Introduction to Machine Learning

Linear Classifiers

Lisbon Machine Learning School, 2014

Ryan McDonald

Google Inc., London E-mail: ryanmcd@google.com

Linear Classifiers

- Go onto ACL Anthology
- Search for: "Naive Bayes", "Maximum Entropy", "Logistic Regression", "SVM", "Perceptron"
- ▶ Do the same on Google Scholar
 - "Maximum Entropy" & "NLP" 9,000 hits, 240 before 2000
 - "SVM" & "NLP" 11,000 hits, 556 before 2000
 - "Perceptron" & "NLP", 3,000 hits, 147 before 2000
- All are examples of linear classifiers
- ► All have become tools in any NLP/CL researchers tool-box in past 15 years
 - Arguably the most important tool

- ▶ Document 1 label: 0; words: * ⋄ ○
- ▶ Document 2 label: 0; words: ★ ♡ △
- ▶ Document 3 label: 1; words: * △ ♠
- ▶ Document 4 label: 1; words: ⋄ △ ∘

- ▶ Document 1 label: 0; words: * ⋄ ○
- ▶ Document 2 label: 0; words: * ♡ △
- ▶ Document 3 label: 1; words: * △ ♠
- ▶ Document 4 label: 1; words: ⋄ △ ∘
- New document words: ★ ⋄ ○; label ?

- ▶ Document 1 label: 0; words: ★ ⋄ ○
- ▶ Document 2 label: 0; words: * ♡ △
- ▶ Document 3 label: 1; words: * △ ♠
- ▶ Document 4 label: 1; words: ⋄ △ ∘
- ▶ New document words: $\star \diamond \circ$; label ?
- ▶ New document words: $\star \diamond \heartsuit$; label ?

- ▶ Document 1 label: 0; words: ★ ⋄ ○
- ▶ Document 2 label: 0; words: * ♡ △
- ▶ Document 3 label: 1; words: ★ △ ♠
- ▶ Document 4 label: 1; words: ⋄ △ ∘
- ▶ New document words: $\star \diamond \circ$; label ?
- ▶ New document words: $\star \diamond \heartsuit$; label ?
- ▶ New document words: $\star \triangle \circ$; label ?

- ▶ Document 1 label: 0; words: ★ ⋄ ○
- ▶ Document 2 label: 0; words: * ♡ △
- ▶ Document 3 label: 1; words: ★ △ ♠
- ▶ Document 4 label: 1; words: ⋄ △ ∘
- New document words: ★ ⋄ ○; label ?
- ▶ New document words: $\star \diamond \heartsuit$; label ?
- ▶ New document words: $\star \triangle \circ$; label ?

Why can we do this?

- Document 1 − label: 0; words: * ⋄ ∘
- ▶ Document 2 label: 0; words: * ♡ △
- ▶ Document 3 label: 1; words: * △ ♠
- ▶ Document 4 label: 1; words: ⋄ △ ∘
- New document words: ★ ⋄ ♡; label 0

Label 0

Label 1

$$P(0|\star) = \frac{\text{count}(\star \text{ and } 0)}{\text{count}(\star)} = \frac{2}{3} = 0.67 \text{ vs. } P(1|\star) = \frac{\text{count}(\star \text{ and } 1)}{\text{count}(\star)} = \frac{1}{3} = 0.33$$

$$P(0|\diamond) = \frac{\text{count}(\diamond \text{ and } 0)}{\text{count}(\diamond)} = \frac{1}{2} = 0.5 \text{ vs. } P(1|\diamond) = \frac{\text{count}(\diamond \text{ and } 1)}{\text{count}(\diamond)} = \frac{1}{2} = 0.5$$

$$P(0|\heartsuit) = \frac{\text{count}(\heartsuit \text{ and } 0)}{\text{count}(\heartsuit)} = \frac{1}{1} = 1.0 \text{ vs. } P(1|\heartsuit) = \frac{\text{count}(\heartsuit \text{ and } 1)}{\text{count}(\heartsuit)} = \frac{0}{1} = 0.0$$

- Document 1 − label: 0; words: * ⋄ ∘
- ▶ Document 2 label: 0; words: * ♡ △
- ▶ Document 3 label: 1; words: * △ ♠
- ▶ Document 4 label: 1; words: ⋄ △ ∘
- ▶ New document words: $\star \triangle \circ$; label ?

Label 0

Label 1

$$P(0|\star) = \frac{\text{count}(\star \text{ and } 0)}{\text{count}(\star)} = \frac{2}{3} = 0.67 \text{ vs. } P(1|\star) = \frac{\text{count}(\star \text{ and } 1)}{\text{count}(\star)} = \frac{1}{3} = 0.33$$

$$P(0|\triangle) = \frac{\text{count}(\triangle \text{ and } 0)}{\text{count}(\triangle)} = \frac{1}{3} = 0.33 \text{ vs. } P(1|\triangle) = \frac{\text{count}(\triangle \text{ and } 1)}{\text{count}(\triangle)} = \frac{2}{3} = 0.67$$

$$P(0|\circ) = \frac{\text{count}(\circ \text{ and } 0)}{\text{count}(\circ)} = \frac{1}{2} = 0.5 \text{ vs. } P(1|\circ) = \frac{\text{count}(\circ \text{ and } 1)}{\text{count}(\circ)} = \frac{1}{2} = 0.5$$

Machine Learning

- Machine learning is well motivated counting
- ► Typically, machine learning models
 - 1. Define a model/distribution of interest
 - 2. Make some assumptions if needed
 - 3. Count!!
- ▶ Model: $P(|abel|doc) = P(|abel|word_1, ... word_n)$
 - ▶ Prediction for new doc = $\arg \max_{|abe|} P(|abe||doc)$
- ► Assumption: $P(|abel|word_1, ..., word_n) = \frac{1}{n} \sum_i P(|abel|word_i)$
- Count (as in example)

Lecture Outline

- Preliminaries
 - Data: input/output, assumptions
 - Feature representations
 - ► Linear classifiers and decision boundaries
- Classifiers
 - Naive Bayes
 - Generative versus discriminative
 - Logistic-regression
 - Perceptron
 - Large-Margin Classifiers (SVMs)
- Regularization
- Online learning
- Non-linear classifiers

Inputs and Outputs

- ▶ Input: $x \in \mathcal{X}$
 - e.g., document or sentence with some words $x = w_1 \dots w_n$, or a series of previous actions
- ▶ Output: $y \in \mathcal{Y}$
 - e.g., parse tree, document class, part-of-speech tags, word-sense
- ▶ Input/Output pair: $(x,y) \in \mathcal{X} imes \mathcal{Y}$
 - lacktriangledown e.g., a document x and its label y
 - ightharpoonup Sometimes x is explicit in y, e.g., a parse tree y will contain the sentence x

General Goal

When given a new input x predict the correct output y

But we need to formulate this computationally!

Feature Representations

- lacktriangle We assume a mapping from input x to a high dimensional feature vector
 - $lacktriangledown \phi(x): \mathcal{X}
 ightarrow \mathbb{R}^m$
- For many cases, more convenient to have mapping from input-output pairs (x, y)

$$lackbox{} \phi(x,y): \mathcal{X} imes \mathcal{Y}
ightarrow \mathbb{R}^m$$

- Under certain assumptions, these are equivalent
- lacksquare Most papers in NLP use $\phi(x,y)$

Feature Representations

- lacktriangle We assume a mapping from input x to a high dimensional feature vector
 - $lacktriangledown\phi(x):\mathcal{X}
 ightarrow\mathbb{R}^m$
- For many cases, more convenient to have mapping from input-output pairs (x, y)
 - $lackbox{\phi}(x,y): \mathcal{X} imes \mathcal{Y}
 ightarrow \mathbb{R}^m$
- Under certain assumptions, these are equivalent
- lacksquare Most papers in NLP use $\phi(x,y)$
- ▶ Not common in NLP: $\phi \in \mathbb{R}^m$
- ▶ More common: $\phi_i \in \{1, \dots, F_i\}$, $F_i \in \mathbb{N}^+$ (categorical)
- ▶ Very common: $\phi \in \{0,1\}^m$ (binary)

Feature Representations

- lacktriangle We assume a mapping from input x to a high dimensional feature vector
 - $lacktriangledown \phi(x): \mathcal{X}
 ightarrow \mathbb{R}^m$
- For many cases, more convenient to have mapping from input-output pairs (x, y)
 - $lackbox{\phi}(x,y): \mathcal{X} imes \mathcal{Y}
 ightarrow \mathbb{R}^m$
- Under certain assumptions, these are equivalent
- lacksquare Most papers in NLP use $\phi(x,y)$
- ▶ Not common in NLP: $\phi \in \mathbb{R}^m$
- ▶ More common: $\phi_i \in \{1, ..., F_i\}$, $F_i \in \mathbb{N}^+$ (categorical)
- ▶ Very common: $\phi \in \{0,1\}^m$ (binary)
- ▶ For any vector $\mathbf{v} \in \mathbb{R}^m$, let \mathbf{v}_j be the j^{th} value

Examples

ightharpoonup x is a document and y is a label

$$\phi_j(x,y) = \left\{egin{array}{ll} 1 & ext{if } x ext{ contains the word "interest"} \ & ext{and } y = ext{"financial"} \ & ext{0} & ext{otherwise} \end{array}
ight.$$

 $\phi_j(x,y)=\%$ of words in x with punctuation and y= "scientific"

lacktriangledown x is a word and y is a part-of-speech tag

$$\phi_j(oldsymbol{x},oldsymbol{y}) = \left\{egin{array}{ll} 1 & ext{if } oldsymbol{x} = ext{ `bank'' and } oldsymbol{y} = ext{ Verb} \ 0 & ext{otherwise} \end{array}
ight.$$

Example 2

ightharpoonup x is a name, y is a label classifying the name

$$\phi_0(x,y) = \left\{ \begin{array}{ll} 1 & \text{if x contains "George"} \\ & \text{and y = "Person"} \\ 0 & \text{otherwise} \end{array} \right. \qquad \phi_4(x,y) = \left\{ \begin{array}{ll} 1 & \text{if x contains "George"} \\ & \text{and y = "Object"} \\ 0 & \text{otherwise} \end{array} \right. \\ \phi_1(x,y) = \left\{ \begin{array}{ll} 1 & \text{if x contains "Washington"} \\ & \text{and y = "Person"} \\ 0 & \text{otherwise} \end{array} \right. \qquad \phi_5(x,y) = \left\{ \begin{array}{ll} 1 & \text{if x contains "Washington"} \\ & \text{and y = "Object"} \\ 0 & \text{otherwise} \end{array} \right. \\ \phi_2(x,y) = \left\{ \begin{array}{ll} 1 & \text{if x contains "Washington"} \\ & \text{and y = "Object"} \\ 0 & \text{otherwise} \end{array} \right. \\ \phi_2(x,y) = \left\{ \begin{array}{ll} 1 & \text{if x contains "Bridge"} \\ & \text{and y = "Object"} \\ 0 & \text{otherwise} \end{array} \right. \\ \phi_3(x,y) = \left\{ \begin{array}{ll} 1 & \text{if x contains "Bridge"} \\ & \text{and y = "Object"} \\ 0 & \text{otherwise} \end{array} \right. \\ \phi_7(x,y) = \left\{ \begin{array}{ll} 1 & \text{if x contains "General"} \\ & \text{and y = "Object"} \\ 0 & \text{otherwise} \end{array} \right. \\ \phi_7(x,y) = \left\{ \begin{array}{ll} 1 & \text{if x contains "General"} \\ & \text{and y = "Object"} \\ 0 & \text{otherwise} \end{array} \right. \\ \phi_7(x,y) = \left\{ \begin{array}{ll} 1 & \text{if x contains "General"} \\ & \text{otherwise} \\ 0 & \text{otherwise} \end{array} \right. \\ \phi_7(x,y) = \left\{ \begin{array}{ll} 1 & \text{if x contains "General"} \\ & \text{otherwise} \\ 0 & \text{otherwise} \end{array} \right. \\ \phi_7(x,y) = \left\{ \begin{array}{ll} 1 & \text{if x contains "General"} \\ & \text{otherwise} \\ 0 & \text{otherwise} \end{array} \right. \\ \phi_7(x,y) = \left\{ \begin{array}{ll} 1 & \text{if x contains "General"} \\ & \text{otherwise} \\ 0 & \text{otherwise} \end{array} \right. \\ \phi_7(x,y) = \left\{ \begin{array}{ll} 1 & \text{if x contains "General"} \\ & \text{otherwise} \\ 0 & \text{otherwise} \end{array} \right. \\ \phi_7(x,y) = \left\{ \begin{array}{ll} 1 & \text{if x contains "General"} \\ & \text{otherwise} \\ \end{array} \right. \\ \phi_7(x,y) = \left\{ \begin{array}{ll} 1 & \text{if x contains "General"} \\ & \text{otherwise} \\ \end{array} \right. \\ \phi_7(x,y) = \left\{ \begin{array}{ll} 1 & \text{if x contains "General"} \\ & \text{otherwise} \\ \end{array} \right. \\ \phi_7(x,y) = \left\{ \begin{array}{ll} 1 & \text{if x contains "General"} \\ \end{array} \right. \\ \phi_7(x,y) = \left\{ \begin{array}{ll} 1 & \text{if x contains "General"} \\ \end{array} \right. \\ \phi_7(x,y) = \left\{ \begin{array}{ll} 1 & \text{if x contains "General"} \\ \end{array} \right. \\ \phi_7(x,y) = \left\{ \begin{array}{ll} 1 & \text{if x contains "General"} \\ \end{array} \right. \\ \phi_7(x,y) = \left\{ \begin{array}{ll} 1 & \text{if x contains "General"} \\ \end{array} \right. \\ \phi_7(x,y) = \left\{ \begin{array}{ll} 1 & \text{if x contains "General"} \\ \end{array} \right. \\ \phi_7(x$$

- ► x=General George Washington, y=Person $\rightarrow \phi(x,y) = \begin{bmatrix} 1 & 1 & 0 & 1 & 0 & 0 & 0 \end{bmatrix}$
- lacktriangledown lac
- lacksquare x=George Washington George, y=Object $ightarrow \phi(x,y)=[0\ 0\ 0\ 1\ 1\ 0\ 0]$

Block Feature Vectors

- $m{x}=$ General George Washington, $m{y}=$ Person $m{ o}$ $\phi(m{x},m{y})=[1\ 1\ 0\ 1\ 0\ 0\ 0\ 0]$
- x=General George Washington, y=Object $o \phi(x,y)=[0\ 0\ 0\ 1\ 1\ 0\ 1]$
- lacksquare x=George Washington Bridge, y=Object $ightarrow \phi(x,y)=[0\ 0\ 0\ 1\ 1\ 1\ 0]$
- x=George Washington George, y=Object $\rightarrow \phi(x,y)=[0\ 0\ 0\ 1\ 1\ 0\ 0]$
- Each equal size block of the feature vector corresponds to one label
- Non-zero values allowed only in one block

Feature Representations - $\phi(x)$

- lacksquare Instead of $\phi(x,y): \mathcal{X} imes \mathcal{Y} o \mathbb{R}^m$ over input/outputs (x,y)
- ▶ Let $\phi(x): \mathcal{X} \to \mathbb{R}^{m'}$ (e.g., $m' = m/|\mathcal{Y}|$)
 ▶ I.e., Feature representation only over inputs x
- lacktriangledown Equivalent when $\phi(x,y)=\phi(x) imes\mathcal{Y}$
- Advantages: Can make math cleaner, e.g., binary classification; Can use less parameters.
- ▶ Disadvantages: No complex features over properties of labels

Feature Representations - $\phi(x)$ vs. $\phi(x,y)$

- $ightharpoonup \phi(x,y)$
 - **x**=General George Washington, y=Person → $\phi(x, y)$ = [1 1 0 1 0 0 0 0] **x**=General George Washington, y=Object → $\phi(x, y)$ = [0 0 0 0 1 1 0 1]
 - x deficial decige washington, y object $\rightarrow \varphi(x,y) = [0\ 0\ 0\ 1\ 1\ 0\]$
 - $ightharpoonup \phi(x)$
 - x=General George Washington $o \phi(x) = [1 \ 1 \ 0 \ 1]$
 - ▶ Different ways of representing same thing
 - lacktriangle Can deterministically map from $\phi(x)$ to $\phi(x,y)$ given y

Linear Classifiers

- Linear classifier: score (or probability) of a particular classification is based on a linear combination of features and their weights
- Let $\boldsymbol{\omega} \in \mathbb{R}^m$ be a high dimensional weight vector
- \blacktriangleright Assume that ω is known
 - ▶ Multiclass Classification: $\mathcal{Y} = \{0, 1, ..., N\}$

$$egin{array}{ll} oldsymbol{y} &=& rg \max_{oldsymbol{y}} & oldsymbol{\omega} \cdot oldsymbol{\phi}(oldsymbol{x}, oldsymbol{y}) \ &=& rg \max_{oldsymbol{y}} & \sum_{i=0}^m oldsymbol{\omega}_j imes oldsymbol{\phi}_j(oldsymbol{x}, oldsymbol{y}) \end{array}$$

Binary Classification just a special case of multiclass

Linear Classifiers – $\phi(x)$

- ▶ Define $|\mathcal{Y}|$ parameter vectors $\boldsymbol{\omega_y} \in \mathbb{R}^{m'}$ ▶ I.e., one parameter vector per output class \boldsymbol{y}
- Classification

$$oldsymbol{y} = rg \max_{oldsymbol{y}} \ oldsymbol{\omega_y} \cdot \phi(oldsymbol{x})$$

Linear Classifiers – $\phi(x)$

- lacktriangle Define $|\mathcal{Y}|$ parameter vectors $oldsymbol{\omega_y} \in \mathbb{R}^{m'}$
 - \triangleright l.e., one parameter vector per output class y
- Classification

$$oldsymbol{y} = rg \max_{oldsymbol{y}} \ oldsymbol{\omega_y} \cdot oldsymbol{\phi(x)}$$

- $ightharpoonup \phi(x,y)$
 - ▶ x=General George Washington, y=Person $o \phi(x,y) = [1 \ 1 \ 0 \ 1 \ 0 \ 0 \ 0]$
 - $m{x}=$ General George Washington, $m{y}=$ Object $ightarrow \phi(m{x},m{y})=[0\ 0\ 0\ 1\ 1\ 0\ 1]$
 - ▶ Single $\omega \in \mathbb{R}^8$
- $ightharpoonup \phi(x)$
 - x=General George Washington $o \phi(x) = [extstyle{1} extstyle{1} extstyle{0} extstyle{1}]$
 - ightharpoonup Two parameter vectors $\omega_0 \in \mathbb{R}^4$, $\omega_1 \in \mathbb{R}^4$

Linear Classifiers - Bias Terms

Often linear classifiers presented as

$$y = \underset{y}{\operatorname{arg max}} \sum_{j=0}^{m} \omega_{j} \times \phi_{j}(x, y) + b_{y}$$

- ▶ Where b is a bias or offset term
- \blacktriangleright Sometimes this is folded into ϕ

$$x=$$
General George Washington, $y=$ Person o $\phi(x,y)=[1\ 1\ 0\ 1\ 1\ 0\ 0\ 0\ 0\ 0]$ $x=$ General George Washington, $y=$ Object o $\phi(x,y)=[0\ 0\ 0\ 0\ 1\ 1\ 0\ 1\ 1]$

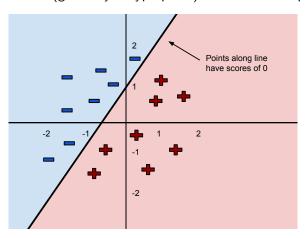
$$\phi_4(x,y) = \left\{egin{array}{ll} 1 & y = ext{``Person''} \ 0 & ext{otherwise} \end{array}
ight. \qquad \phi_9(x,y) = \left\{egin{array}{ll} 1 & y = ext{``Object''} \ 0 & ext{otherwise} \end{array}
ight.$$

 \blacktriangleright ω_4 and ω_9 are now the bias terms for the labels

Binary Linear Classifier

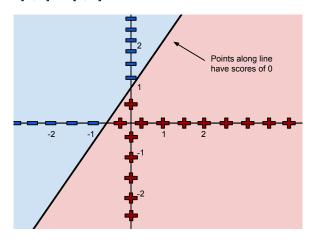
Let's say $\boldsymbol{\omega} = (1,-1)$ and $b_{\boldsymbol{y}} = 1$, $\forall \boldsymbol{y}$

Then ω is a line (generally a hyperplane) that divides all points:



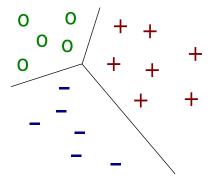
Binary Linear Classifier - Block Features

 $\phi(x,y) = [v,0]$ or [0,v] in block features



Multiclass Linear Classifier

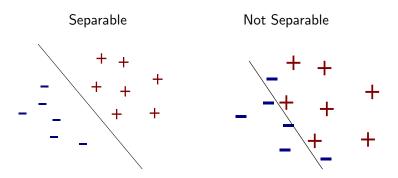
Defines regions of space. Visualization difficult.



lacksquare i.e., $m{+}$ are all points (x,y) where $m{+}=rg\max_{m{y}} \ m{\omega}\cdot \phi(x,y)$

Separability

ightharpoonup A set of points is separable, if there exists a ω such that classification is perfect



► This can also be defined mathematically (and we will shortly)

Machine Learning – finding ω

- Supervised Learning
- lacktriangleright Input: training examples $\mathcal{T} = \{(m{x}_t, m{y}_t)\}_{t=1}^{|\mathcal{T}|}$
- ▶ Input: feature representation ϕ
- ightharpoonup Output: ω that maximizes some important function on the training set
 - $m{\omega} = rg \max \mathcal{L}(\mathcal{T}; m{\omega})$

Machine Learning – finding ω

- Supervised Learning
- lacksquare Input: training examples $\mathcal{T} = \{(oldsymbol{x}_t, oldsymbol{y}_t)\}_{t=1}^{|\mathcal{T}|}$
- ▶ Input: feature representation ϕ
- ightharpoonup Output: ω that maximizes some important function on the training set
- Equivalently minimize: $\omega = \arg\min -\mathcal{L}(\mathcal{T}; \omega)$

Objective Functions

- \blacktriangleright $\mathcal{L}(\cdot)$ is called the objective function
- lacktriangle Usually we can decompose ${\mathcal L}$ by training pairs (x,y)
 - $riangleright \mathcal{L}(\mathcal{T}; \pmb{\omega}) \propto \sum_{(m{x}, m{y}) \in \mathcal{T}} extstyle extstyle \mathcal{L}(m{x}, m{y}); \pmb{\omega})$
 - loss is a function that measures some value correlated with errors of parameters ω on instance (x,y)
- ▶ Defining $\mathcal{L}(\cdot)$ and *loss* is core of linear classifiers in machine learning

Supervised Learning – Assumptions

- Assumption: (x_t, y_t) are sampled i.i.d.
 - ▶ i.i.d. = independent and identically distributed
 - ▶ independent = each sample independent of the other
 - ▶ identically = each sample from same probability distribution
- Sometimes assumption: The training data is separable
 - Needed to prove convergence for Perceptron
 - Not needed in practice

Naive Bayes

Probabilistic Models

- ightharpoonup For a moment, forget linear classifiers and parameter vectors ω
- Let's assume our goal is to model the conditional probability of output labels y given inputs x (or $\phi(x)$)
- I.e., P(y|x)
- ▶ If we can define this distribution, then classification becomes
 - $ightharpoonup \arg\max_{m{y}} P(m{y}|m{x})$

Bayes Rule

▶ One way to model P(y|x) is through Bayes Rule:

$$P(y|x) = rac{P(y)P(x|y)}{P(x)}$$

$$rg \max_{oldsymbol{y}} P(oldsymbol{y} | oldsymbol{x}) \propto rg \max_{oldsymbol{y}} P(oldsymbol{y}) P(oldsymbol{x} | oldsymbol{y})$$

- Since x is fixed
- ightharpoonup P(y)P(x|y)=P(x,y): a joint probability
- Modeling the joint input-output distribution is at the core of generative models
 - Because we model a distribution that can randomly generate outputs and inputs, not just outputs
 - More on this later

Naive Bayes (NB)

- lacksquare Use $\phi(x)\in\mathbb{R}^m$ instead of $\phi(x,y)$
- $P(x|y) = P(\phi(x)|y) = P(\phi_1(x), \dots, \phi_m(x)|y)$

Naive Bayes Assumption

(conditional independence)

$$P(\phi_1(x),\ldots,\phi_m(x)|y)=\prod_i P(\phi_i(x)|y)$$

$$P(y)P(\phi_1(x),\ldots,\phi_m(x)|y)=P(y)\prod_{i=1}^m P(\phi_i(x)|y)$$

Naive Bayes – Learning

- ▶ Input: $\mathcal{T} = \{(\boldsymbol{x}_t, \boldsymbol{y}_t)\}_{t=1}^{|\mathcal{T}|}$
- ▶ Let $\phi_i(x) \in \{1, ..., F_i\}$ categorical; common in NLP
- ▶ Parameters $\mathcal{P} = \{P(y), P(\phi_i(x)|y)\}$
 - ▶ Both P(y) and $P(\phi_i(x)|y)$ are multinomials
- ► Objective: Maximum Likelihood Estimation (MLE)

$$\mathcal{L}(\mathcal{T}) = \prod_{t=1}^{|\mathcal{T}|} P(x_t, y_t) = \prod_{t=1}^{|\mathcal{T}|} \left(P(y_t) \prod_{i=1}^m P(\phi_i(x_t)|y_t) \right)$$
 $\mathcal{P} = rg \max_{\mathcal{P}} \prod_{t=1}^{|\mathcal{T}|} \left(P(y_t) \prod_{i=1}^m P(\phi_i(x_t)|y_t) \right)$

Naive Bayes – Learning

MLE has closed form solution!! (more later)

$$\mathcal{P} = \operatorname*{arg\,max}_{\mathcal{P}} \ \prod_{t=1}^{|\mathcal{T}|} \left(P(oldsymbol{y}_t) \prod_{i=1}^m P(\phi_i(oldsymbol{x}_t) | oldsymbol{y}_t)
ight)$$

$$P(oldsymbol{y}) = rac{\sum_{t=1}^{|\mathcal{T}|}[[oldsymbol{y}_t = oldsymbol{y}]]}{|\mathcal{T}|} \ P(\phi_i(oldsymbol{x})|oldsymbol{y}) = rac{\sum_{t=1}^{|\mathcal{T}|}[[\phi_i(oldsymbol{x}_t) = \phi_i(oldsymbol{x}) ext{ and } oldsymbol{y}_t = oldsymbol{y}]]}{\sum_{t=1}^{|\mathcal{T}|}[[oldsymbol{y}_t = oldsymbol{y}]]}$$

[[X]] is the identity function for property X Thus, these are just normalized counts over events in $\mathcal T$

Naive Bayes Example

- $ightharpoonup \phi_i(x) \in 0,1, \ \forall i$
- doc 1: $y_1 = 0$, $\phi_0(x_1) = 1$, $\phi_1(x_1) = 1$
- doc 2: $y_2 = 0$, $\phi_0(x_2) = 0$, $\phi_1(x_2) = 1$
- doc 3: $y_3 = 1$, $\phi_0(x_3) = 1$, $\phi_1(x_3) = 0$
- lacktriangle Two label parameters $P(m{y}=0)$, $P(m{y}=1)$
- Eight feature parameters
 - 2 (labels) * 2 (features) * 2 (feature values)
 - lacksquare E.g., $oldsymbol{y}=0$ and $\phi_0(oldsymbol{x})=1$: $P(\phi_0(oldsymbol{x})=1|oldsymbol{y}=0)$
- P(y=0)=2/3, P(y=1)=1/3
- ho $P(\phi_0(x) = 1|y = 0) = 1/2$, $P(\phi_1(x) = 0|y = 1) = 1/1$

Naive Bayes Document Classification

- ▶ doc 1: y_1 = sports, "hockey is fast"
- ▶ doc 2: y_2 = politics, "politicians talk fast"
- ▶ doc 3: y_3 = politics, "washington is sleazy"
- $\phi_0(x) = 1$ iff doc has word 'hockey', 0 o.w.
- ullet $\phi_1(x)=1$ iff doc has word 'is', 0 o.w.
- ullet $\phi_2(x)=1$ iff doc has word 'fast', 0 o.w.
- ullet $\phi_3(x)=1$ iff doc has word 'politicians', 0 o.w.
- $\phi_4(x) = 1$ iff doc has word 'talk', 0 o.w.
- $\phi_5(x) = 1$ iff doc has word 'washington', 0 o.w.
- $\phi_6(x) = 1$ iff doc has word 'sleazy', 0 o.w.

Deriving MLE

$$\mathcal{P} = \underset{\mathcal{P}}{\operatorname{arg max}} \prod_{t=1}^{|\mathcal{T}|} \left(P(y_t) \prod_{i=1}^m P(\phi_i(x_t)|y_t) \right)$$

$$= \underset{\mathcal{P}}{\operatorname{arg max}} \sum_{t=1}^{|\mathcal{T}|} \left(\log P(y_t) + \sum_{i=1}^m \log P(\phi_i(x_t)|y_t) \right)$$

$$= \underset{P(y)}{\operatorname{arg max}} \sum_{t=1}^{|\mathcal{T}|} \log P(y_t) + \underset{P(\phi_i(x)|y)}{\operatorname{arg max}} \sum_{t=1}^{|\mathcal{T}|} \sum_{i=1}^m \log P(\phi_i(x_t)|y_t)$$

such that
$$\sum_{m{y}} P(m{y}) = 1$$
, $\sum_{j=1}^{F_i} P(\phi_i(m{x}) = j | m{y}) = 1$, $P(\cdot) \geq 0$

Deriving MLE

$$\mathcal{P} = \argmax_{P(\boldsymbol{y})} \sum_{t=1}^{|\mathcal{T}|} \log P(\boldsymbol{y}_t) + \argmax_{P(\phi_i(\boldsymbol{x})|\boldsymbol{y})} \sum_{t=1}^{|\mathcal{T}|} \sum_{i=1}^m \log P(\phi_i(\boldsymbol{x}_t)|\boldsymbol{y}_t)$$

Both optimizations are of the form

$$rg \max_{P} \sum_{v} \operatorname{count}(v) \log P(v)$$
, s.t., $\sum_{v} P(v) = 1$, $P(v) \ge 0$

For example:

$$rg \max_{P(m{y})} \sum_{t=1}^{|\mathcal{T}|} \log P(m{y}_t) = rg \max_{P(m{y})} \sum_{m{y}} \mathsf{count}(m{y}, \mathcal{T}) \log P(m{y})$$
 such that $\sum_{m{y}} P(m{y}) = 1$, $P(m{y}) \geq 0$

Deriving MLE

$$\arg \max_{P} \sum_{v} \operatorname{count}(v) \log P(v)$$

s.t.,
$$\sum_{v} P(v) = 1, P(v) \ge 0$$

Introduce Lagrangian multiplier λ , optimization becomes

$$rg \max_{P,\lambda} \ \sum_{v} \operatorname{count}(v) \log P(v) - \lambda \left(\sum_{v} P(v) - 1 \right)$$

$$\operatorname{Derivative} \ \operatorname{w.r.t} \ P(v) \ \operatorname{is} \ \frac{\operatorname{count}(v)}{P(v)} - \lambda$$

$$\operatorname{Setting} \ \operatorname{this} \ \operatorname{to} \ \operatorname{zero} \ P(v) = \frac{\operatorname{count}(v)}{\lambda}$$

Combine with
$$\sum_{v} P(v) = 1$$
. $P(v) \ge 0$, then $P(v) = \frac{\mathsf{count}(v)}{\sum_{v'} \mathsf{count}(v')}$

Put it together

$$\mathcal{P} = \underset{\mathcal{P}}{\operatorname{arg \, max}} \prod_{t=1}^{|\mathcal{T}|} \left(P(y_t) \prod_{i=1}^m P(\phi_i(x_t)|y_t) \right)$$

$$= \underset{P(y)}{\operatorname{arg \, max}} \sum_{t=1}^{|\mathcal{T}|} \log P(y_t) + \underset{P(\phi_i(x)|y)}{\operatorname{arg \, max}} \sum_{t=1}^{|\mathcal{T}|} \sum_{i=1}^m \log P(\phi_i(x_t)|y_t)$$

$$P(y) = \frac{\sum_{t=1}^{|\mathcal{T}|} [[y_t = y]]}{|\mathcal{T}|}$$

$$P(\phi_i(x)|y) = \frac{\sum_{t=1}^{|\mathcal{T}|} [[\phi_i(x_t) = \phi_i(x) \text{ and } y_t = y]]}{\sum_{t=1}^{|\mathcal{T}|} [[y_t = y]]}$$

NB is a linear classifier

- ▶ Let $\omega_{\boldsymbol{y}} = \log P(\boldsymbol{y})$, $\forall \boldsymbol{y} \in \mathcal{Y}$
- ▶ Let $m{\omega}_{m{\phi}_i(m{x}),m{y}} = \log P(m{\phi}_i(m{x})|m{y})$, $orall m{y} \in \mathcal{Y}, m{\phi}_i(m{x}) \in \{1,\dots,F_i\}$
- ▶ Let ω be set of all ω_* and $\omega_{*,*}$

$$\begin{split} \arg\max_{\boldsymbol{y}} \ P(\boldsymbol{y}|\boldsymbol{\phi}(\boldsymbol{x})) & \propto & \arg\max_{\boldsymbol{y}} \ P(\boldsymbol{\phi}(\boldsymbol{x}),\boldsymbol{y}) = \arg\max_{\boldsymbol{y}} \ P(\boldsymbol{y}) \prod_{i=1}^{m} P(\phi_{i}(\boldsymbol{x})|\boldsymbol{y}) \\ & = & \arg\max_{\boldsymbol{y}} \ \log P(\boldsymbol{y}) + \sum_{i=1}^{m} \log P(\phi_{i}(\boldsymbol{x})|\boldsymbol{y}) \\ & = & \arg\max_{\boldsymbol{y}} \ \boldsymbol{\omega}_{\boldsymbol{y}} + \sum_{i=1}^{m} \boldsymbol{\omega}_{\phi_{i}(\boldsymbol{x}),\boldsymbol{y}} \\ & = & \arg\max_{\boldsymbol{y}} \ \sum_{\boldsymbol{y}'} \boldsymbol{\omega}_{\boldsymbol{y}} \boldsymbol{\psi}_{\boldsymbol{y}'}(\boldsymbol{y}) + \sum_{i=1}^{m} \sum_{j=1}^{F_{i}} \boldsymbol{\omega}_{\phi_{i}(\boldsymbol{x}),\boldsymbol{y}} \boldsymbol{\psi}_{i,j}(\boldsymbol{x}) \\ \end{split}$$
 where $\boldsymbol{\psi}_{*} \in \{0,1\}, \ \boldsymbol{\psi}_{i,i}(\boldsymbol{x}) = [[\phi_{i}(\boldsymbol{x}) = j]], \ \boldsymbol{\psi}_{\boldsymbol{y}'}(\boldsymbol{y}) = [[\boldsymbol{y} = \boldsymbol{y}']] \end{split}$

Smoothing

- doc 1: $y_1 = \text{sports}$, "hockey is fast"
- doc 2: y_2 = politics, "politicians talk fast"
- ▶ doc 3: y_3 = politics, "washington is sleazy"
- New doc: "washington hockey is fast"
- Both 'sports' and 'politics' have probabilities of 0
- Smoothing aims to assign a small amount of probability to unseen events
- ► E.g., Additive/Laplacian smoothing

$$P(v) = \frac{\mathsf{count}(v)}{\sum_{v'} \mathsf{count}(v')} \implies P(v) = \frac{\mathsf{count}(v) + \alpha}{\sum_{v'} (\mathsf{count}(v') + \alpha)}$$

Discriminative versus Generative

- ► Generative models attempt to model inputs and outputs
 - e.g., NB = MLE of joint distribution P(x, y)
 - ▶ Statistical model must explain generation of input
- Ocam's Razor: why model input?
- Discriminative models
 - Use $\mathcal L$ that directly optimizes P(y|x) (or something related)
 - ▶ Logistic Regression MLE of P(y|x)
 - Perceptron and SVMs minimize classification error
- Generative and discriminative models use P(y|x) for prediction
- lacktriangle Differ only on what distribution they use to set ω

Define a conditional probability:

$$P(y|x) = rac{\mathrm{e}^{oldsymbol{\omega}\cdot\phi(x,y)}}{Z_x}, \qquad ext{where } Z_x = \sum_{y' \in \mathcal{Y}} \mathrm{e}^{oldsymbol{\omega}\cdot\phi(x,y')}$$

Note: still a linear classifier

$$\begin{array}{rcl} \arg\max_{\boldsymbol{y}} \; P(\boldsymbol{y}|\boldsymbol{x}) & = & \arg\max_{\boldsymbol{y}} \; \frac{e^{\boldsymbol{\omega} \cdot \boldsymbol{\phi}(\boldsymbol{x},\boldsymbol{y})}}{Z_{\boldsymbol{x}}} \\ & = & \arg\max_{\boldsymbol{y}} \; e^{\boldsymbol{\omega} \cdot \boldsymbol{\phi}(\boldsymbol{x},\boldsymbol{y})} \\ & = & \arg\max_{\boldsymbol{y}} \; \boldsymbol{\omega} \cdot \boldsymbol{\phi}(\boldsymbol{x},\boldsymbol{y}) \end{array}$$

$$P(y|x) = rac{\mathrm{e}^{\omega\cdot\phi(x,y)}}{Z_x}$$

- ightharpoonup Q: How do we learn weights ω
- ► A: Set weights to maximize log-likelihood of training data:

$$egin{array}{lcl} oldsymbol{\omega} &=& rg \max_{oldsymbol{\omega}} \; \mathcal{L}(\mathcal{T}; oldsymbol{\omega}) \ &=& rg \max_{oldsymbol{\omega}} \; \prod_{t=1}^{|\mathcal{T}|} P(y_t|x_t) = rg \max_{oldsymbol{\omega}} \; \sum_{t=1}^{|\mathcal{T}|} \log P(y_t|x_t) \end{array}$$

In a nut shell we set the weights ω so that we assign as much probability to the correct label y for each x in the training set

$$P(y|x) = rac{e^{\omega \cdot \phi(x,y)}}{Z_x}, \qquad ext{where } Z_x = \sum_{y' \in \mathcal{Y}} e^{\omega \cdot \phi(x,y')}$$
 $\omega = rg \max_{oldsymbol{\omega}} \ \sum_{t=1}^{|\mathcal{T}|} \log P(y_t|x_t) \ (*)$

- ▶ The objective function (*) is concave (take the 2nd derivative)
- Therefore there is a global maximum
- ▶ No closed form solution, but lots of numerical techniques
 - Gradient methods (gradient ascent, conjugate gradient, iterative scaling)
 - Newton methods (limited-memory quasi-newton)

Gradient Ascent

- lacksquare Let $\mathcal{L}(\mathcal{T}; oldsymbol{\omega}) = \sum_{t=1}^{|\mathcal{T}|} \log \left(e^{oldsymbol{\omega} \cdot \phi(x_t, y_t)} / Z_x
 ight)$
- ▶ Want to find $\arg \max_{\omega} \mathcal{L}(\mathcal{T}; \omega)$
 - ▶ Set $\omega^0 = O^m$
 - ▶ Iterate until convergence

$$\boldsymbol{\omega}^{i} = \boldsymbol{\omega}^{i-1} + \alpha \triangledown \mathcal{L}(\mathcal{T}; \boldsymbol{\omega}^{i-1})$$

- lacktriangledown lpha > 0 and set so that $\mathcal{L}(\mathcal{T}; m{\omega}^i) > \mathcal{L}(\mathcal{T}; m{\omega}^{i-1})$
- ightharpoons $abla \mathcal{L}(\mathcal{T}; oldsymbol{\omega})$ is gradient of \mathcal{L} w.r.t. $oldsymbol{\omega}$
 - A gradient is all partial derivatives over variables w_i
 - ▶ i.e., $\nabla \mathcal{L}(\mathcal{T}; \boldsymbol{\omega}) = (\frac{\partial}{\partial \omega_0} \mathcal{L}(\mathcal{T}; \boldsymbol{\omega}), \frac{\partial}{\partial \omega_1} \mathcal{L}(\mathcal{T}; \boldsymbol{\omega}), \dots, \frac{\partial}{\partial \omega_m} \mathcal{L}(\mathcal{T}; \boldsymbol{\omega}))$
- lacktriangle Gradient ascent will always find ω to maximize $\mathcal L$

Gradient Descent

- lacksquare Let $\mathcal{L}(\mathcal{T}; oldsymbol{\omega}) = -\sum_{t=1}^{|\mathcal{T}|} \log \left(\mathrm{e}^{oldsymbol{\omega} \cdot \phi(x_t, y_t)} / \mathcal{Z}_x
 ight)$
- ▶ Want to find $\underset{\omega}{\operatorname{arg\,min}} \omega \mathcal{L}(\mathcal{T}; \omega)$
 - ▶ Set $\omega^0 = O^m$
 - ▶ Iterate until convergence

$$\boldsymbol{\omega}^{i} = \boldsymbol{\omega}^{i-1} - \alpha \triangledown \mathcal{L}(\mathcal{T}; \boldsymbol{\omega}^{i-1})$$

- lacktriangledown lpha > 0 and set so that $\mathcal{L}(\mathcal{T}; m{\omega}^i) < \mathcal{L}(\mathcal{T}; m{\omega}^{i-1})$
- ightharpoons $abla \mathcal{L}(\mathcal{T}; oldsymbol{\omega})$ is gradient of \mathcal{L} w.r.t. $oldsymbol{\omega}$
 - A gradient is all partial derivatives over variables w_i
 - ▶ i.e., $\nabla \mathcal{L}(\mathcal{T}; \boldsymbol{\omega}) = (\frac{\partial}{\partial \omega_0} \mathcal{L}(\mathcal{T}; \boldsymbol{\omega}), \frac{\partial}{\partial \omega_1} \mathcal{L}(\mathcal{T}; \boldsymbol{\omega}), \dots, \frac{\partial}{\partial \omega_m} \mathcal{L}(\mathcal{T}; \boldsymbol{\omega}))$
- Gradient ascent will always find ω to minimize \mathcal{L}

lacktriangle Need to find all partial derivatives $rac{\partial}{\partial \omega_i} \mathcal{L}(\mathcal{T}; \omega)$

$$\mathcal{L}(\mathcal{T}; \boldsymbol{\omega}) = \sum_{t} \log P(y_{t}|x_{t})$$

$$= \sum_{t} \log \frac{e^{\boldsymbol{\omega} \cdot \boldsymbol{\phi}(x_{t}, y_{t})}}{\sum_{\boldsymbol{y}' \in \mathcal{Y}} e^{\boldsymbol{\omega} \cdot \boldsymbol{\phi}(x_{t}, y')}}$$

$$= \sum_{t} \log \frac{e^{\sum_{j} \omega_{j} \times \boldsymbol{\phi}_{j}(x_{t}, y_{t})}}{Z_{x_{t}}}$$

Partial derivatives - some reminders

1.
$$\frac{\partial}{\partial x} \log F = \frac{1}{F} \frac{\partial}{\partial x} F$$

▶ We always assume log is the natural logarithm log_e

2.
$$\frac{\partial}{\partial x}e^F = e^F \frac{\partial}{\partial x}F$$

3.
$$\frac{\partial}{\partial x} \sum_t F_t = \sum_t \frac{\partial}{\partial x} F_t$$

4.
$$\frac{\partial}{\partial x} \frac{F}{G} = \frac{G \frac{\partial}{\partial x} F - F \frac{\partial}{\partial x} G}{G^2}$$

$$\frac{\partial}{\partial \omega_{i}} \mathcal{L}(\mathcal{T}; \omega) = \frac{\partial}{\partial \omega_{i}} \sum_{t} \log \frac{e^{\sum_{j} \omega_{j} \times \phi_{j}(\boldsymbol{x}_{t}, \boldsymbol{y}_{t})}}{Z_{\boldsymbol{x}_{t}}}$$

$$= \sum_{t} \frac{\partial}{\partial \omega_{i}} \log \frac{e^{\sum_{j} \omega_{j} \times \phi_{j}(\boldsymbol{x}_{t}, \boldsymbol{y}_{t})}}{Z_{\boldsymbol{x}_{t}}}$$

$$= \sum_{t} \left(\frac{Z_{\boldsymbol{x}_{t}}}{e^{\sum_{j} \omega_{j} \times \phi_{j}(\boldsymbol{x}_{t}, \boldsymbol{y}_{t})}}\right) \left(\frac{\partial}{\partial \omega_{i}} \frac{e^{\sum_{j} \omega_{j} \times \phi_{j}(\boldsymbol{x}_{t}, \boldsymbol{y}_{t})}}{Z_{\boldsymbol{x}_{t}}}\right)$$

Now.

$$\begin{array}{ll} \frac{\partial}{\partial \omega_{i}} \frac{e^{\sum_{j} \omega_{j} \times \phi_{j}(\boldsymbol{x}_{t}, \boldsymbol{y}_{t})}}{Z_{\boldsymbol{x}_{t}}} & = & \frac{Z_{\boldsymbol{x}_{t}} \frac{\partial}{\partial \omega_{i}} e^{\sum_{j} \omega_{j} \times \phi_{j}(\boldsymbol{x}_{t}, \boldsymbol{y}_{t})} - e^{\sum_{j} \omega_{j} \times \phi_{j}(\boldsymbol{x}_{t}, \boldsymbol{y}_{t})} \frac{\partial}{\partial \omega_{i}} Z_{\boldsymbol{x}_{t}}}{Z_{\boldsymbol{x}_{t}}^{2}} \\ & = & \frac{Z_{\boldsymbol{x}_{t}} e^{\sum_{j} \omega_{j} \times \phi_{j}(\boldsymbol{x}_{t}, \boldsymbol{y}_{t})} \phi_{i}(\boldsymbol{x}_{t}, \boldsymbol{y}_{t}) - e^{\sum_{j} \omega_{j} \times \phi_{j}(\boldsymbol{x}_{t}, \boldsymbol{y}_{t})} \frac{\partial}{\partial \omega_{i}} Z_{\boldsymbol{x}_{t}}}{Z_{\boldsymbol{x}_{t}}^{2}} \\ & = & \frac{e^{\sum_{j} \omega_{j} \times \phi_{j}(\boldsymbol{x}_{t}, \boldsymbol{y}_{t})}}{Z_{\boldsymbol{x}_{t}}^{2}} (Z_{\boldsymbol{x}_{t}} \phi_{i}(\boldsymbol{x}_{t}, \boldsymbol{y}_{t}) - \frac{\partial}{\partial \omega_{i}} Z_{\boldsymbol{x}_{t}}) \\ & = & \frac{e^{\sum_{j} \omega_{j} \times \phi_{j}(\boldsymbol{x}_{t}, \boldsymbol{y}_{t})}}{Z_{\boldsymbol{x}_{t}}^{2}} (Z_{\boldsymbol{x}_{t}} \phi_{i}(\boldsymbol{x}_{t}, \boldsymbol{y}_{t}) - \frac{\partial}{\partial \omega_{i}} Z_{\boldsymbol{x}_{t}}) \\ & - \sum_{\boldsymbol{y}' \in \mathcal{Y}} e^{\sum_{j} \omega_{j} \times \phi_{j}(\boldsymbol{x}_{t}, \boldsymbol{y}')} \phi_{i}(\boldsymbol{x}_{t}, \boldsymbol{y}')) \end{array}$$

because

$$\frac{\partial}{\partial \omega_i} Z_{\boldsymbol{x}_t} = \frac{\partial}{\partial \omega_i} \sum_{\boldsymbol{y}' \in \mathcal{Y}} e^{\sum_j \omega_j \times \phi_j(\boldsymbol{x}_t, \boldsymbol{y}')} = \sum_{\boldsymbol{y}' \in \mathcal{Y}} e^{\sum_j \omega_j \times \phi_j(\boldsymbol{x}_t, \boldsymbol{y}')} \phi_i(\boldsymbol{x}_t, \boldsymbol{y}')$$

From before.

$$\begin{array}{lcl} \frac{\partial}{\partial \omega_{i}} \frac{e^{\sum_{j} \omega_{j} \times \phi_{j}(\boldsymbol{x}_{t}, \boldsymbol{y}_{t})}}{Z_{\boldsymbol{x}_{t}}} & = & \frac{e^{\sum_{j} \omega_{j} \times \phi_{j}(\boldsymbol{x}_{t}, \boldsymbol{y}_{t})}}{Z_{\boldsymbol{x}_{t}}^{2}} (Z_{\boldsymbol{x}_{t}} \phi_{i}(\boldsymbol{x}_{t}, \boldsymbol{y}_{t}) \\ & & - \sum_{\boldsymbol{y}' \in \mathcal{V}} e^{\sum_{j} \omega_{j} \times \phi_{j}(\boldsymbol{x}_{t}, \boldsymbol{y}')} \phi_{i}(\boldsymbol{x}_{t}, \boldsymbol{y}')) \end{array}$$

Sub this in.

$$egin{array}{lll} rac{\partial}{\partial oldsymbol{\omega}_i} \mathcal{L}(\mathcal{T}; oldsymbol{\omega}) &=& \sum_t (rac{Z_{oldsymbol{x}_t}}{e^{\sum_j oldsymbol{\omega}_j imes oldsymbol{\phi}_j(oldsymbol{x}_t, oldsymbol{y}_t)}}) (rac{\partial}{\partial oldsymbol{\omega}_i} rac{e^{\sum_j oldsymbol{\omega}_j imes oldsymbol{\phi}_j(oldsymbol{x}_t, oldsymbol{y}_t)}}{Z_{oldsymbol{x}_t}}) \ &=& \sum_t rac{1}{Z_{oldsymbol{x}_t}} \left(Z_{oldsymbol{x}_t} oldsymbol{\phi}_i(oldsymbol{x}_t, oldsymbol{y}_t) - \sum_{oldsymbol{y}' \in \mathcal{Y}} e^{\sum_j oldsymbol{\omega}_j imes oldsymbol{\phi}_j(oldsymbol{x}_t, oldsymbol{y}')} oldsymbol{\phi}_i(oldsymbol{x}_t, oldsymbol{y}')
ight) \ &=& \sum_t oldsymbol{\phi}_i(oldsymbol{x}_t, oldsymbol{y}_t) - \sum_t \sum_{oldsymbol{y}' \in \mathcal{Y}} P(oldsymbol{y}' | oldsymbol{x}_t) oldsymbol{\phi}_i(oldsymbol{x}_t, oldsymbol{y}') \ &=& \sum_t oldsymbol{\phi}_i(oldsymbol{x}_t, oldsymbol{y}_t) - \sum_t \sum_{oldsymbol{y}' \in \mathcal{Y}} P(oldsymbol{y}' | oldsymbol{x}_t) oldsymbol{\phi}_i(oldsymbol{x}_t, oldsymbol{y}') \end{array}$$

FINALLY!!!

After all that.

$$rac{\partial}{\partial oldsymbol{\omega}_i} \mathcal{L}(\mathcal{T}; oldsymbol{\omega}) \;\; = \;\; \sum_t \phi_i(x_t, y_t) - \sum_t \sum_{oldsymbol{y}' \in \mathcal{Y}} extstyle P(oldsymbol{y}' | oldsymbol{x}_t) \phi_i(x_t, oldsymbol{y}')$$

► And the gradient is:

$$\nabla \mathcal{L}(\mathcal{T}; \boldsymbol{\omega}) = (\frac{\partial}{\partial \omega_0} \mathcal{L}(\mathcal{T}; \boldsymbol{\omega}), \frac{\partial}{\partial \omega_1} \mathcal{L}(\mathcal{T}; \boldsymbol{\omega}), \dots, \frac{\partial}{\partial \omega_m} \mathcal{L}(\mathcal{T}; \boldsymbol{\omega}))$$

▶ So we can now use gradient assent to find ω !!

Logistic Regression Summary

► Define conditional probability

$$P(y|x) = \frac{e^{\omega \cdot \phi(x,y)}}{Z_x}$$

▶ Set weights to maximize log-likelihood of training data:

$$oldsymbol{\omega} = rg \max_{oldsymbol{\omega}} \sum_t \log P(oldsymbol{y}_t | oldsymbol{x}_t)$$

► Can find the gradient and run gradient ascent (or any gradient-based optimization algorithm)

$$rac{\partial}{\partial \omega_i} \mathcal{L}(\mathcal{T}; \omega) = \sum_t \phi_i(x_t, y_t) - \sum_t \sum_{m{y}' \in \mathcal{Y}} P(m{y}' | x_t) \phi_i(x_t, m{y}')$$

Logistic Regression = Maximum Entropy

- Well known equivalence
- ▶ Max Ent: maximize entropy subject to constraints on features
 - ▶ Empirical feature counts must equal expected counts
- Quick intuition
 - Partial derivative in logistic regression

$$rac{\partial}{\partial \omega_i} \mathcal{L}(\mathcal{T}; \omega) = \sum_t \phi_i(x_t, y_t) - \sum_t \sum_{m{y}' \in \mathcal{Y}} P(m{y}' | x_t) \phi_i(x_t, m{y}')$$

- First term is empirical feature counts and second term is expected counts
- Derivative set to zero maximizes function
- ► Therefore when both counts are equivalent, we optimize the logistic regression objective!

Perceptron

Perceptron

Choose a ω that minimizes error

$$\mathcal{L}(\mathcal{T}; \boldsymbol{\omega}) = \sum_{t=1}^{|\mathcal{T}|} 1 - [[\boldsymbol{y}_t = rg \max_{\boldsymbol{y}} \ \boldsymbol{\omega} \cdot \phi(\boldsymbol{x}_t, \boldsymbol{y})]]$$

$$oldsymbol{\omega} = rg \min_{oldsymbol{\omega}} \sum_{t=1}^{\lceil f \rceil} 1 - [[oldsymbol{y}_t = rg \max_{oldsymbol{y}} \ oldsymbol{\omega} \cdot oldsymbol{\phi}(oldsymbol{x}_t, oldsymbol{y})]]$$

- $[[p]] = \begin{cases} 1 & p \text{ is true} \\ 0 & \text{otherwise} \end{cases}$
- ► This is a 0-1 loss function
 - When minimizing error people tend to use hinge-loss
 - ▶ We'll get back to this

Aside: Min error versus max log-likelihood

- ► Highly related but not identical
- ightharpoonup Example: consider a training set \mathcal{T} with 1001 points

$$1000 \times (\boldsymbol{x}_i, \boldsymbol{y} = 0) = [-1, 1, 0, 0]$$
 for $i = 1 \dots 1000$
 $1 \times (\boldsymbol{x}_{1001}, \boldsymbol{y} = 1) = [0, 0, 3, 1]$

- ▶ Now consider $\omega = [-1, 0, 1, 0]$
- Error in this case is $0 so \omega$ minimizes error

$$[-1,0,1,0] \cdot [-1,1,0,0] = 1 > [-1,0,1,0] \cdot [0,0,-1,1] = -1$$

 $[-1,0,1,0] \cdot [0,0,3,1] = 3 > [-1,0,1,0] \cdot [3,1,0,0] = -3$

► However, log-likelihood = -126.9 (omit calculation)

Aside: Min error versus max log-likelihood

- ► Highly related but not identical
- \blacktriangleright Example: consider a training set \mathcal{T} with 1001 points

$$1000 \times (\boldsymbol{x}_i, \boldsymbol{y} = 0) = [-1, 1, 0, 0]$$
 for $i = 1 \dots 1000$
 $1 \times (\boldsymbol{x}_{1001}, \boldsymbol{y} = 1) = [0, 0, 3, 1]$

- ▶ Now consider $\omega = [-1, 7, 1, 0]$
- Error in this case is $1 so \omega$ does not minimizes error

$$[-1,7,1,0] \cdot [-1,1,0,0] = 8 > [-1,7,1,0] \cdot [-1,1,0,0] = -1$$

 $[-1,7,1,0] \cdot [0,0,3,1] = 3 < [-1,7,1,0] \cdot [3,1,0,0] = 4$

- ► However, log-likelihood = -1.4
- ► Better log-likelihood and worse error

Aside: Min error versus max log-likelihood

- ► Max likelihood ≠ min error
- Max likelihood pushes as much probability on correct labeling of training instance
 - Even at the cost of mislabeling a few examples
- ▶ Min error forces all training instances to be correctly classified
 - Often not possible
 - Ways of regularizing model to allow sacrificing some errors for better predictions on more examples

Perceptron Learning Algorithm

```
Training data: \mathcal{T} = \{(x_t, y_t)\}_{t=1}^{|\mathcal{T}|}
1. \omega^{(0)} = 0; i = 0
2. for n: 1..N
3. for t: 1..T
4. Let y' = \arg\max_{y'} \omega^{(i)} \cdot \phi(x_t, y')
5. if y' \neq y_t
6. \omega^{(i+1)} = \omega^{(i)} + \phi(x_t, y_t) - \phi(x_t, y')
7. i = i + 1
8. return \omega^i
```

Perceptron: Separability and Margin

- Given an training instance (x_t, y_t) , define:
 - $\quad \mathbf{\bar{y}}_t = \mathbf{\mathcal{Y}} \{\mathbf{y}_t\}$
 - ightharpoonup i.e., $\bar{\mathcal{Y}}_t$ is the set of incorrect labels for x_t
- ▶ A training set \mathcal{T} is separable with margin $\gamma > 0$ if there exists a vector \mathbf{u} with $\|\mathbf{u}\| = 1$ such that:

$$\mathbf{u} \cdot \phi(x_t, y_t) - \mathbf{u} \cdot \phi(x_t, y') \ge \gamma$$

for all
$$oldsymbol{y}' \in ar{\mathcal{Y}}_t$$
 and $||oldsymbol{\mathsf{u}}|| = \sqrt{\sum_j oldsymbol{\mathsf{u}}_j^2}$

Assumption: the training set is separable with margin γ

Perceptron: Main Theorem

▶ **Theorem**: For any training set separable with a margin of γ , the following holds for the perceptron algorithm:

mistakes made during training
$$\leq \frac{R^2}{\gamma^2}$$

where
$$R \geq ||\phi(x_t,y_t) - \phi(x_t,y')||$$
 for all $(x_t,y_t) \in \mathcal{T}$ and $y' \in \bar{\mathcal{Y}}_t$

- ► Thus, after a finite number of training iterations, the error on the training set will converge to zero
- ▶ Let's prove it! (proof taken from Collins '02)

Perceptron Learning Algorithm

Training data:
$$\mathcal{T} = \{(\boldsymbol{x}_t, \boldsymbol{y}_t)\}_{t=1}^{|\mathcal{T}|}$$
 mistake

1. $\boldsymbol{\omega}^{(0)} = 0; \ i = 0$
2. for $n: 1..N$
3. for $t: 1..T$
4. Let $\boldsymbol{y}' = \arg\max_{\boldsymbol{y}'} \boldsymbol{\omega}^{(i)} \cdot \boldsymbol{\phi}(\boldsymbol{x}_t, \boldsymbol{y}')$
5. if $\boldsymbol{y}' \neq \boldsymbol{y}_t$
6. $\boldsymbol{\omega}^{(i+1)} = \boldsymbol{\omega}^{(i)} + \boldsymbol{\phi}(\boldsymbol{x}_t, \boldsymbol{y}_t) - \boldsymbol{\phi}(\boldsymbol{x}_t, \boldsymbol{y}')$
7. $i = i+1$
8. return $\boldsymbol{\omega}^i$
wistake

Suppose t^{th} exam t^{th} exa

- $\triangleright \omega^{(k-1)}$ are the weights before k^{th} mistake
- \triangleright Suppose k^{th} mistake made at the t^{th} example, (x_t, y_t)

- \triangleright (k) = $\boldsymbol{\omega}^{(k-1)} + \phi(\boldsymbol{x}_t, \boldsymbol{y}_t) - \phi(\boldsymbol{x}_t, \boldsymbol{y}')$

Now:
$$\mathbf{u} \cdot \boldsymbol{\omega}^{(k)} = \mathbf{u} \cdot \boldsymbol{\omega}^{(k-1)} + \mathbf{u} \cdot (\phi(\boldsymbol{x}_t, \boldsymbol{y}_t) - \phi(\boldsymbol{x}_t, \boldsymbol{y}')) > \mathbf{u} \cdot \boldsymbol{\omega}^{(k-1)} + \gamma$$

- Now: $\omega^{(0)} = 0$ and $\mathbf{u} \cdot \omega^{(0)} = 0$, by induction on k, $\mathbf{u} \cdot \omega^{(k)} > k\gamma$
- Now: since $\mathbf{u} \cdot \boldsymbol{\omega}^{(k)} < ||\mathbf{u}|| \times ||\boldsymbol{\omega}^{(k)}||$ and $||\mathbf{u}|| = 1$ then $||\boldsymbol{\omega}^{(k)}|| > k\gamma$
- Now.

$$\begin{split} ||\boldsymbol{\omega}^{(k)}||^2 &= ||\boldsymbol{\omega}^{(k-1)}||^2 + ||\phi(\boldsymbol{x}_t, \boldsymbol{y}_t) - \phi(\boldsymbol{x}_t, \boldsymbol{y}')||^2 + 2\boldsymbol{\omega}^{(k-1)} \cdot (\phi(\boldsymbol{x}_t, \boldsymbol{y}_t) - \phi(\boldsymbol{x}_t, \boldsymbol{y}')) \\ ||\boldsymbol{\omega}^{(k)}||^2 &\leq ||\boldsymbol{\omega}^{(k-1)}||^2 + R^2 \\ &\quad (\text{since } R \geq ||\phi(\boldsymbol{x}_t, \boldsymbol{y}_t) - \phi(\boldsymbol{x}_t, \boldsymbol{y}')|| \\ &\quad \text{and } \boldsymbol{\omega}^{(k-1)} \cdot \phi(\boldsymbol{x}_t, \boldsymbol{y}_t) - \boldsymbol{\omega}^{(k-1)} \cdot \phi(\boldsymbol{x}_t, \boldsymbol{y}') \leq 0) \end{split}$$

Perceptron Learning Algorithm

- We have just shown that $||\omega^{(k)}|| \ge k\gamma$ and $||\omega^{(k)}||^2 \le ||\omega^{(k-1)}||^2 + R^2$
- ▶ By induction on k and since $\omega^{(0)} = 0$ and $||\omega^{(0)}||^2 = 0$

$$||\omega^{(k)}||^2 \le kR^2$$

▶ Therefore,

$$k^2 \gamma^2 \le ||\omega^{(k)}||^2 \le kR^2$$

▶ and solving for *k*

$$k \le \frac{R^2}{\gamma^2}$$

▶ Therefore the number of errors is bounded!

Perceptron Summary

- Learns a linear classifier that minimizes error
- \triangleright Guaranteed to find a ω in a finite amount of time
- ► Perceptron is an example of an Online Learning Algorithm
 - $ightharpoonup \omega$ is updated based on a single training instance in isolation

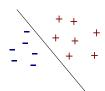
$$\pmb{\omega}^{(i+1)} = \pmb{\omega}^{(i)} + \pmb{\phi}(\pmb{x}_t, \pmb{y}_t) - \pmb{\phi}(\pmb{x}_t, \pmb{y}')$$

Averaged Perceptron

```
Training data: \mathcal{T} = \{(\boldsymbol{x}_t, \boldsymbol{y}_t)\}_{t=1}^{|\mathcal{T}|}
  1. \omega^{(0)} = 0: i = 0
 2. for n: 1..N
 3. for t:1..T
      Let oldsymbol{y}' = rg \max_{oldsymbol{u}'} oldsymbol{\omega}^{(i)} \cdot \phi(oldsymbol{x}_t, oldsymbol{y}')
 5.
                if \boldsymbol{u}' \neq \boldsymbol{u}_{t}
                     \omega^{(i+1)} = \omega^{(i)} + \phi(x_t, y_t) - \phi(x_t, y')
 7.
      else
                   (i,(i+1) - (i,(i))
 7. i = i + 1
 8. return (\sum_i \omega^{(i)}) / (N \times T)
```

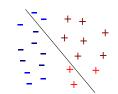
Margin

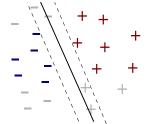
Training

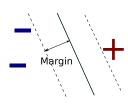


Denote the value of the margin by γ

Testing







Maximizing Margin

- \blacktriangleright For a training set \mathcal{T}
- ▶ Margin of a weight vector ω is smallest γ such that

$$oldsymbol{\omega} \cdot \phi(oldsymbol{x}_t, oldsymbol{y}_t) - oldsymbol{\omega} \cdot \phi(oldsymbol{x}_t, oldsymbol{y}') \geq \gamma$$

lacktriangledown for every training instance $(x_t,y_t)\in\mathcal{T}$, $y'\inar{\mathcal{Y}}_t$

Maximizing Margin

- Intuitively maximizing margin makes sense
- More importantly, generalization error to unseen test data is proportional to the inverse of the margin

$$\epsilon \propto \frac{R^2}{\gamma^2 \times |\mathcal{T}|}$$

- ▶ Perceptron: we have shown that:
 - If a training set is separable by some margin, the perceptron will find a ω that separates the data
 - ▶ However, the perceptron does not pick ω to maximize the margin!

Support Vector Machines (SVMs)

Maximizing Margin

Let $\gamma > 0$

$$\max_{||\pmb{\omega}|| \leq 1} \ \gamma$$

$$egin{aligned} \omega \cdot \phi(x_t, y_t) - \omega \cdot \phi(x_t, y') &\geq \gamma \ &orall (x_t, y_t) \in \mathcal{T} \ & ext{and } y' \in ar{\mathcal{Y}}_t \end{aligned}$$

- ▶ Note: algorithm still minimizes error if data is seperable
- $ightharpoonup ||\omega||$ is bound since scaling trivially produces larger margin

$$\beta(\boldsymbol{\omega}\cdot\boldsymbol{\phi}(\boldsymbol{x}_t,\boldsymbol{y}_t)-\boldsymbol{\omega}\cdot\boldsymbol{\phi}(\boldsymbol{x}_t,\boldsymbol{y}'))\geq \beta\gamma$$
, for some $\beta\geq 1$

Max Margin = Min Norm

Let $\gamma > 0$

Max Margin:

$$\max_{||\boldsymbol{\omega}||\leq 1} \ \gamma$$

such that:

$$egin{aligned} oldsymbol{\omega} \cdot \phi(oldsymbol{x}_t, oldsymbol{y}_t) - oldsymbol{\omega} \cdot \phi(oldsymbol{x}_t, oldsymbol{y}_t) & \geq \gamma \ & orall (oldsymbol{x}_t, oldsymbol{y}_t) \in \mathcal{T} \end{aligned}$$

and $oldsymbol{u}' \in ar{\mathcal{Y}}_t$

Min Norm:

$$\min_{\boldsymbol{\omega}} \quad \frac{1}{2} ||\boldsymbol{\omega}||^2$$

such that:

$$egin{aligned} \omega{\cdot}\phi(x_t,y_t){-}\omega{\cdot}\phi(x_t,y') &\geq 1 \ &orall (x_t,y_t) \in \mathcal{T} \ & ext{and} \ y' \in ar{\mathcal{Y}}_t \end{aligned}$$

lacksquare Instead of fixing $||oldsymbol{\omega}||$ we fix the margin $\gamma=1$

 $\min_{\omega} \frac{1}{2} ||\omega||^2$

 $\omega \cdot \phi(\mathbf{x}_t, \mathbf{y}_t) - \omega \cdot \phi(\mathbf{x}_t, \mathbf{u}') > 1$

Max Margin = Min Norm

 $\max_{||\boldsymbol{\omega}|| \leq 1} \gamma$

Max Margin: Min Norm:

such that: $= \qquad \qquad \text{such that:}$ $\omega \cdot \phi(x_t,y_t) - \omega \cdot \phi(x_t,y') \geq \gamma \qquad \qquad \omega \cdot \phi(x_t,y_t) \leq \gamma$

$$orall (m{x}_t,m{y}_t)\in\mathcal{T}$$
 $orall (m{x}_t,m{y}_t)\in\mathcal{T}$ and $m{y}'\inar{\mathcal{Y}}_t$

- Let's say min norm solution $||\omega|| = \zeta$
- Now say original objective is $\max_{||\omega|| \le \zeta} \gamma$
- lacktriangle We know that γ must be 1
 - lacktriangleright Or we would have found smaller $||\omega||$ in min norm solution
- ullet $|\omega|| \leq 1$ in max margin formulation is an arbitrary scaling choice

$$\omega = \underset{\omega}{\operatorname{arg\,min}} \ \frac{1}{2} ||\omega||^2$$

$$egin{aligned} \omega \cdot \phi(x_t, y_t) - \omega \cdot \phi(x_t, y') &\geq 1 \ orall (x_t, y_t) &\in \mathcal{T} ext{ and } y' \in ar{\mathcal{Y}}_t \end{aligned}$$

- ► Quadratic programming problem a well known convex optimization problem
- ► Can be solved with many techniques [Nocedal and Wright 1999]

What if data is not separable?

$$\omega = \operatorname*{arg\,min}_{\boldsymbol{\omega},\xi} \ \frac{1}{2} ||\boldsymbol{\omega}||^2 + \frac{c}{c} \sum_{t=1}^{|\mathcal{T}|} \frac{\xi_t}{\xi_t}$$

such that:

$$\omega \cdot \phi(x_t, y_t) - \omega \cdot \phi(x_t, y') \geq 1 - \xi_t$$
 and $\xi_t \geq 0$ $orall (x_t, y_t) \in \mathcal{T}$ and $y' \in ar{\mathcal{Y}}_t$

 ξ_t : trade-off between margin per example and $\|\omega\|$ Larger C = more examples correctly classified If data is separable, optimal solution has $\xi_i = 0$, $\forall i$

$$\omega = \underset{\boldsymbol{\omega}, \xi}{\operatorname{arg\,min}} \ \frac{1}{2} ||\boldsymbol{\omega}||^2 + C \sum_{t=1}^{|\mathcal{T}|} \xi_t$$

$$oldsymbol{\omega} \cdot \phi(oldsymbol{x}_t, oldsymbol{y}_t) - oldsymbol{\omega} \cdot \phi(oldsymbol{x}_t, oldsymbol{y}') \geq 1 - \xi_t$$

$$\omega = \underset{\omega,\xi}{\operatorname{arg\,min}} \frac{1}{2} ||\omega||^2 + C \sum_{t=1}^{|\mathcal{T}|} \xi_t$$

$$\omega \cdot \phi(x_t, y_t) - \max_{oldsymbol{y}'
eq oldsymbol{y_t}} \ \omega \cdot \phi(x_t, oldsymbol{y}') \geq 1 - \xi_t$$

$$\omega = \underset{\boldsymbol{\omega}, \xi}{\operatorname{arg\,min}} \ \frac{1}{2} ||\boldsymbol{\omega}||^2 + C \sum_{t=1}^{|\mathcal{T}|} \xi_t$$

$$\xi_t \geq 1 + \max_{oldsymbol{y}'
eq oldsymbol{y_t}} \ oldsymbol{\omega} \cdot \phi(x_t, oldsymbol{y}') - oldsymbol{\omega} \cdot \phi(x_t, oldsymbol{y_t})$$

$$\omega = \underset{\omega,\xi}{\operatorname{arg\,min}} \frac{\lambda}{2} ||\omega||^2 + \sum_{t=1}^{|\mathcal{T}|} \xi_t \qquad \lambda = \frac{1}{C}$$

$$\xi_t \geq 1 + \max_{oldsymbol{y}'
eq oldsymbol{y_t}} \ oldsymbol{\omega} \cdot oldsymbol{\phi}(oldsymbol{x}_t, oldsymbol{y}') - oldsymbol{\omega} \cdot oldsymbol{\phi}(oldsymbol{x}_t, oldsymbol{y}_t)$$

$$\omega = \operatorname*{arg\,min}_{\omega,\xi} \frac{\lambda}{2} ||\omega||^2 + \sum_{t=1}^{|\mathcal{T}|} \xi_t \qquad \lambda = \frac{1}{C}$$

such that:

$$\xi_t \geq 1 + \max_{oldsymbol{y}'
eq oldsymbol{y}_t} \ \omega \cdot \phi(x_t, oldsymbol{y}') - \omega \cdot \phi(x_t, oldsymbol{y}_t)$$

If $\|\omega\|$ classifies (x_t,y_t) with margin 1, penalty $\xi_t=0$ Otherwise penalty $\xi_t=1+\max_{y'\neq y_t}\ \omega\cdot\phi(x_t,y')-\omega\cdot\phi(x_t,y_t)$

$$\omega = \underset{\omega,\xi}{\operatorname{arg\,min}} \frac{\lambda}{2} ||\omega||^2 + \sum_{t=1}^{|\mathcal{T}|} \xi_t \qquad \lambda = \frac{1}{C}$$

such that:

$$\xi_t \geq 1 + \max_{oldsymbol{y}'
eq oldsymbol{y_t}} \ oldsymbol{\omega} \cdot \phi(oldsymbol{x}_t, oldsymbol{y}') - oldsymbol{\omega} \cdot \phi(oldsymbol{x}_t, oldsymbol{y}_t)$$

If $\|\omega\|$ classifies (x_t,y_t) with margin 1, penalty $\xi_t=0$ Otherwise penalty $\xi_t=1+\max_{y'\neq y_t}\ \omega\cdot\phi(x_t,y')-\omega\cdot\phi(x_t,y_t)$

Hinge loss:

$$loss((m{x}_t, m{y}_t); m{\omega}) = \max \left(0, 1 + \max_{m{y}'
eq m{y}_t} \ m{\omega} \cdot m{\phi}(m{x}_t, m{y}') - m{\omega} \cdot m{\phi}(m{x}_t, m{y}_t)
ight)$$

$$\omega = \underset{\boldsymbol{\omega}, \xi}{\operatorname{arg\,min}} \ \frac{\lambda}{2} ||\boldsymbol{\omega}||^2 + \sum_{t=1}^{|\mathcal{T}|} \xi_t$$

such that:

$$\xi_t \geq 1 + \max_{oldsymbol{y}'
eq oldsymbol{y}_t} oldsymbol{\omega} \cdot \phi(oldsymbol{x}_t, oldsymbol{y}') - oldsymbol{\omega} \cdot \phi(oldsymbol{x}_t, oldsymbol{y}_t)$$

Hinge loss equivalent

$$egin{aligned} oldsymbol{\omega} &= rg \min_{oldsymbol{\omega}} \; \mathcal{L}(\mathcal{T}; oldsymbol{\omega}) = rg \min_{oldsymbol{\omega}} \; \sum_{t=1}^{|\mathcal{T}|} loss((oldsymbol{x}_t, oldsymbol{y}_t); oldsymbol{\omega}) \; + \; rac{\lambda}{2} ||oldsymbol{\omega}||^2 \ &= rg \min_{oldsymbol{\omega}} \; \left(\sum_{t=1}^{|\mathcal{T}|} \max\left(0, 1 + \max_{oldsymbol{y}'
eq oldsymbol{y}_t} oldsymbol{\omega} \cdot oldsymbol{\phi}(oldsymbol{x}_t, oldsymbol{y}') - oldsymbol{\omega} \cdot oldsymbol{\phi}(oldsymbol{x}_t, oldsymbol{y}_t) \right) + rac{\lambda}{2} ||oldsymbol{\omega}||^2 \end{aligned}$$

Summary

What we have covered

- Linear Classifiers
 - Naive Bayes
 - Logistic Regression
 - Perceptron
 - Support Vector Machines

What is next

- ► Regularization
- Online learning
- Non-linear classifiers

Regularization

Overfitting

- Early in lecture we made assumption data was i.i.d.
- Rarely is this true
 - ► E.g., syntactic analyzers typically trained on 40,000 sentences from early 1990s WSJ news text
- ▶ Even more common: *T* is very small
- This leads to overfitting
- ► E.g.: 'fake' is never a verb in WSJ treebank (only adjective)
 - lacktriangle High weight on " $\phi(x,y)=1$ if x=fake and y=adjective"
 - Of course: leads to high log-likelihood / low error
- Other features might be more indicative
- ightharpoonup Adjacent word identities: 'He wants to X his death' ightharpoonup X=verb

Regularization

▶ In practice, we regularize models to prevent overfitting

$$\underset{\boldsymbol{\omega}}{\operatorname{arg\,max}} \ \mathcal{L}(\mathcal{T};\boldsymbol{\omega}) - \lambda \mathcal{R}(\boldsymbol{\omega})$$

- Where $\mathcal{R}(\omega)$ is the regularization function
- $ightharpoonup \lambda$ controls how much to regularize
- Common functions
 - L2: $\mathcal{R}(\omega) \propto \|\omega\|_2 = \|\omega\| = \sqrt{\sum_i \omega_i^2}$ smaller weights desired
 - ▶ L0: $\mathcal{R}(\omega) \propto \|\omega\|_0 = \sum_i [[\omega_i > 0]]$ zero weights desired
 - Non-convex
 - Approximate with L1: $\mathcal{R}(\omega) \propto \|\omega\|_1 = \sum_i |\omega_i|$

Logistic Regression with L2 Regularization

▶ Perhaps most common classifier in NLP

$$\mathcal{L}(\mathcal{T}; \boldsymbol{\omega}) - \lambda \mathcal{R}(\boldsymbol{\omega}) = \sum_{t=1}^{|\mathcal{T}|} \log \left(e^{\boldsymbol{\omega} \cdot \boldsymbol{\phi}(\boldsymbol{x}_t, \boldsymbol{y}_t)} / Z_{\boldsymbol{x}} \right) - \frac{\lambda}{2} \|\boldsymbol{\omega}\|^2$$

▶ What are the new partial derivatives?

$$rac{\partial}{\partial w_i}\mathcal{L}(\mathcal{T}; oldsymbol{\omega}) - rac{\partial}{\partial w_i}\lambda\mathcal{R}(oldsymbol{\omega})$$

- ▶ We know $\frac{\partial}{\partial w_i} \mathcal{L}(\mathcal{T}; \boldsymbol{\omega})$
- ▶ Just need $\frac{\partial}{\partial w_i} \frac{\lambda}{2} \|\omega\|^2 = \frac{\partial}{\partial w_i} \frac{\lambda}{2} \left(\sqrt{\sum_i \omega_i^2}\right)^2 = \frac{\partial}{\partial w_i} \frac{\lambda}{2} \sum_i \omega_i^2 = \lambda \omega_i$

Hinge-loss formulation: L2 regularization already happening!

$$\begin{array}{lll} \boldsymbol{\omega} & = & \displaystyle \mathop{\arg\min}_{\boldsymbol{\omega}} \ \mathcal{L}(\mathcal{T}; \boldsymbol{\omega}) + \lambda \mathcal{R}(\boldsymbol{\omega}) \\ \\ & = & \displaystyle \mathop{\arg\min}_{\boldsymbol{\omega}} \ \sum_{t=1}^{|\mathcal{T}|} \underset{\boldsymbol{\omega}}{\mathsf{loss}}((\boldsymbol{x}_t, \boldsymbol{y}_t); \boldsymbol{\omega}) + \lambda \mathcal{R}(\boldsymbol{\omega}) \\ \\ & = & \displaystyle \mathop{\arg\min}_{\boldsymbol{\omega}} \ \sum_{t=1}^{|\mathcal{T}|} \underset{\boldsymbol{\omega}}{\mathsf{max}} \ (0, 1 + \underset{\boldsymbol{y} \neq \boldsymbol{y}_t}{\mathsf{max}} \ \boldsymbol{\omega} \cdot \boldsymbol{\phi}(\boldsymbol{x}_t, \boldsymbol{y}) - \boldsymbol{\omega} \cdot \boldsymbol{\phi}(\boldsymbol{x}_t, \boldsymbol{y}_t)) + \lambda \mathcal{R}(\boldsymbol{\omega}) \\ \\ & = & \displaystyle \mathop{\arg\min}_{\boldsymbol{\omega}} \ \sum_{t=1}^{|\mathcal{T}|} \underset{\boldsymbol{\omega}}{\mathsf{max}} \ (0, 1 + \underset{\boldsymbol{y} \neq \boldsymbol{y}_t}{\mathsf{max}} \ \boldsymbol{\omega} \cdot \boldsymbol{\phi}(\boldsymbol{x}_t, \boldsymbol{y}) - \boldsymbol{\omega} \cdot \boldsymbol{\phi}(\boldsymbol{x}_t, \boldsymbol{y}_t)) + \frac{\lambda}{2} \|\boldsymbol{\omega}\|^2 \\ \\ & \qquad \qquad \uparrow \ \mathsf{SVM} \ \mathsf{optimization} \ \uparrow \end{array}$$

SVMs vs. Logistic Regression

$$\omega = \underset{\boldsymbol{\omega}}{\operatorname{arg min}} \mathcal{L}(\mathcal{T}; \boldsymbol{\omega}) + \lambda \mathcal{R}(\boldsymbol{\omega})$$

$$= \underset{\boldsymbol{\omega}}{\operatorname{arg min}} \sum_{t=1}^{|\mathcal{T}|} \underset{\boldsymbol{\omega}}{loss}((\boldsymbol{x}_t, \boldsymbol{y}_t); \boldsymbol{\omega}) + \lambda \mathcal{R}(\boldsymbol{\omega})$$

SVMs vs. Logistic Regression

$$\omega = \underset{\boldsymbol{\omega}}{\operatorname{arg\,min}} \mathcal{L}(\mathcal{T}; \boldsymbol{\omega}) + \lambda \mathcal{R}(\boldsymbol{\omega})$$
$$= \underset{\boldsymbol{\omega}}{\operatorname{arg\,min}} \sum_{t=1}^{|\mathcal{T}|} loss((\boldsymbol{x}_t, \boldsymbol{y}_t); \boldsymbol{\omega}) + \lambda \mathcal{R}(\boldsymbol{\omega})$$

 $\mathsf{SVMs/hinge-loss:} \ \mathsf{max} \ (0, 1 + \mathsf{max}_{\boldsymbol{y} \neq \boldsymbol{y}_t} \ (\boldsymbol{\omega} \cdot \phi(\boldsymbol{x}_t, \boldsymbol{y}) - \boldsymbol{\omega} \cdot \phi(\boldsymbol{x}_t, \boldsymbol{y}_t)))$

$$oldsymbol{\omega} = rg\min_{oldsymbol{\omega}} \ \sum_{t=1}^{|\mathcal{T}|} \mathsf{max} \ (0, 1 + \max_{oldsymbol{y}
eq oldsymbol{y} t} \ oldsymbol{\omega} \cdot oldsymbol{\phi}(oldsymbol{x}_t, oldsymbol{y}) - oldsymbol{\omega} \cdot oldsymbol{\phi}(oldsymbol{x}_t, oldsymbol{y}_t)) + rac{\lambda}{2} \|oldsymbol{\omega}\|^2$$

SVMs vs. Logistic Regression

$$\begin{array}{lcl} \boldsymbol{\omega} & = & \displaystyle \operatorname*{arg\,min}_{\boldsymbol{\omega}} \ \mathcal{L}(\mathcal{T}; \boldsymbol{\omega}) + \lambda \mathcal{R}(\boldsymbol{\omega}) \\ \\ & = & \displaystyle \operatorname*{arg\,min}_{\boldsymbol{\omega}} \ \sum_{t=1}^{|\mathcal{T}|} loss((\boldsymbol{x}_t, \boldsymbol{y}_t); \boldsymbol{\omega}) + \lambda \mathcal{R}(\boldsymbol{\omega}) \end{array}$$

SVMs/hinge-loss: max $(0, 1 + \max_{m{y}
eq m{y}_t} (m{\omega} \cdot \phi(m{x}_t, m{y}) - m{\omega} \cdot \phi(m{x}_t, m{y}_t)))$

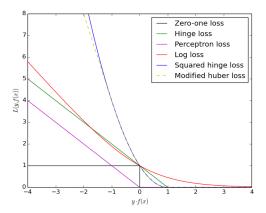
$$oldsymbol{\omega} = rg\min_{oldsymbol{\omega}} \ \sum_{t=1}^{|\mathcal{T}|} \mathsf{max} \ (0, 1 + \max_{oldsymbol{y}
eq oldsymbol{y} t} \ oldsymbol{\omega} \cdot oldsymbol{\phi}(oldsymbol{x}_t, oldsymbol{y}) - oldsymbol{\omega} \cdot oldsymbol{\phi}(oldsymbol{x}_t, oldsymbol{y}_t)) + rac{\lambda}{2} \|oldsymbol{\omega}\|^2$$

 $\mathsf{Logistic} \; \mathsf{Regression}/\mathsf{log}\text{-}\mathsf{loss} \colon -\mathsf{log} \; \left(e^{\boldsymbol{\omega}\cdot\boldsymbol{\phi}(\boldsymbol{x}_t,\boldsymbol{y}_t)}/Z_{\boldsymbol{x}}\right)$

$$\omega = \operatorname*{arg\,min}_{\boldsymbol{\omega}} \sum_{t=1}^{|\mathcal{T}|} -\log \left(\mathrm{e}^{\boldsymbol{\omega} \cdot \boldsymbol{\phi}(\boldsymbol{x}_t, \boldsymbol{y}_t)} / Z_{\boldsymbol{x}} \right) + \frac{\lambda}{2} \|\boldsymbol{\omega}\|^2$$

Generalized Linear Classifiers

$$oldsymbol{\omega} = rg \min_{oldsymbol{\omega}} \ \mathcal{L}(\mathcal{T}; oldsymbol{\omega}) + \lambda \mathcal{R}(oldsymbol{\omega}) = rg \min_{oldsymbol{\omega}} \ \sum_{t=1}^{|\mathcal{T}|} loss((oldsymbol{x}_t, oldsymbol{y}_t); oldsymbol{\omega}) + \lambda \mathcal{R}(oldsymbol{\omega})$$



Online Learning

Online vs. Batch Learning

$Batch(\mathcal{T});$

- ▶ for 1 ... N
 - lacktriangledown $\omega \leftarrow \operatorname{update}(\mathcal{T}; \omega)$
- return ω

E.g., SVMs, logistic regression, NB

Online(\mathcal{T});

- ▶ for 1 ... N
 - ▶ for $(x_t, y_t) \in \mathcal{T}$ ▶ $\omega \leftarrow \mathsf{update}((x_t, y_t); \omega)$ ▶ end for
- end for
- ightharpoonup return ω

E.g., Perceptron
$$\omega = \omega + \phi(x_t, y_t) - \phi(x_t, y)$$

Online vs. Batch Learning

- Online algorithms
 - ► Tend to converge more quickly
 - ▶ Often easier to implement
 - Require more hyperparameter tuning (exception Perceptron)
 - More unstable convergence
- Batch algorithms
 - Tend to converge more slowly
 - Implementation more complex (quad prog, LBFGs)
 - Typically more robust to hyperparameters
 - More stable convergence

Gradient Descent Reminder

- lacksquare Let $\mathcal{L}(\mathcal{T}; oldsymbol{\omega}) = \sum_{t=1}^{|\mathcal{T}|} \mathit{loss}((oldsymbol{x}_t, oldsymbol{y}_t); oldsymbol{\omega})$
 - \triangleright Set $\omega^0 = O^m$
 - Iterate until convergence

$$oldsymbol{\omega}^i = oldsymbol{\omega}^{i-1} - lpha
abla \mathcal{L}(\mathcal{T}; oldsymbol{\omega}^{i-1}) = oldsymbol{\omega}^{i-1} - \sum_{t=1}^{|\mathcal{T}|} lpha
abla ext{loss}((oldsymbol{x}_t, oldsymbol{y}_t); oldsymbol{\omega}^{i-1})$$

 $m{\wedge}$ $\alpha > 0$ and set so that $\mathcal{L}(\mathcal{T}; \omega^i) < \mathcal{L}(\mathcal{T}; \omega^{i-1})$

Gradient Descent Reminder

- lacksquare Let $\mathcal{L}(\mathcal{T}; oldsymbol{\omega}) = \sum_{t=1}^{|\mathcal{T}|} \mathit{loss}((oldsymbol{x}_t, oldsymbol{y}_t); oldsymbol{\omega})$
 - \triangleright Set $\omega^0 = O^m$
 - Iterate until convergence

$$oldsymbol{\omega}^i = oldsymbol{\omega}^{i-1} - lpha
abla \mathcal{L}(\mathcal{T}; oldsymbol{\omega}^{i-1}) = oldsymbol{\omega}^{i-1} - \sum_{t=1}^{|\mathcal{T}|} lpha
abla ext{loss}((oldsymbol{x}_t, oldsymbol{y}_t); oldsymbol{\omega}^{i-1})$$

- ▶ $\alpha > 0$ and set so that $\mathcal{L}(\mathcal{T}; \boldsymbol{\omega}^i) < \mathcal{L}(\mathcal{T}; \boldsymbol{\omega}^{i-1})$
- Stochastic Gradient Descent (SGD)
 - ightharpoonup Approximate $orall \mathcal{L}(\mathcal{T}; \omega)$ with single $orall \mathit{loss}((x_t, y_t); \omega)$

Stochastic Gradient Descent

- lacksquare Let $\mathcal{L}(\mathcal{T};\omega) = \sum_{t=1}^{|\mathcal{T}|} \mathit{loss}((x_t,y_t);\omega)$
- ightharpoonup Set $\omega^0 = O^m$
- ▶ iterate until convergence

▶ sample
$$(x_t, y_t) \in \mathcal{T}$$
 // "stochastic"

▶ $\omega^i = \omega^{i-1} - \alpha \triangledown loss((x_t, y_t); \omega)$

ightharpoonup return ω

Stochastic Gradient Descent

- lacksquare Let $\mathcal{L}(\mathcal{T}; oldsymbol{\omega}) = \sum_{t=1}^{|\mathcal{T}|} \mathit{loss}((oldsymbol{x}_t, oldsymbol{y}_t); oldsymbol{\omega})$
- ightharpoonup Set $\omega^0 = O^m$
- ▶ iterate until convergence

▶ sample
$$(x_t, y_t) \in \mathcal{T}$$
 // "stochastic"

▶ $\omega^i = \omega^{i-1} - \alpha \triangledown loss((x_t, y_t); \omega)$

ightharpoonup return ω

In practice

- ightharpoonup Set $\omega^0 = O^m$
- ▶ for 1...*N*

$$\qquad \qquad \mathsf{for}\; (\boldsymbol{x}_t, \boldsymbol{y}_t) \in \mathcal{T} \\ \qquad \qquad \qquad \boldsymbol{\omega}^i = \boldsymbol{\omega}^{i-1} - \alpha \triangledown \textit{loss}((\boldsymbol{x}_t, \boldsymbol{y}_t); \boldsymbol{\omega})$$

ightharpoonup return ω

Stochastic Gradient Descent

- lacksquare Let $\mathcal{L}(\mathcal{T}; oldsymbol{\omega}) = \sum_{t=1}^{|\mathcal{T}|} \mathit{loss}((oldsymbol{x}_t, oldsymbol{y}_t); oldsymbol{\omega})$
- ightharpoonup Set $\omega^0 = O^m$
- ▶ iterate until convergence

▶ sample
$$(x_t, y_t) \in \mathcal{T}$$
 // "stochastic"

▶ $\omega^i = \omega^{i-1} - \alpha \triangledown \mathit{loss}((x_t, y_t); \omega)$

ightharpoonup return ω

In practice

Need to solve
$$\nabla loss((x_t, y_t); \omega)$$

- Set $\omega^0 = O^m$
- ▶ for 1...*N*

$$\qquad \qquad \mathsf{for} \; (x_t, y_t) \in \mathcal{T} \\ \qquad \qquad \qquad \omega^i = \omega^{i-1} - \alpha \triangledown \mathit{loss}((x_t, y_t); \omega)$$

ightharpoonup return ω

Online Logistic Regression

- ► Stochastic Gradient Descent (SGD)
- lacksquare $loss((x_t, y_t); \omega) = log-loss$
- $ightharpoonup riangledown loss((x_t, y_t); \omega) = riangledown \left(-\log \left(e^{\omega \cdot \phi(x_t, y_t)} / Z_{x_t}
 ight)
 ight)$
- ► From logistic regression section:

$$egin{aligned} igtriangledown \left(-\log \ \left(\mathrm{e}^{oldsymbol{\omega} \cdot \phi(oldsymbol{x}_t, oldsymbol{y}_t)} / Z_{oldsymbol{x}_t}
ight)
ight) = -\left(\phi(oldsymbol{x}_t, oldsymbol{y}_t) - \sum_{oldsymbol{y}} oldsymbol{P}(oldsymbol{y} | oldsymbol{x}) \phi(oldsymbol{x}_t, oldsymbol{y})
ight) \end{aligned}$$

▶ Plus regularization term (if part of model)

Online SVMs

- Stochastic Gradient Descent (SGD)
- \blacktriangleright loss $((x_t, y_t); \omega) = \text{hinge-loss}$

$$riangledown loss((m{x}_t,m{y}_t);m{\omega}) = riangledown \left(\max \left(0,1 + \max_{m{y}
eq m{y}_t} m{\omega} \cdot m{\phi}(m{x}_t,m{y}) - m{\omega} \cdot m{\phi}(m{x}_t,m{y}_t)
ight)
ight)$$

Subgradient is:

$$egin{aligned} & \triangledown \left(\mathsf{max} \left(0, 1 + \max_{\boldsymbol{y} \neq \boldsymbol{y}_t} \ \boldsymbol{\omega} \cdot \phi(\boldsymbol{x}_t, \boldsymbol{y}) - \boldsymbol{\omega} \cdot \phi(\boldsymbol{x}_t, \boldsymbol{y}_t) \right) \right) \\ & = \begin{cases} 0, & \text{if } \boldsymbol{\omega} \cdot \phi(\boldsymbol{x}_t, \boldsymbol{y}_t) - \mathsf{max}_{\boldsymbol{y}} \, \boldsymbol{\omega} \cdot \phi(\boldsymbol{x}_t, \boldsymbol{y}) \geq 1 \\ \phi(\boldsymbol{x}_t, \boldsymbol{y}) - \phi(\boldsymbol{x}_t, \boldsymbol{y}_t), & \text{otherwise, where } \boldsymbol{y} = \mathsf{max}_{\boldsymbol{y}} \, \boldsymbol{\omega} \cdot \phi(\boldsymbol{x}_t, \boldsymbol{y}) \end{cases}$$

Plus regularization term (required for SVMs)

Perceptron and Hinge-Loss

SVM subgradient update looks like perceptron update

$$oldsymbol{\omega}^i = oldsymbol{\omega}^{i-1} - lpha egin{cases} 0, & ext{if } oldsymbol{\omega} \cdot oldsymbol{\phi}(oldsymbol{x}_t, oldsymbol{y}_t) - ext{max}_{oldsymbol{y}} oldsymbol{\omega} \cdot oldsymbol{\phi}(oldsymbol{x}_t, oldsymbol{y}) \geq oldsymbol{1} \ oldsymbol{\phi}(oldsymbol{x}_t, oldsymbol{y}_t) - oldsymbol{\phi}(oldsymbol{x}_t, oldsymbol{y}_t), & ext{otherwise, where } oldsymbol{y} = ext{max}_{oldsymbol{y}} oldsymbol{\omega} \cdot oldsymbol{\phi}(oldsymbol{x}_t, oldsymbol{y}_t) \end{pmatrix}$$

Perceptron

$$oldsymbol{\omega}^i = oldsymbol{\omega}^{i-1} - lpha egin{cases} 0, & ext{if } oldsymbol{\omega} \cdot \phi(oldsymbol{x}_t, oldsymbol{y}_t) - ext{max}_{oldsymbol{y}} oldsymbol{\omega} \cdot \phi(oldsymbol{x}_t, oldsymbol{y}) \geq oldsymbol{0} \ \phi(oldsymbol{x}_t, oldsymbol{y}_t), & ext{otherwise, where } oldsymbol{y} = ext{max}_{oldsymbol{y}} oldsymbol{\omega} \cdot \phi(oldsymbol{x}_t, oldsymbol{y}_t) \geq oldsymbol{0} \ \phi(oldsymbol{x}_t, oldsymbol{y}_t), & ext{otherwise, where } oldsymbol{y} = ext{max}_{oldsymbol{y}} oldsymbol{\omega} \cdot \phi(oldsymbol{x}_t, oldsymbol{y}_t) \end{pmatrix}$$

where $\alpha=1$, note $\phi(x_t,y)-\phi(x_t,y_t)$ not $\phi(x_t,y_t)-\phi(x_t,y)$ since '-' (descent)

Perceptron = SGD with no-margin hinge-loss

$$\max \left(0, 1 + \max_{oldsymbol{y}
eq oldsymbol{y}^t} oldsymbol{\omega} \cdot \phi(oldsymbol{x}_t, oldsymbol{y}) - oldsymbol{\omega} \cdot \phi(oldsymbol{x}_t, oldsymbol{y}_t)
ight)$$

Margin Infused Relaxed Algorithm (MIRA)

Batch (SVMs):

$$\min \; \frac{1}{2} ||\omega||^2$$

such that:

$$egin{aligned} \omega \cdot \phi(x_t, y_t) - \omega \cdot \phi(x_t, y') &\geq 1 \ &orall (x_t, y_t) \in \mathcal{T} ext{ and } y' \in ar{\mathcal{Y}}_t \end{aligned}$$

Online (MIRA):

$$\begin{aligned} & \text{Training data: } \mathcal{T} = \{(\boldsymbol{x}_t, \boldsymbol{y}_t)\}_{t=1}^{|\mathcal{T}|} \\ & 1. \quad \boldsymbol{\omega}^{(0)} = 0; \ i = 0 \\ & 2. \quad \text{for } n: 1..N \\ & 3. \quad \text{for } t: 1..T \\ & 4. \quad \boldsymbol{\omega}^{(i+1)} = \arg\min_{\boldsymbol{\omega}^*} \|\boldsymbol{\omega}^* - \boldsymbol{\omega}^{(i)}\| \\ & \quad \text{such that:} \\ & \quad \boldsymbol{\omega} \cdot \boldsymbol{\phi}(\boldsymbol{x}_t, \boldsymbol{y}_t) - \boldsymbol{\omega} \cdot \boldsymbol{\phi}(\boldsymbol{x}_t, \boldsymbol{y}') \geq 1 \\ & \quad \forall \boldsymbol{y}' \in \widetilde{\mathcal{Y}}_t \end{aligned}$$

MIRA has much smaller optimizations with only $|\bar{\mathcal{Y}}_t|$ constraints

Quick Summary

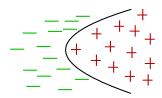
Linear Classifiers

- Naive Bayes, Perceptron, Logistic Regression and SVMs
- Generative vs. Discriminative
- Objective functions and loss functions
 - Log-loss, min error and hinge loss
 - Generalized linear classifiers
- Regularization
- Online vs. Batch learning

Non-linear Classifiers

Non-Linear Classifiers

- Some data sets require more than a linear classifier to be correctly modeled
- A lot of models out there
 - K-Nearest Neighbours
 - Decision Trees
 - ▶ Kernels
 - Neural Networks



Kernels

► A kernel is a similarity function between two points that is symmetric and positive semi-definite, which we denote by:

$$\varphi(\boldsymbol{x}_t, \boldsymbol{x}_r) \in \mathbb{R}$$

▶ Let M be a $n \times n$ matrix such that ...

$$M_{t,r} = \varphi(\boldsymbol{x}_t, \boldsymbol{x}_r)$$

- ▶ ... for any *n* points. Called the Gram matrix.
- Symmetric:

$$\varphi(\boldsymbol{x}_t, \boldsymbol{x}_r) = \varphi(\boldsymbol{x}_r, \boldsymbol{x}_t)$$

▶ Positive definite: for all non-zero v

$$\mathbf{v}M\mathbf{v}^T \geq 0$$

Kernels

▶ **Mercer's Theorem**: for any kernal φ , there exists an ϕ , such that:

$$\varphi(x_t, x_r) = \phi(x_t) \cdot \phi(x_r)$$

Since our features are over pairs (x, y), we will write kernels over pairs

$$\varphi((x_t,y_t),(x_r,y_r)) = \phi(x_t,y_t) \cdot \phi(x_r,y_r)$$

Kernel Trick – Perceptron Algorithm

```
Training data: \mathcal{T} = \{(x_t, y_t)\}_{t=1}^{|\mathcal{T}|}

1. \omega^{(0)} = 0; i = 0

2. for n: 1..N

3. for t: 1..T

4. Let y = \arg\max_y \omega^{(i)} \cdot \phi(x_t, y)

5. if y \neq y_t

6. \omega^{(i+1)} = \omega^{(i)} + \phi(x_t, y_t) - \phi(x_t, y)

7. i = i + 1

8. return \omega^i
```

- ▶ Each feature function $\phi(x_t, y_t)$ is added and $\phi(x_t, y)$ is subtracted to ω say $\alpha_{u,t}$ times
 - $m{\alpha}_{m{y},t}$ is the # of times during learning label $m{y}$ is predicted for example t
- ► Thus,

$$\omega = \sum_{t,y} \alpha_{y,t} [\phi(x_t, y_t) - \phi(x_t, y)]$$

Kernel Trick – Perceptron Algorithm

▶ We can re-write the argmax function as:

$$y* = \underset{y^*}{\operatorname{arg max}} \omega^{(i)} \cdot \phi(x_t, y^*)$$

$$= \underset{y^*}{\operatorname{arg max}} \sum_{t,y} \alpha_{y,t} [\phi(x_t, y_t) - \phi(x_t, y)] \cdot \phi(x_t, y^*)$$

$$= \underset{y^*}{\operatorname{arg max}} \sum_{t,y} \alpha_{y,t} [\phi(x_t, y_t) \cdot \phi(x_t, y^*) - \phi(x_t, y) \cdot \phi(x_t, y^*)]$$

$$= \underset{y^*}{\operatorname{arg max}} \sum_{t,y} \alpha_{y,t} [\varphi((x_t, y_t), (x_t, y^*)) - \varphi((x_t, y), (x_t, y^*))]$$

► We can then re-write the perceptron algorithm strictly with kernels

Kernel Trick – Perceptron Algorithm

```
Training data: \mathcal{T} = \{(x_t, y_t)\}_{t=1}^{|\mathcal{T}|}

1. \forall y, t \text{ set } \alpha_{y,t} = 0

2. for n: 1..N

3. for t: 1..T

4. Let y^* = \arg\max_{y^*} \sum_{t,y} \alpha_{y,t} [\varphi((x_t, y_t), (x_t, y^*)) - \varphi((x_t, y), (x_t, y^*))]

5. if y^* \neq y_t

6. \alpha_{y^*,t} = \alpha_{y^*,t} + 1
```

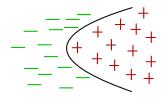
ightharpoonup Given a new instance x

$$\boldsymbol{y}^* = \argmax_{\boldsymbol{y}^*} \sum_{t,\boldsymbol{y}} \alpha_{\boldsymbol{y},t} [\varphi((\boldsymbol{x}_t,\boldsymbol{y}_t),(\boldsymbol{x},\boldsymbol{y}^*)) - \varphi((\boldsymbol{x}_t,\boldsymbol{y}),(\boldsymbol{x},\boldsymbol{y}^*))]$$

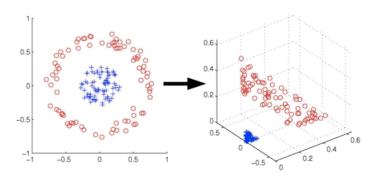
▶ But it seems like we have just complicated things???

Kernels = Tractable Non-Linearity

- ► A linear classifier in a higher dimensional feature space is a non-linear classifier in the original space
- Computing a non-linear kernel is often better computationally than calculating the corresponding dot product in the high dimension feature space
- ▶ Thus, kernels allow us to efficiently learn non-linear classifiers



Linear Classifiers in High Dimension



$$\Re^2 \longrightarrow \Re^3$$

 $(x_1, x_2) \longmapsto (z_1, z_2, z_3) = (x_1^2, \sqrt{2}x_1x_2, x_2^2)$

Example: Polynomial Kernel

- $\phi(x) \in \mathbb{R}^M, d \geq 2$
- $\varphi(x_t, x_s) = (\phi(x_t) \cdot \phi(x_s) + 1)^d$ O(M) to calculate for any d!!
- ▶ But in the original feature space (primal space)
 - Consider d = 2, M = 2, and $\phi(x_t) = [x_{t,1}, x_{t,2}]$

$$(\phi(x_t) \cdot \phi(x_s) + 1)^2 = ([x_{t,1}, x_{t,2}] \cdot [x_{s,1}, x_{s,2}] + 1)^2$$

$$= (x_{t,1}x_{s,1} + x_{t,2}x_{s,2} + 1)^2$$

$$= (x_{t,1}x_{s,1})^2 + (x_{t,2}x_{s,2})^2 + 2(x_{t,1}x_{s,1}) + 2(x_{t,2}x_{s,2})$$

$$+2(x_{t,1}x_{t,2}x_{s,1}x_{s,2}) + (1)^2$$

which equals:

$$[(x_{t,1})^2,(x_{t,2})^2,\sqrt{2}x_{t,1},\sqrt{2}x_{t,2},\sqrt{2}x_{t,1}x_{t,2},1] + [(x_{s,1})^2,(x_{s,2})^2,\sqrt{2}x_{s,1},\sqrt{2}x_{s,2},\sqrt{2}x_{s,1}x_{s,2},1]$$

Popular Kernels

► Polynomial kernel

$$\varphi(x_t, x_s) = (\phi(x_t) \cdot \phi(x_s) + 1)^d$$

 Gaussian radial basis kernel (infinite feature space representation!)

$$arphi(x_t, x_s) = exp(rac{-||\phi(x_t) - \phi(x_s)||^2}{2\sigma})$$

- ► String kernels [Lodhi et al. 2002, Collins and Duffy 2002]
- ► Tree kernels [Collins and Duffy 2002]

Kernels Summary

- ► Can turn a linear classifier into a non-linear classifier
- Kernels project feature space to higher dimensions
 - Sometimes exponentially larger
 - Sometimes an infinite space!
- Can "kernalize" algorithms to make them non-linear

References and Further Reading

- A. L. Berger, S. A. Della Pietra, and V. J. Della Pietra. 1996.
 A maximum entropy approach to natural language processing. <u>Computational Linguistics</u>, 22(1).
- C.T. Chu, S.K. Kim, Y.A. Lin, Y.Y. Yu, G. Bradski, A.Y. Ng, and K. Olukotun. 2007.

Map-Reduce for machine learning on multicore. In $\underline{\text{Advances in Neural Information}}$ Processing Systems.

- M. Collins and N. Duffy. 2002. New ranking algorithms for parsing and tagging: Kernels over discrete structures, and the voted perceptron. In Proc. ACL.
- M. Collins. 2002. Discriminative training methods for hidden Markov models: Theory and experiments with perceptron algorithms. In Proc. EMNLP.
- K. Crammer and Y. Singer. 2001.
 On the algorithmic implementation of multiclass kernel based vector machines.
 JMLR.
- K. Crammer and Y. Singer. 2003.
 Ultraconservative online algorithms for multiclass problems. JMLR.

- K. Crammer, O. Dekel, S. Shalev-Shwartz, and Y. Singer. 2003. Online passive aggressive algorithms. In <u>Proc. NIPS</u>.
- K. Crammer, O. Dekel, J. Keshat, S. Shalev-Shwartz, and Y. Singer. 2006.
 Online passive aggressive algorithms. JMLR.
- Y. Freund and R.E. Schapire. 1999.
 Large margin classification using the perceptron algorithm. Machine Learning, 37(3):277–296.
- T. Joachims. 2002.
 Learning to Classify Text using Support Vector Machines. Kluwer.
- J. Lafferty, A. McCallum, and F. Pereira. 2001.
 Conditional random fields: Probabilistic models for segmenting and labeling sequence data. In Proc. ICML.
- H. Lodhi, C. Saunders, J. Shawe-Taylor, and N. Cristianini. 2002.
 Classification with string kernels. Journal of Machine Learning Research.
- G. Mann, R. McDonald, M. Mohri, N. Silberman, and D. Walker. 2009. Efficient large-scale distributed training of conditional maximum entropy models. In Advances in Neural Information Processing Systems.
- A. McCallum, D. Freitag, and F. Pereira. 2000.

Maximum entropy Markov models for information extraction and segmentation. In Proc. ICML.

- R. McDonald, K. Crammer, and F. Pereira. 2005.
 Online large-margin training of dependency parsers. In Proc. ACL.
- K.R. Müller, S. Mika, G. Rätsch, K. Tsuda, and B. Schölkopf. 2001. An introduction to kernel-based learning algorithms. <u>IEEE Neural Networks</u>, 12(2):181–201.
- J Nocedal and SJ Wright. 1999.
 Numerical optimization, volume 2. Springer New York.
- F. Sha and F. Pereira. 2003. Shallow parsing with conditional random fields. In <u>Proc. HLT/NAACL</u>, pages 213–220.
- C. Sutton and A. McCallum. 2006.
 An introduction to conditional random fields for relational learning. In L. Getoor and B. Taskar, editors, <u>Introduction to Statistical Relational Learning</u>. MIT Press.
- B. Taskar, C. Guestrin, and D. Koller. 2003. Max-margin Markov networks. In Proc. NIPS.
- ▶ B. Taskar. 2004.

<u>Learning Structured Prediction Models: A Large Margin Approach.</u> Ph.D. thesis, Stanford.

- I. Tsochantaridis, T. Hofmann, T. Joachims, and Y. Altun. 2004. Support vector learning for interdependent and structured output spaces. In <u>Proc.</u> ICML.
- ► T. Zhang. 2004. Solving large scale linear prediction problems using stochastic gradient descent algorithms. In Proceedings of the twenty-first international conference on Machine learning.