2005]

Relative Area 15.8 11.8 4.0 100
Color (C) ≥ 5 ≥ 5 ≥ 5 1.93
Neighbors (N) 3 2 0 8
Strain (S) 0 ∼ 7 ∼ 9 –
Ambiguities (A) 1.6 1.6 0 3
Total bits (I ) 18.4 20.4 14 14.4

Figure 6: Our correspondence algorithm iterates from large to
small regions. At each stage, the number of recovered bits must
stay above the marker complexity (11.6 bits for our pants). We are
able to obtain significantly more information per unit cloth surface
area than previous work. See section 3.1 for the entropy equation
and appendix B for detailed analysis.

and Liu 2006] require large sections of unoccluded cloth and must
stop at occluding contours. As shown in figure 5, occluding con-
tours are both common and difficult to detect. In contrast, our itera-
tive approach relies on strain constraints – which require computing
the distance between a point and a line, and color detection – which
requires averaging color within a marker. Both of these computa-
tions are easier than detecting occluding contours.

We describe our acquisition pipeline, shown in figure 2, below.

Color Processing: We compare observed colors with stored val-
ues using a gaussian noise model. Our gaussian noise model has a
single free parameter, the variance, which must be computed em-
pirically for each recording setup. This variance determines the
color response for the entire setup — smaller variances mean more
bits from color. At this stage, we compute color information for
each marker and eliminate hypothetical correspondences from fur-
ther consideration that have large color differences.

Neighborhood Matching: At each iteration, we match highly dis-
tinctive neighborhoods by combining information across cues. The
size of the neighborhood is chosen so that we get more than enough
bits to meet our information budget (log2 M bits – typically 11 to
13). The analysis in figure 6 shows that we can set N = 3 at the
start and continue until N = 0. Because the identity of the marker
is overspecified, there are few mistakes.

This approach works from flat regions in the first iteration to foldy
regions in the later iterations. In the first iteration, we require three
neighbors to make a match. In heavily folded regions, often neigh-
boring markers on the image do not neighbor on the surface of the
cloth. As such, these regions are not going to match. In contrast, in
the last iteration, no neighbors are necessary. Occluding contours,
which are common in heavily folded regions, no longer disrupt the
matching procedure.

3D Reconstruction: Markers that are observed in multiple views
(at least 2) are reconstructed in 3D using textbook methods [Hart-
ley and Zisserman 2000]. We use reprojection error to prune bad
matches (reprojection errors average 0.3 pixels and we discard
points with errors larger than 2 pixels).

Pruning with Strain: We do two separate strain pruning steps: one
on reconstructed 3D points and one on marker observations in each
image. The first discards reconstructed points that cause physically
unrealistic strain on the surface of the mesh and the second con-
strains our search for correspondence. Our strain constraint is based
on the work of [Provot 1995] who noted that strain in cloth does not
exceed 20% in practice. Relaxing the constraint to distances in 3D

A

B

A

parametric domain

= possible identities for B
= locations too close to A

Figure 7: Top: we compute the shortest distance between a known
point A and the eye ray through unidentified image point B. Bot-
tom: in the parametric domain, this distance restricts the possible
identities of B to the green region. The distance from A to B along
the surface can be no shorter than the shortest distance in 3D.

(surface distance is always more than the distance in 3D), we can
use strain to exclude possible correspondences. Strain naturally fits
in to our information theory framework: if strain excludes 87.5% of
the possible correspondences, then strain has added 3 bits (because
log2 (1−0.875) =−3). The strain cue is described in figure 7.

4.1 Representation

To find correspondence, we match each image marker to a marker
in the parametric domain. To do this, we define affinities ai, j be-
tween image marker i and parametric marker j. Each affinity is a
product over different cues. We write ci, j ∈ [0,1] for the color affin-
ity, d(Ci,C j) for the color distance between i and j, si, j ∈ {0,1} for
the strain constraint, ni for the image neighbors of marker i and N j
for the parametric neighbors of marker j:

ai, j = ci, j si, j ∏
l∈N j

max
k∈ni

ck,l

ci, j = exp(−
d(Ci,C j)

2

2 σ2 )

si, j =
{

0 if a strain constraint is violated
1 if not

When only one affinity for image marker i is above a theshold, then
we declare a correspondence. Initially, we learned this threshold
from labelled data, but we found that changing it by several orders
of magnitude had little effect on our results. Subsequently, we use
the value 10−5(N+1) where N is the number of neighbors.

5 Mesh Processing
In the acquisition process, occlusion inevitably creates holes in the
reconstructed mesh (figure 8). One would like to fill these holes
with real cloth. One of our major contributions is a data driven
approach to hole filling: we fill holes with previously observed sec-
tions of cloth. Our work differs from [Anguelov et al. 2005] be-
cause our hole filling procedure does not assume a skeleton that
drives the surface and our procedure estimates a single coefficient
per example.

This hole filling procedure has a number of requirements: the miss-
ing section needs to be replaced by a section with the same topol-
ogy; the new section needs to obey a number of point constraints
around the edge of the hole, and the splicing method should re-
spect properties of cloth (specifically strain). We select a recon-
struction technique based on deformation gradients [Sumner and
Popovic 2004]. In this approach, we fit deformation gradients for
the missing section to a combination of deformation gradients in
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Figure 8: Occlusion is inveitable when capturing highly articulated
objects. In this reconstruction, the inner thigh region of the left leg
is difficult to observe because the right leg shields it from view.
Regions that contain errors or that are seen in two or fewer views
must be filled afterwards. Errors are detected using reprojection
error and strain.

other observed sections. Then, we reconstruct the point locations
from the deformation gradients.

This procedure has a number of advantages. First, deformation gra-
dients naturally yield cloth like properties. Deformation gradients
are the transformation matrix between triangles in two poses of the
mesh. By penalizing elements that deviate in this matrix, we have
a fairly direct penalty on large changes in scale or strain. In con-
trast, methods based on the Laplacian of the mesh ([Sorkine et al.
2004]) do little to penalize these strains and can show many arti-
facts around the edge of the mesh. Second, deformation gradients
can be converted into vertex locations by inverting a linear system,
allowing us to specify vertex locations as constraints. Methods such
as [Lipman et al. 2005] don’t allow vertex constraints.

Our subsequent discussion is divided into three sections: construct-
ing a mesh from the point cloud, filling the holes in the mesh using
deformation gradients, and temporally smoothing the results.

5.1 Meshing and Seams

We produce a mesh by forming equilateral triangles for sections of
cloth that are printed with a contiguous pattern by referencing the
triangle stucture of markers on the cloth. Our recovered markers
are at the center of each triangle – so we average points to get out
the vertices and subsequently the original mesh. We insert artificial
points where two pieces of fabric come together. These points are
created once per garment by hand clicking on photos of the each
seam. The 3D locations of these points are recreated in each frame
by averaging points near the seam.

5.2 Hole Filling

We use occlusion free meshes from other frames to automatically
interpolate holes. For each hole in each frame, we cut out the miss-
ing region plus a ring of two triangles around the region. We select
a set of examples of the enlarged region, then use MeshIK ([Sumner
et al. 2005]) to reconstruct the surface. MeshIK works by choosing
a combination of deformation gradients from the examples and then
solving for the missing point locations. We use the points from the
ring of known triangles around the hole as constriants in MeshIK.

The most restrictive aspect of MeshIK is that it requires example
meshes without holes. In practice, we never observe complete ex-

MeshIK

Example Meshes

?

constraints

solution
examples

Figure 9: Holes are filled with a combination of cloth sections ob-
served in other frames. (In reality, we use a ring of two triangles as
constraints)

ample meshes – each mesh is missing some triangles. These holes
appear in different places in different meshes and we create com-
plete meshes in an iterative method. First, we fill all holes with a
naive linear algorithm (specifically, we triangulate across gaps and
use barycentric coordinates to place the missing points – this gets
the job done, but works poorly). Then, we do another pass through
all the data, where we replace the linear sections with sections cre-
ated using MeshIK on the linearly filled data. To downweight the
linear data, we select the examples with the highest percentage of
viewed points in the missing section. These frames are then used as
examples in MeshIK to hole fill in the rest of the sequence.

For the pants capture, we iteratively refine a set of 27 extreme poses
which were captured specifically for filling holes. The advantage
of this apporach is that the example poses are chosen to capture the
relevant degrees of freedom – yielding better results. For the cloth
toss sequence, we chose the simpler approach: iteratively refine the
entire sequence.

5.3 Smoothing

We introduce flexibility preserving smoothing – a method similar
to anisotropic diffusion [Perona and Malik 1990] that smoothes
near-rigid movement without effecting flexible deformation. Typi-
cal temporal smoothing is dangerous because fast non-rigid move-
ments can easily become physically implausible when blurred over
time. However, because fast non-rigid regions of the cloth are com-
plex, small temporal errors are often difficult to notice. In contrast,
small errors in regions of the cloth that move rigidly are typically
easy to observe. As a result we use flexibility preserving smooth-
ing, a procedure that smoothes rigid movement more heavily than
non-rigid movement. To do this, we take a local region around each
vertex in the mesh (typically 25 points) and compute a rigid trans-
formation to previous and subsequent frames. Aligning the regions
with this transformation, we compute the movement of the vertices
in this reference frame as a proxy for rigidity. Large variations
in location indicate non-rigid movement and consequently receive
little smoothing. Smaller variations indicates rigid movement and
benefit from more substantial smoothing. We use a size adjusted
gaussian to smooth in this reference frame.

6 Results and Applications
Our video sequences were taken with synchronized firewire cam-
eras (Foculus FO214C) with a capture resolution of 640 x 480 and
a capture rate of 24 frames per second. Our still captures were taken
using a digital SLR camera and then downsampled to approximate
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observed unobserved backface

Figure 10: Our hole filling works in extreme circumstances. In this
frame, 73% of the mesh is unobserved and inserted using MeshIK
based hole filling. This frame is unusal: only 22% of the surface is
unobserved in an average frame.

available video resolutions. We use the automated calibration tech-
nique in [White and Forsyth 2005], but any standard calibration
will work ([Zhang 2002] and [Bouguet 2005] are good choices).
In the pants sequences, we used seven lights totalling 1550 Watts
to illuminate the scene. Adequate lighting is critical: from our ex-
perience fewer lights degrade performance due to harsh shadows
and dim lighting causes motion blur through slower shutter speeds.
Our cloth was printed by a digital mail order fabric printing service.
On a P4 2.4 GHz machine, acquisition takes roughly 6 minutes and
mesh processing 2 minutes per frame. Code is written in MATLAB.

6.1 Capture Results

Our capture results are best evaluated by looking at our video and
figures 1,12,13. However, to compare against other capture tech-
niques, it is also necessary to evaluate on several numerical criteria
for each capture session:

cloth pants table
drop dance cloth sleeve†

# cameras 6 8 18 10
resolution 640x480 640x480 900x600 1500x1000
total markers 853 3060 4793 13465
recovered 819 2405 4361 7557
percentage 96% 79% 91% 56%
bits needed 9.7 11.6 12.2 13.7
color bits 6.1 5.1 6.4 4.5
strain bits 9.1 9.4 11.4 ∼ 6.6

†The sleeve example is unique because it was one of the first items
we captured. Much of the cloth is in contact with the floor and un-
observable – yielding fewer bits of strain. In addition, the camera
images were not output in a linear color space, reducing the num-
ber of color bits. As a result, we terminated the correspondence
algorithm at N = 2.

Our pants animation is by far the most challenging, and we analyze
some of the details a little more closely. With an average of 2405
observed markers, there were 979 3D markers per megapixel. If we
factor out the pixels lost to background, we get 3500 3D markers
per foreground megapixel or 282 foreground pixels per recovered
3D marker. Our marker observations average 56 pixels per marker
per image. There are several reasons for the discrepancy: markers
must be observed multiple times (approx 44% of 3D markers are
observed in 3 or more views), some markers are observed but not
reconstructed (due to errors or missing correspondence), and many
pixels are not considered part of a marker: they lie in heavy shadow

Figure 11: We use MeshIK to bind captured cloth to human motion
capture data using 6 joints in the mocap data.

or occupy the edge between two markers (approx 35% of pixels).

6.2 Retargeting Animations

We use a small set of captured frames (the previous basis of the
27 examples) in combination with MeshIK to skin skeletal human
motion capture data (figure 11). This approach covers a reasonably
large range of motion, but ignores cloth dynamics.

The largest challenge is that captured cloth meshes contain only
points on the cloth surface, so we do not know joint locations. In-
stead, we insert proxy points for knee and hip joints in each of our
basis meshes. These points are then connected to a small set of
nearby triangles in the original mesh. For each frame of anima-
tion we set the proxy points’ locations according to joint angles
in the skeletal mocap data. The resulting transformed joints are
used as constraint points in MeshIK, which produces the final out-
put meshes. Using our MATLAB implementation of MeshIK, this
process takes around 5-10 seconds per frame.

We use the same 27 bases poses for MeshIK based reconstruction.
In order for a small basis to adequately express a full range of mo-
tion, each basis pose must be an extreme configuration. For simple
objects such as a cylinder, a small bend (for example) is sufficient
to extrapolate to a larger bend [Sumner et al. 2005]. However, for
pants the relationship is more complex: the fact that no folding oc-
curs in a small bend does not imply that folding will be absent in
a larger bend. Conversely, if a decent amount of folding occurs in
a small bend, we do not expect extreme folds in a corresponding
larger bend. As a result, MeshIK is most useful when a basis is
carefully chosen to prevent extrapolation artifacts.

One drawback to our approach is the loss of secondary kinematic
motion, such as the sway of loose cloth. Because MeshIK does not
use velocity information, the resulting animation appears damped.

7 Discussion
We have brought cloth capture from constrained laboratory ex-
amples to real settings by providing robust methods for dealing
with occlusion and folding. Like human motion capture, this tool
requires significant engineering effort. Camera setup and cali-
bration are time consuming and the equipment is costly. How-
ever, once these obstacles have been overcome, capturing large
amounts of data is relatively easy. So that other researchers
can benefit from our work, we are releasing our capture data at
http://www.ryanmwhite.com/data. In our video, we show some of
the uses of this data, including editing using [Kircher and Garland
2006] and posing using [Sumner et al. 2005].
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Figure 12: We collected twenty seven basis poses covering the ma-
jor modes of deformation in the pants. These poses were used in
creating the motion capture sequence and for hole filling in the cap-
tured sequences.

Future work in cloth capture should involve more cameras, higher
resolution (leading to smaller denser markers), different garments
and different materials. We plan to pursue more tools to edit and
repurpose captured data.

Finally, we would like to conclude with a discussion about cloth
capture in the context of other cloth animation techniques. Simula-
tion and image based rendering both provide methods to generate
animation of cloth (a limited simulation list includes [House and
Breen 2000; Terzopoulos et al. 1987; Choi and Ko 2002; Bridson
et al. 2003; Baraff et al. 2003] and a limited image based rendering
list includes [Bradley et al. 2005; White and Forsyth 2006; Lin and
Liu 2006; Scholz and Magnor 2006]). These methods have sev-
eral advantages: simulation gives significant user control and pro-
duces higher resolution meshes while image based rendering tech-
niques produce more accurate illumination. However, capturing
large amounts of data is far easier than simulating large amounts of
data and provides more control than image based rendering. Com-
mon simulation complaints include long computation times, sig-
nificant parameter tweaking and tangling. In contrast, capture is
relatively quick (our code is 8 minutes per frame in MATLAB); pa-
rameters are set by selecting the type of cloth [Bhat et al. 2003]
and tangling is relatively uncommon. Cloth capture makes it easy
to capture large amounts of cloth, including fast light cloths that
create instabilities in simulation. An added attraction of cloth cap-
ture is that complex interaction between the cloth and the body is
recorded without complicated human models.
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A Image Processing
We do some pre-processing to get marker locations and connec-
tivity from raw images. We recommend readers unfamiliar with
these techniques refer to [Forsyth and Ponce 2002]. We start by
converting each image to HSV, disregarding the luminosity (V) and
using polar coordinates to compute distances in hue and saturation.
To detect markers, our code looks for uniformly colored blobs in
two stages: first regions are built by growing neighborhoods based
on similarity between pixels. This method is sensitive to image
noise and can produce oversized regions when the color boundaries

are smoothed. The second stage takes the center of mass of each
blob from the first stage, computes the mean color and grows a
region based on distance to the mean color (it is computationally
intractable to use this as the first stage of the blob detection). The
process is iterated for increasing thresholds on the affinity value in
the first stage, using the portions of the image where detection failed
in previous stages. Finally, blobs are thresholded based on size.

Next, we need to determine the neighborhood relationships. For
each marker, we construct a covariate neighborhood (a fitted el-
lipse) and vote for links to the three closest markers with similar
covariate neighborhoods. This measures distances appropriately in
parts of the scene where the cloth is receding from view and dis-
courages links between markers with wildly different tilts. All links
that receive two votes (one from either side) are kept while the rest
are discarded. Links that bridge markers with conflicting color in-
formation are also discarded (typically on internal silhouettes).

B Entropy Comparison
For more reading on information theory, consult [Cover and
Thomas 1991]. Our analysis is based on the information entropy
definition: H(X) =−∑

n
i=1 p(xi) · log2 xi.

For [Scholz et al. 2005], the equation in section 3.1 is reduced to
I = 9 ∗C − A because they use 8 neighbors and no strain con-
straints. They use 5 colors which, without errors, yields C = log2 5
bits per marker. They cite an error rate of five to ten percent. As a
result, they recover anywhere from 1.65 to 2.04 bits per marker. In
our comparison, we use C = 1.93 bits for color information from
their method (five percent error, with equal probabilities for all re-
maining choices). Note that this is effectively less than four colors!
Second, we compute structural ambiguities in their method which
account for uncertainty in observations. The orientation of the sur-
face is unknown, yielding four possible directions, or two bits of
structural ambiguity. Second, in their paper, they say that oblique
views cause another bit of uncertainty. As a result A = 3 bits.

For our work, C is an empirical observation. Depending on the
lighting and camera configuration, we get anywhere from 5 to 7
bits. We use the conservative estimate of C = 5 bits per marker.
Second, our mesh is triangular and there are three possible neigh-
borhood rotations, yielding A = log2 3 = 1.59 bits of structural am-
biguity. When neighborhoods are not used, there is no structural
ambiguity. Strain information is difficult to compute and depends
on the geometry of the surface and the orientation of the camera. In
most cases, we observe more than 9 bits of strain information.
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