

Lixin Duan Dong Xu Shih-Fu Chang Nanyang Technological University Nanyang Technological University Columbia University

Exploiting Web Images for Event Recognition in Consumer Videos: A Multiple Source Domain Adaptation Approach

Contributions

- We present a new method called Domain Selection Machine (DSM) to take advantage of abundant freely available web images for event recognition in consumer videos.
- DSM automatically selects the most relevant source domains with our newly introduced data-dependent regularizer.
- We integrate different types of features (i.e., SIFT features from images and space-time features from videos) from different domains by using our proposed target decision function.

Background

- Event recognition in consumer videos is important in video indexing and retrieval, but it is also very challenging due to unconstrained camera motion and large intra-class variations.
- The recent work [Ref 1] developed an event recognition approach by using web videos from YouTube. We also observe that there are much more web images from different sources.
- We only have few or even no labeled consumer videos for training. Data distributions from the consumer video domain and web image domain are different.

Domain Selection Machine

Figure 1. Illustration of our proposed method Domain Selection Machine (DSM) for event recognition in consumer videos.

Regularizer for source domain selection

$$\Omega(f) = \frac{1}{2} \sum\nolimits_{s=1}^{s} d_{s} \sum\nolimits_{i=1}^{m} \left(f^{T} \left(\mathbf{x}_{i}^{T} \right) - f^{s} \left(\mathbf{x}_{i}^{T} \right) \right)^{2}$$

- $d_s \in \{0,1\}$ is a domain selection indicator for the s-th source domain
- f^T: target classifier
- f^s : pre-learned source classifier

Integrating SIFT and ST features in the target classifier

$$f(\mathbf{x}) = f_{2D}(\mathbf{x}) + f_{3D}(\mathbf{x})$$

=
$$\sum_{s=1}^{S} d_s \beta_s f^s(\mathbf{x}) + \mathbf{w}' \varphi(\mathbf{x}) + b$$

- $f_{2D}(\mathbf{x}) = \sum_{s=1}^{S} d_s \beta_s f^s(\mathbf{x})$ based on SIFT features
- $f_{2D}(\mathbf{x}) = \mathbf{w}' \varphi(\mathbf{x}) + b$ based on ST features

Formulation of DSM

$$\min_{\mathbf{d}, \mathbf{w}, b, \boldsymbol{\beta}, \mathbf{f}^T} \frac{1}{2} (\|\mathbf{w}\|^2 + \|\boldsymbol{\beta}\|^2) + C \sum_{i=1}^m \ell\left(f^T(\mathbf{x}_i^T) - f(\mathbf{x}_i^T)\right) + \theta \cdot \Omega(f)$$
s.t.
$$\sum_{s=1}^S d_s \ge 1, \ d_s \in \{0, 1\}$$

• We solve the optimization problem by iteratively updating $\{\mathbf{w}, b, \boldsymbol{\beta}, \mathbf{f}^T\}$ and \mathbf{d} .

Experiments

Datasets

- Kodak [Ref 1]: 195 consumer videos
- YouTube: 561 consumer videos
- CCV [Ref 2]: 2726 consumer videos

Results

		SVM_A	DASVM	Multi-KMM	DAM	CP-MDA	DSM _{sim}	DSM	1	
	MAP	31.17%	29.40%	31.98%	32.58%	30.27%	33.75%	35.26%	1	
■SVM_A ■DASVI	M = Multi-	KMM = DAN	M ■ CP-MDA	■DSMsim ■DSN	M ■SVM_A	■DASVM = M	lulti-KMM = E	DAM CP-M	DA DSMsim DSM	M
70%					70%					
30%					60%			r Kallelle		
50%					50%					
10%					40%					
30%					30%				-	
20%					20%					
10%					10%					
0%					0%					-
	parade	picnic		orts wedding	birth	,	picnic	show	sports wedding	

| Table 1. Mean Average Precisions (MAPs) of all methods on the Kodak dataset. | | SVM_A | DASVM | Multi-KMM | DAM | CP-MDA | DSM_{sim} | DSM | MAP | 27.95% | 25.68% | 24.22% | 27.66% | 24.41% | 33.67% | 35.46% |

Table 2. Mean Average Precisions (MAPs) of all methods on the YouTube dataset.

Figure 2. Per-event Average Precisions (APs) of all methods on Figure 3. Per-event Average Precisions (APs) of all methods on the Kodak dataset.

SVM_A	DASVM	Multi-KMM	DAM	CP-MDA	DSM_{sim}	DSM
17.14%	18.38%	19.77%	17.01%	17.49%	17.80%	21.76%
■ SVI	M_A DASVI	M = Multi-KMM =	DAM CP-	MDA DSMsi	m DSM	
60%						
50% -						
40% -						
30%						
20% -						
10% -	<u>-</u>				alianile .	
0% -						
	birthday g	raduation parade	performance	sports	wedding	
Eigen	ra 4. Dan ave	ant Avaraga Dra	oicione (Al	of all ma	thode on	

References

((CeMN@t

the CCV dataset

MAP

[Ref 1] L. Duan, X. Dong, I. W. Tsang, and J. Luo. Visual Event Recognition in Videos by Learning from Web Data. In CVPR, 2010.

[Ref 2]: Y.-G. Jiang, G. Ye, S.-F. Chang, D. Ellis, and A. C. Loui. Consumer Video Understanding: A Benchmark Database and An Evaluation of Human and Machine Performance. In ICMR, 2011.