Introduction to Machine Learning

Linear Classifiers

Lisbon Machine Learning School, 2014

Ryan McDonald

Google Inc., London
E-mail: ryanmcd@google.com

Introduction to Machine Learning



Linear Classifiers

v

Go onto ACL Anthology

Search for: “Naive Bayes”, “Maximum Entropy”, “Logistic
Regression”, “SVM", “Perceptron”
Do the same on Google Scholar

» “Maximum Entropy” & “NLP" 9,000 hits, 240 before 2000

» “SVM" & “NLP" 11,000 hits, 556 before 2000

» “Perceptron” & “NLP", 3,000 hits, 147 before 2000
All are examples of linear classifiers
All have become tools in any NLP/CL researchers tool-box in
past 15 years

» Arguably the most important tool

v

v

v

v

Introduction to Machine Learning



Experiment

v

Document 1 — label: 0; words: x ¢ o
» Document 2 — label: 0; words: « QO A
Document 3 — label: 1; words: x /A &

» Document 4 — label: 1; words: ¢ A o

v

Introduction to Machine Learning



Experiment

v

Document 1 — label: 0; words: x ¢ o
» Document 2 — label: 0; words: « QO A
Document 3 — label: 1; words: x /A &

» Document 4 — label: 1; words: ¢ A o

v

» New document — words: x ¢ o; label ?

Introduction to Machine Learning



Experiment

» Document 1 — label: 0; words:
» Document 2 — label: 0; words:
» Document 3 — label: 1; words:

» Document 4 — label: 1; words:

* O 0
* O A
AN
S ANES)

» New document — words: x ¢ o; label ?

» New document — words: x ¢ ©: label ?

Introduction to Machine Learning



Experiment

» Document 1 — label: 0; words:
» Document 2 — label: 0; words:
» Document 3 — label: 1; words:

» Document 4 — label: 1; words:

* O 0
* O A
AN
S ANES)

» New document — words: x ¢ o; label ?

» New document — words: x ¢ ©: label ?

» New document — words: x A o; label ?

Introduction to Machine Learning



Experiment

» Document 1 — label: 0; words:
» Document 2 — label: 0; words:
» Document 3 — label: 1; words:

» Document 4 — label: 1; words:

* O 0
* O A
AN
S ANES)

» New document — words: x ¢ o; label ?

» New document — words: x ¢ ©: label ?

» New document — words: x A o; label ?

Why can we do this?

Introduction to Machine Learning



Experiment

» Document 1 — label: 0; words: x ¢ o
Document 2 — label: 0: words: x © A
Document 3 — label: 1; words: x /A &

» Document 4 — label: 1; words: ¢ A o

v

v

» New document — words: x ¢ ©; label 0
Label 0 Label 1
P(O%) = %ﬂ;n)dm =2 =067 vs. P(L]x) = %ta(n)dl) —1-033
P(0J¢) = %ta(z)do) =1=05vs P(1o) = %ta(z)dl) —1l-05
PO[0) = UMD AN 0) _ 1 _ 1 g vs. p(1|V) = LUHC ML _ 0 — o9

Introduction to Machine Learning



Experiment

» Document 1 — label: 0; words: x ¢ o
Document 2 — label: 0: words: x © A
Document 3 — label: 1; words: x /A &

» Document 4 — label: 1; words: ¢ A o

v

v

» New document — words: * A o; label ?
Label 0 Label 1
t d t d
P(0¥) = OGBS0 = 2 = 0,67 vs. P(1[x) = SURES = 1 =033
_ count(a and o) _ 1 _ _ count(a and1l) _ 2 _
P(0|A) = —count(A) = 3= 0.33 vs. P(114) = —count(A) = 3= 0.67
_ count(oand o) _ 1 _ _ count(oand1) _ 1 _
P(0|O) - COIJ?]t(o) -2 = 0.5 vs. P(1|O) - COU?]t(o) — =5 = 0.5

Introduction to Machine Learning



Machine Learning

v

Machine learning is well motivated counting

v

Typically, machine learning models

1. Define a model/distribution of interest
2. Make some assumptions if needed
3. Count!!

v

Model: P(label|doc) = P(label|words, ... word,)

> Prediction for new doc = arg max,p| P(label|doc)
Assumption: P(label|lwordy, . .., word,) = LS. P(label|word;)

Count (as in example)

v

v

Introduction to Machine Learning



Lecture Qutline

» Preliminaries
» Data: input/output, assumptions
» Feature representations
» Linear classifiers and decision boundaries

v

Classifiers
» Naive Bayes
» Generative versus discriminative
» Logistic-regression
» Perceptron
» Large-Margin Classifiers (SVMs)

Regularization

v

v

Online learning

Non-linear classifiers

v

Introduction to Machine Learn



Preliminaries

Inputs and Outputs

> Input: z € X
> e.g., document or sentence with some words * = wy ... w,, or
a series of previous actions
» Output: y € Y
> e.g., parse tree, document class, part-of-speech tags,
word-sense

» Input/Output pair: (z,y) € X x Y
> e.g., a document x and its label y
» Sometimes x is explicit in y, e.g., a parse tree y will contain
the sentence «

Introduction to Machine Learning



Preliminaries

General Goal

When given a new input x predict the correct output y

But we need to formulate this computationally!

Introduction to Machine Learning



Preliminaries

Feature Representations

» We assume a mapping from input « to a high dimensional
feature vector

» p(x) X = R™
» For many cases, more convenient to have mapping from
input-output pairs (x,y)
> p(x,y): X xY = R"
» Under certain assumptions, these are equivalent
» Most papers in NLP use ¢(x,y)

Introduction to Machine Learning



Preliminaries

Feature Representations

» We assume a mapping from input « to a high dimensional
feature vector

» p(x) X = R™
» For many cases, more convenient to have mapping from
input-output pairs (x,y)
> p(x,y): X xY = R"
» Under certain assumptions, these are equivalent
» Most papers in NLP use ¢(x,y)

» Not common in NLP: ¢ € R™
» More common: ¢; € {1,...,F;}, F; € Nt (categorical)
» Very common: ¢ € {0,1}" (binary)

Introduction to Machine Learning



Preliminaries

Feature Representations

» We assume a mapping from input « to a high dimensional
feature vector

» p(x) X = R™
» For many cases, more convenient to have mapping from
input-output pairs (x,y)
> p(x,y): X xY = R"
» Under certain assumptions, these are equivalent

» Most papers in NLP use ¢(x,y)

» Not common in NLP: ¢ € R™
» More common: ¢; € {1,...,F;}, F; € Nt (categorical)
» Very common: ¢ € {0,1}" (binary)

» For any vector v € R™, let v; be the j value

Introduction to Machine Learning



Preliminaries

Examples

» x is a document and y is a label

1 if  contains the word “interest”
oj(x,y) = and y = “financial”
0 otherwise

¢j(x,y) = % of words in & with punctuation and y = "scientific”

» x is a word and y is a part-of-speech tag

| 1 ifx= "pbank”and y = Verb
(. y) = { 0 otherwise

Introduction to Machine Learning



Preliminaries

Example 2

> x is a name, y is a label classifying the name

1  if & contains “George” 1  if  contains “George”
and y = "Object”

do(@,y) = and y = “Person” b, y) =
0  otherwise 0  otherwise

1 if & contains "Washington” 1 if & contains “Washington”
¢1(x,y) = and y = “Person” ¢s5(x, y) = and y = "Object”
0  otherwise 0  otherwise
1 if @ contains “Bridge” 1  if @ contains “Bridge”
Doz, y) = and y = “Person” de(x, y) = and y = “Object”
0  otherwise 0  otherwise
1 if @ contains “General” 1 if & contains “General”
P3(x,y) = and y = “Person” b7(x,y) = and y = “Object”
0  otherwise 0  otherwise

» x=General George Washington, y=Person — ¢(z,y)=[110100 0 0]
> x=George Washington Bridge, y=0bject — ¢(x,y) =[00001 11 0]
» x=George Washington George, y=0Object — ¢(x,y) =[00001 10 0]

Introduction to Machine Learni



Preliminaries

Block Feature Vectors

x=General George Washington, y=Person — ¢(x,y) =[1101000 0]
x=General George Washington, y=0Object — ¢(z,y) =[00001 10 1]
x=George Washington Bridge, y=0bject — ¢(x,y) =[000011 1 Q]

x=George Washington George, y=0bject — ¢(x,y) =[0000 110 0]

vVvyVvVyy

» Each equal size block of the feature vector corresponds to one
label

» Non-zero values allowed only in one block

Introduction to Machine Learning



Preliminaries

Feature Representations - ¢(x)

v

Instead of ¢(x,y) : X x Y — R™ over input/outputs (x, y)

Let ¢p(x) : X — R™ (e.g.,m’ = m/|Y|)

> l.e., Feature representation only over inputs x

v

v

Equivalent when ¢(x,y) = ¢(x) x Y

v

Advantages: Can make math cleaner, e.g., binary
classification; Can use less parameters.

v

Disadvantages: No complex features over properties of labels

Introduction to Machine Learning



Preliminaries

Feature Representations - ¢(x) vs. ¢(x,y)

> ¢z, y)

» a=General George Washington, y=Person — ¢(x,y) =[1101000 Q]
» x=General George Washington, y=0bject — ¢(z,y) =[0000 110 1]

> ¢(x)

» a=General George Washington — ¢(z) =[110 1]

v

Different ways of representing same thing

v

Can deterministically map from ¢(x) to ¢(x,y) given y

Introduction to Machine Learning



Linear Classifiers

Linear Classifiers

» Linear classifier: score (or probability) of a particular
classification is based on a linear combination of features and

their weights
> Let w € R™ be a high dimensional weight vector

» Assume that w is known
» Muilticlass Classification: Y = {0,1,..., N}

y = argmax w - ¢(x,y)
y
= argmax ij x ¢i(x,y)
j=0

» Binary Classification just a special case of multiclass

Introduction to Machine Learning



Linear Classifiers

Linear Classifiers — ¢(x)

. /
» Define |Y| parameter vectors w, € R"”
> l.e., one parameter vector per output class y

» Classification

Y = argmax wy - ¢(x)
Yy

Introduction to Machine Learning



Linear Classifiers

Linear Classifiers — ¢(x)

v

. /
Define | Y| parameter vectors w, € R™
> l.e., one parameter vector per output class y

Classification

v

Y = argmax wy - ¢(x)
Yy

v

é(z,y)
» x=General George Washington, y=Person — ¢(x,y) =[1101000 0]
» a=General George Washington, y=0bject — ¢(x,y) =[0000110 1]
> Single w € R8

> ¢(z)
» x=General George Washington — ¢(x) =[1 1 0 1]
» Two parameter vectors wp € R*, w; € R*

Introduction to Machine Learning



Linear Classifiers

Linear Classifiers - Bias Terms
» Often linear classifiers presented as
m
Yy = argmax ij x ¢j(z,y) + by
y .
Jj=0

» Where b is a bias or offset term

» Sometimes this is folded into ¢

x=General George Washington, y=Person — ¢(z,y) =[110110000 0]
x=General George Washington, y=0Object — ¢(x,y) =[000001101 1]

1 1y ="Person”

_ 1 = “Object”
¢4(m,y) { 0 otherwise ¢9(w7 y) = { 0 :loltherWiSJeec

» wy and wg are now the bias terms for the labels

Introduction to Machine Learning



Linear Classifiers

Binary Linear Classifier

Let'ssay w = (1,-1) and b, =1, Yy
Then w is a line (generally a hyperplane) that divides all points:

2 \
= Points along line

have scores of 0

Introduction to Machine Learning 18(107)



Linear Classifiers

Binary Linear Classifier - Block Features

¢(x,y) = [v,0] or [0, v] in block features

\ Points along line

have scores of 0

Introduction to Machine Learning 19(107)



Linear Classifiers

Multiclass Linear Classifier

Defines regions of space. Visualization difficult.

> i.e., + are all points (x,y) where + = argmax, w - ¢(z,y)

Introduction to Machine Learning



Linear Classifiers

Separability

» A set of points is separable, if there exists a w such that
classification is perfect

Separable Not Separable

» This can also be defined mathematically (and we will shortly)

Introduction to Machine Learning



Linear Classifiers

Machine Learning — finding w

v

Supervised Learning

v

Input: training examples 7 = {(mt,yt)}gl

v

Input: feature representation ¢

v

Output: w that maximizes some important function on the
training set
» w=argmax L(T; w)

Introduction to Machine Learning



Linear Classifiers

Machine Learning — finding w

» Supervised Learning
» Input: training examples 7 = {(wt,yt)}gl
> Input: feature representation ¢
» Output: w that maximizes some important function on the
training set
» w=argmax L(T; w)
» Equivalently minimize: w = arg min —£(7T; w)

Introduction to Machine Learning



Linear Classifiers

Objective Functions

» L(-) is called the objective function
» Usually we can decompose £ by training pairs (x,y)

> L(Tiw) o< 3 e loss((x, y)i w)
» Jloss is a function that measures some value correlated with
errors of parameters w on instance (x,y)

» Defining £(+) and loss is core of linear classifiers in machine
learning

Introduction to Machine Learning



Linear Classifiers

Supervised Learning — Assumptions

» Assumption: (x¢,y:) are sampled i.i.d.

» i.i.d. = independent and identically distributed

» independent = each sample independent of the other

» identically = each sample from same probability distribution
» Sometimes assumption: The training data is separable

> Needed to prove convergence for Perceptron
» Not needed in practice

Introduction to Machine Learning



Naive Bayes

Introduction to Machine Learni 2



Probabilistic Models

» For a moment, forget linear classifiers and parameter vectors w

> Let's assume our goal is to model the conditional probability
of output labels y given inputs x (or ¢(x))

v

le., P(y|x)

v

If we can define this distribution, then classification becomes
> arg max,, P(y|x)

Introduction to Machine Learning



Bayes Rule
» One way to model P(y|z) is through Bayes Rule:
P(y)P(zly)
P =
(vlw) = 5

arg max P(y|x) o« arg max P(y)P(x|y)
y y

» Since x is fixed

» P(y)P(x|y) = P(x,y): a joint probability

» Modeling the joint input-output distribution is at the core of
generative models

» Because we model a distribution that can randomly generate
outputs and inputs, not just outputs
» More on this later

Introduction to Machine Learning



Naive Bayes (NB)

» Use ¢(x) € R™ instead of ¢(x,y)
> P(xly) = P(¢(x)ly) = P(d1(x),. .., om(x)|y)

Naive Bayes Assumption
(conditional independence)

P(¢1(x), ..., dm(x)y) =11, P(di(x)|y)

P(y)P($1(2),. ... dm(@)ly) = P(y) [ P(#i(2)ly)

i=1

Introduction to Machine Learning



Naive Bayes — Learning

> Input: T = {(@¢, y:)} 1}

» Let ¢i(x) € {1,..., F;} — categorical; common in NLP

» Parameters P = {P(y), P(¢i(x)|y)}
» Both P(y) and P(¢(x)|y) are multinomials

» Objective: Maximum Likelihood Estimation (MLE)

I7] I7] m
L(T) = HP(wt,yt) = H <P(yt H i(@e)lye) )

t=1

IT]

P = arg;nax H ( (ye) H P(¢i(z: yt)>

Introduction to Machine Learning



Naive Bayes — Learning
MLE has closed form solution!! (more later)

Tl

P = arg;)nax H (P(yt)H P((f’i(mt)‘yt))
t=1 i=1

S e = wl)
7]

7 [[¢i(x:) = $i(x) and ye = y]]
S [lye = y]]

P(y) =

P(¢i(x)ly) =

[[X]] is the identity function for property X
Thus, these are just normalized counts over events in T

Introduction to Machine Learning



Naive Bayes Example

> i(x) €0,1, Vi

» doc 1: y1 =0, ¢po(x1) =1, ¢1(x1) =1
» doc 2: yo =0, ¢o(x2) =0, ¢P1(x2) =1
» doc 3: y3 =1, ¢po(x3) =1, p1(x3) =0

» Two label parameters P(y = 0), P(y = 1)
» Eight feature parameters

> 2 (labels) * 2 (features) * 2 (feature values)
» E.g., y=0and ¢o(x) =1: P(¢po(x) = 1ly =0)

» P(y=0)=2/3, P(y=1)=1/3
> P(po(x) =1y =0) =1/2, P(¢1(x) =0ly =1) =1/1

Introduction to Machine Learning



Naive Bayes Document Classification

» doc 1: y; = sports, “hockey is fast”
» doc 2: y» = politics, “politicians talk fast”

» doc 3: y3 = politics, “washington is sleazy”

> ¢o(x 1 iff doc has word ‘hockey’, 0 o.w.
» ¢1(x) = 1 iff doc has word ‘is’, 0 o.w.

> ¢o(x) =1 iff doc has word ‘fast’, 0 o.w.

(z) =

(z) =

(z) =

» ¢3(x) = 1 iff doc has word ‘politicians’, 0 o.w.

> ¢a(x) = 1 iff doc has word ‘talk’, 0 o.w.

» ¢s(x) = 1 iff doc has word ‘washington’, 0 o.w.
(z) =

> ¢pg(x 1 iff doc has word ‘sleazy’, 0 o.w.

Introduction to Machine Learning 32(107)



Deriving MLE

7] m
P = argmax H (P(yt)HP(Qbi(-’BtNyt))

P t=1 i=1

71 m
= arg;nax Z (Iog P(y:) + Z log P(d);(mt)lyt))

t=1 i=1
u T
= arg maxz log P(y:) + arg max Z Z log P(¢i(z+)|y:)
Ply) 13 P(i(2)ly) =1 i=1

such that -, P(y) =1, Zf’:l P(¢i(x) =jly) =1, P(:) >0

Introduction to Machine Learning



Deriving MLE

|7 171 m

P =arg maxz log P(y:) + arg max ZZ log P(pi(xt)|y:)

P(y) t=1 P(oi(z)|y) t=1 i=1
Both optimizations are of the form

arg maxp y_ count(v)log P(v), s.t., >, P(v) =1, P(v) >0

For example:

7]

arg max Z log P(y:) = arg max Z count(y, T) log P(y)
P(y) =1 P(y)

such that 3°, P(y) =1, P(y) >0

Introduction to Machine Learning



Deriving MLE

arg maxp y, count(v)log P(v)
st., y,,P(v)=1, P(v) >0

Introduce Lagrangian multiplier A\, optimization becomes

argmaxp y >, count(v)log P(v) — A (32, P(v) — 1)

Derivative w.r.t P(v) is %‘E)(V) Y

Setting this to zero P(v) = %t(v)

Combine with 37, P(v) = 1. P(v) >0, then P(v) = %

Introduction to Machine Learning



Put it together

7] m
P = arg;nax H (P(yt) H P(¢;(mt)|yt))
t=1

i=1
71 71 m
= arg max log P(y: arg max log P(oi(x:)|y:
g m ; g (y)+P(§i(m)|y);; g P(pi(z:)lye)
IT] _
P(’y) — Zt:1[|[;{]“ - y]]
|T| i\Tt) = i\xr) an t —

Introduction to Machine Learning



NB is a linear classifier

> Let wy =log P(y), Vy € Y

> Let wy,(z)y = log P(¢i(T)|y), Yy € V, pi(x) € {1,..., Fi}
> Let w be set of all w, and w; «

R

arg max P(¢(z),y) = arg max P(y)HP(¢, x)|y)

argmax P(y|p(z))
v i=1

= arg max log P(y) + Z log P(¢i(x)|y)
i=1

= argmax Wy +Zw¢ (z),y
i=1

= argmax Zwywy (y) + Zde, (),y¥ij(x)

i=1 j=1

where . € {0,1}, ij(x) = [[¢i() = JjII. Yy (v) = [ly = V']

Introduction to Machine Learning



Smoothing

» doc 1: y; = sports, "hockey is fast”
» doc 2: yo = politics, “politicians talk fast”

» doc 3: y3 = politics, “washington is sleazy”

» New doc: “washington hockey is fast”

» Both ‘sports’ and ‘politics’ have probabilities of 0

» Smoothing aims to assign a small amount of probability to
unseen events

» E.g., Additive/Laplacian smoothing
P(v) =

count(v)

>, count(v’)

count(v) + «
>, (count(v’) + «)

= P(v) =

Introduction to Machine Learning



Discriminative versus Generative

v

Generative models attempt to model inputs and outputs
» e.g., NB = MLE of joint distribution P(x,y)
» Statistical model must explain generation of input

v

Ocam’s Razor: why model input?

v

Discriminative models
» Use L that directly optimizes P(y|x) (or something related)
» Logistic Regression — MLE of P(y|x)
» Perceptron and SVMs — minimize classification error

v

Generative and discriminative models use P(y|x) for
prediction

v

Differ only on what distribution they use to set w

Introduction to Machine Learning



Logistic Regression

Logistic Regression

Introduction to Machine Learning



Logistic Regression

Logistic Regression

Define a conditional probability:

w-@(x,y) )
P(yl|z) = eT, where Z, = Z ew d(z.y')
y'ey
Note: still a linear classifier
arg max P(y’m) = argmax
Y Yy Z:z:
= argmax e o(y)
Y
= argmax w- ¢(x,y)
Y

Introduction to Machine Learning



Logistic Regression

Logistic Regression

(ylz) = —Zz
» Q: How do we learn weights w
> A: Set weights to maximize log-likelihood of training data:

w = argmax L(T,;w)
I7] |71
= argmax HP(yt|wt) = argmax Zlog P(y:|x:)
« t=1 @ t=1

> In a nut shell we set the weights w so that we assign as much
probability to the correct label y for each « in the training set

Introduction to Machine Learning 42(107)



Logistic Regression

Logistic Regression

w¢(aj7y) ,
P(ylx) = eZ— where Z, = Y e ¢(@v)
’ y'ey
7]
w = argmax Z log P(y:|x:) (*)
Y =1

» The objective function (*) is concave (take the 2nd derivative)
» Therefore there is a global maximum

» No closed form solution, but lots of numerical techniques

» Gradient methods (gradient ascent, conjugate gradient,
iterative scaling)
» Newton methods (limited-memory quasi-newton)

Introduction to Machine Learning



Logistic Regression

Gradient Ascent

> Let £(T;w) = SV, log (e ¢(@eve) / 7,)
» Want to find arg max, £(7T; w)

» Set w® = O™

> lterate until convergence

W =W+ avL(T;w' ™)

v

a > 0 and set so that £(T;w') > L(T;w'™1)
VL(T;w) is gradient of £ w.r.t. w
» A gradient is all part|al derlvatlves over variables w,

> e, VL(T W) = (32 L(T; w), 22 3. L(T i w), . "76w L(T; w))

Bwo

v

v

Gradient ascent will always find w to maximize £

Introduction to Machine Learning



Logistic Regression

Gradient Descent

> Let L(T,w) = — ZZ'I log (ew¢(@t¥1) /7,
» Want to find arg min ,£(7; w)

» Set w® = O™

» lterate until convergence

W =w —avL(T;w' ™)

v

a > 0 and set so that £(T;w') < L(T;w'™1)
VL(T;w) is gradient of £ w.r.t. w
» A gradient is all part|al derlvatlves over variables w,

s e, VL(Tw) = (32 L(T; w), 22 3. L(T i w), . "76w L(T; w))

6w0

v

v

Gradient ascent will always find w to minimize £

Introduction to Machine Learning



Logistic Regression

The partial derivatives

» Need to find all partial derivatives %E(T;w)

L(T,w) = ZlogP(yt|mt)

ew'¢($t»’yt)
- zt: lOg ’Gy ew'ﬁb(ibtvy/)

Z wj X¢j(mf7yt)
- S

LTt

Introduction to Machine Learning



Logistic Regression

Partial derivatives - some reminders

0 _ 10
» We always assume log is the natural logarithm log,
o F _ _FO
2. 5.6 =e g F

ox
0 — 0
3. g2 Fe =2 5. Ft
4 DF _ GLF-FJG
T OxG T G?

Introduction to Machine Learning



Logistic Regression

The partial derivatives

a eZ wi X oj(xe,yYt)
6wi£(7',w) 5w Z og—m -
er wjx¢1(mhyt)

Z 8_(,‘)1 |Og Zmr

9§ exjwix®i(myt)
= Z ijx@ T+, Yt) (a_w’ th

Introduction to Machine Learning



Logistic Regression

The partial derivatives

Now,
9 eXjwixdj(@eyr) Zwt o eZ wix@j(@e,ye) _ o3 ijqu(mt,yt)%Zwt
Ow; Za, - Z2.
therij¢j(mt»yt)¢i(mt7yt) _ eE,-ij@(mr,yr)(%ith
= Z.
>0 wiXpi(xe,yt)
e« J a
= T(thﬁi(mf,yt) - %Zwt)
exj wiX®j(@e,ye)
= ———(Za.Pi(@e, yt)
Zs,
= D0 e (e, y)
y' ey
because
1o}
7th Z eZJ wj><¢1 Tt,Y ) — Z eEJ wj><¢1 wt,y ¢ (wt,y )
Ow; &u, ot 55

Introduction to Machine Learning



Logistic Regression

The partial derivatives

From before,

> wix (e, yr) > wixdj(me,yr)
8?:,-6 ‘ jZm: = = JZ:%: (Za:Pi(@e, ye)
= D e g (w,y)
y' '€y
Sub this in,
p] Za, 9 eXjwix$j(@eye)
dw: ) = Z ox) @i X mr,yt))(aT,,- Za,
= Zz (Zaiil@e,ye) = >, <7 4@V g (20, y))
t t y'ey

X w;xpj(mt,y’)

Z¢i(mt,yt Z Z ¢i(wt,y,)

t y'ey

Z¢ (@, ye) =D Y P |@)¢i(me,y')

t y'ey

Introduction to Machine Learning



Logistic Regression

FINALLY!!

» After all that,

%ET(» qu) wt,yt)—ZZP’ylwr i@ y)

t y'ey

» And the gradient is:

VL(T: w) = (ic(fr W), —E(T w),.

0
W —L(T;w))

"V Owm

» So we can now use gradient assent to find w!!

Introduction to Machine Learning



Logistic Regression

Logistic Regression Summary

» Define conditional probability

Plyla) = <

> Set weights to maximize log-likelihood of training data:

w = arg max log P T
g 2 g P(yelz:)

» Can find the gradient and run gradient ascent (or any
gradient-based optimization algorithm)

8%5(% w)=> Gi(ze,y) = Y. > P |z)i(we. y)

t y'ey

Introduction to Machine Learning



Logistic Regression

Logistic Regression = Maximum Entropy

» Well known equivalence

» Max Ent: maximize entropy subject to constraints on features
» Empirical feature counts must equal expected counts

> Quick intuition
» Partial derivative in logistic regression

O Tiw) =X deny) =3 3 Plleddacy)

Ow; =y

» First term is empirical feature counts and second term is

expected counts
» Derivative set to zero maximizes function
» Therefore when both counts are equivalent, we optimize the

logistic regression objective!

Introduction to Machine Learning



Perceptron

Introduction to Machine Learni



Perceptron

» Choose a w that minimizes error

7]
L(Tw) =Y 1—[[y: = argmax w - ¢(z:,y)|]
t=1 Y
7]
w = argmin » 1 - [[y: = argmax w - ¢(a¢, y)]]
“ =1 Y

(o]l = { 1 pis true

0 otherwise

» This is a 0-1 loss function

» When minimizing error people tend to use hinge-loss
» We'll get back to this

Introduction to Machine Learning



Aside: Min error versus max log-likelihood
» Highly related but not identical

» Example: consider a training set 7 with 1001 points

1000 x (xi,y = 0) = [-1,1,0,0] for i=1...1000
1 x (21001, = 1) =1[0,0,3,1]

» Now consider w =[-1,0,1,0]

» Error in this case is 0 — so w minimizes error
[-1,0,1,0]-[-1,1,0,0] =1 > [-1,0,1,0] - [0,0,—1,1] = —1

[-1,0,1,0]-[0,0,3,1] =3 > [~1,0,1,0] - [3,1,0,0] = —3

» However, log-likelihood = -126.9 (omit calculation)

Introduction to Machine Learning



Aside: Min error versus max log-likelihood
» Highly related but not identical

» Example: consider a training set 7 with 1001 points

1000 x (xzj,y =0)=[-1,1,0,0] for /=1...1000
1x (wlool,y = 1) = [070a37 1]

v

Now consider w = [—1,7,1,0]

Error in this case is 1 — so w does not minimizes error

v

[-1,7,1,0] - [-1,1,0,0] =8 > [~1,7,1,0] - [-1,1,0,0] = —1
[-1,7,1,0]-[0,0,3,1] = 3 < [-1,7,1,0] - [3,1,0,0] = 4

» However, log-likelihood = -1.4

» Better log-likelihood and worse error

Introduction to Machine Learning



Aside: Min error versus max log-likelihood

» Max likelihood # min error

» Max likelihood pushes as much probability on correct labeling
of training instance

» Even at the cost of mislabeling a few examples
» Min error forces all training instances to be correctly classified

» Often not possible
» Ways of regularizing model to allow sacrificing some errors for
better predictions on more examples

Introduction to Machine Learning



Perceptron Learning Algorithm

Training data: 7 = {(mt,yt)}gl
1. w®=0;i=0

2. forn:1.N

3 fort:1..T

4. Let y' = argmax,, W) p(xe, i)

5. if y' # s

6. wlth) = () 4 d(zr, yr) — Pz, Y')

7 i=i+1

8. return w'

Introduction to Machine Learning



Perceptron: Separability and Margin

» Given an training instance (¢, y:), define:

’yt y {yt}

» i.e., V; is the set of incorrect labels for x;

» A training set T is separable with margin v > 0 if there exists
a vector u with [ju|| = 1 such that:

u- d)(xt?yt) —u- ¢(wt7y/) >y

for all ' € Y, and ||u]| = ju?

» Assumption: the training set is separable with margin ~

Introduction to Machine Learning



Perceptron: Main Theorem

» Theorem: For any training set separable with a margin of ~,
the following holds for the perceptron algorithm:
R2
mistakes made during training < —
gl

where R > [|@(x¢, ye) — ¢, y')|| for all (z¢,y:) € T and
Yy el

» Thus, after a finite number of training iterations, the error on
the training set will converge to zero

» Let’s prove it! (proof taken from Collins '02)

Introduction to Machine Learning



Perceptron Learning Algorithm

> w(k=1) are the weights before k"

Training data: 7 = {(a:f,yt)}'t:ll mistake
1. w® =0 i=0 .
2. forn:1.N > Suppose k" mistake made at the
3. for t: 1.,.T o , tth example, (mt,yt)
4. Let = argmax, s w'’ - p(x¢,
5. if yy# Yt ) Y Py > y/ = argmaxy, w(kil) ’ ¢(wt’y,)
6. WMD) = w0 4 p(ae, ye) — dlze,v') P Yy # y;
7. =i+ 1
8. return wi > w(k) =

Wk 4 p(@e, yr) — d(ze, y')

> Now: u-w® =u-wk=D) u. (¢(zt,yt) — (@, 9') > u-wk=D 45

> Now: w(® =0 and u-w® =0, by induction on k, u - w(k) > k~y

> Now: since u-w®) < [|u]| x [|w®)|| and ||u|| = 1 then [[w®)|| > kv

> Now:
lw®[2 = |l D2+ [[g(2e, ye) — d(@e, ¥)|1? + 205D - (P, ye) — p(e,y'))
lw®]? < Jlw* D)2+ R

(since R > ||p(t, yi) — (e, y')]
and wk—1 . d(ze,yt) — wlk=1) P(xe,y') <0)

Introduction to Machine Learning 62(107)



Perceptron Learning Algorithm

» We have just shown that ||w(¥)|| > k~ and
lw > < w12 + R?

By induction on k and since w(® =0 and |[w©®[|2 =0

v

lw | < kR?

v

Therefore,
K22 < [l M| < kR

v

and solving for k
RZ
k< —
Therefore the number of errors is bounded!

v

Introduction to Machine Learning



Perceptron Summary

» Learns a linear classifier that minimizes error

» Guaranteed to find a w in a finite amount of time
» Perceptron is an example of an Online Learning Algorithm
» w is updated based on a single training instance in isolation

Wl = w0 + §(ze, y:) — P, y)

Introduction to Machine Learning



Averaged Perceptron

Training data: 7 = {(:ct,yr)}zll

2. forn:1.N

3 fort:1..T

4 Let y' = argmax,, W) p(x, y)

5 ify' # yr

6. Wt = w0 + gy, yr) — P(w1,Y)
7 else

6 w(i—i—l) —_ w(i)

7 i=i+1

8. return (3, w@) /(N x T)

Introduction to Machine Learning



Margin

Training Testing

Denote the
value of the -
margin by ~

Introduction to Machine Learn



Maximizing Margin

» For a training set T

» Margin of a weight vector w is smallest v such that

w-p(xe,yr) —w- P(x,y') >y

» for every training instance (z:,y:) € T, ¥ € Y

Introduction to Machine Learning



Maximizing Margin

> Intuitively maximizing margin makes sense

» More importantly, generalization error to unseen test data is
proportional to the inverse of the margin

R2

EX —(/F—
72 < |T|

» Perceptron: we have shown that:
» If a training set is separable by some margin, the perceptron
will find a w that separates the data
» However, the perceptron does not pick w to maximize the
margin!

Introduction to Machine Learning



Support Vector Machines

Support Vector Machines (SVMs)

Introduction to Machine Learning



Support Vector Machines

Maximizing Margin

Let v >0
max
[|w]|<1
such that:
w-P(x,y:) —w - d(xe,y') > v
V((Dt, yt) € T
and ¥y’ € ),

> Note: algorithm still minimizes error if data is seperable

> ||wl]| is bound since scaling trivially produces larger margin

Blw - p(xs,yr) —w- cb(cct,y')) > (7, for some 5 >1

Introduction to Machine Learning



Support Vector Machines

Max Margin = Min Norm

Let vy >0
Max Margin: Min Norm:
1
max L 2
llwl]<1 min Sl
such that: _ such that:
w'¢(wtvyt)_w'¢(mt7yl) > w'¢(wtayt)_w°¢(mtay/) >1
V(ze,y:) €T V(ze,ye) €T
and y' € Y, and y' € V;

» Instead of fixing ||w|| we fix the margin v =1

Introduction to Machine Learning



Support Vector Machines

Max Margin = Min Norm

Max Margin: Min Norm:
1 2
left<s min el
such that: _ such that:
w- (@, yr) —w - d(xe,y') >y w- (e, ye) —w - e, y’) > 1
V(xe, yt) €T Y(xe, yt) € T
andy’ € It and y' € It
> Let's say min norm solution ||w]|| = ¢
>

Now say original objective is max,|<¢ ¥

» We know that v must be 1
» Or we would have found smaller ||w|| in min norm solution
> |w|| <1 in max margin formulation is an arbitrary scaling choice

Introduction to Machine Learni 72(107)



Support Vector Machines

Support Vector Machines

L1 5
w = argmin —||w||
w 2
such that:
w-P(we,ye) —w - p(xe,y') > 1
V(z:,y:) €T and y' € Ve

» Quadratic programming problem — a well known convex
optimization problem

» Can be solved with many techniques [Nocedal and Wright 1999]

Introduction to Machine Learning



Support Vector Machines

Support Vector Machines

What if data is not separable?

7]
1

w = arg min —||w||2—|—CZ£t
we 2

t=1

such that:

w- Pz, yr) —w - P(xr,y') > 1~ Erand & > 0
V(ze,y:) €T and y' € Yy
&:: trade-off between margin per example and |jw||

Larger C = more examples correctly classified
If data is separable, optimal solution has &; =0, Vi

Introduction to Machine Learning



Support Vector Machines

Support Vector Machines

|7l
1

w = argmin — ||w|* + CZ&
we 2

t=1
such that:

w-Pp(xe,yr) —w- P, y) > 1 - &

Introduction to Machine Learning



Support Vector Machines

Support Vector Machines

|7l
1

w = argmin — ||w|* + CZ&
we 2

t=1
such that:

w - P(xr,yr) — max w- Pz, y) >1—¢&
Y'Yt

Introduction to Machine Learning



Support Vector Machines

Support Vector Machines

|7l
1

w = argmin — ||w|* + CZ&
we 2

t=1
such that:

gt 2 1 + max w - ¢’(:Bt7 y/) —Ww- d)(wta yt)
Y'Yt

Introduction to Machine Learning



Support Vector Machines

Support Vector Machines

A u 1
w=argmin ~|jw|®>+) & A= —
we 2 ; ¢
such that:

gt 2 1 + max w - ¢’(:Bt7 y/) —Ww- d)(wta yt)
Y'Yt

Introduction to Machine Learning



Support Vector Machines

Support Vector Machines

A 7] 1
w = arg min —HwH2+ &t A= —
we 2 ;1 ¢
such that:

gt 2 1 + max w - ¢’(:Bt7 y/) —Ww- d)(wta yt)
Y'Yt

If [|w]|| classifies (z¢, y¢) with margin 1, penalty { = 0
Otherwise penalty & = 1+ maxy 4y, w- O(xt,y") — w - d(xt, Yt)

Introduction to Machine Learning



Support Vector Machines

Support Vector Machines

A 7] 1
w = arg min —HwH2+ &t A= —
we 2 ;1 ¢

such that:

gt 2 1 + max w - ¢’(:Bt7 y/) —Ww- d)(wta yt)
Y'Yt

If [|w]|| classifies (z¢, y¢) with margin 1, penalty { = 0
Otherwise penalty & = 1+ maxy 4y, w- O(xt,y") — w - d(xt, Yt)

Hinge loss:
IOSS((:L't,yt); w) = max (0, 1+ MaXy/ Ay, W - ¢($13t7 y/) —w ¢(mt,yt))

Introduction to Machine Learning



Support Vector Machines

Support Vector Machines

A\ 7]
w = arg min §||<.a||2 + Z{t
w.¢ t=1

such that:

> 14 max w- Pz, y') —w- d(x:, yr)

T
Hinge loss equivalent
|71 A
w =argmin £(7;w) = arg min Z loss((x¢,ye); w) + §||w||2

|71 A

= arg min Z max (0,1 + max w-@(xe,y') —w- oz, y:)) | + =||w|?
w —1 Y #Ye 2

Introduction to Machine Learning



Support Vector Machines

Summary

What we have covered
» Linear Classifiers

» Naive Bayes

» Logistic Regression

» Perceptron

» Support Vector Machines

What is next
» Regularization
» Online learning

» Non-linear classifiers

Introduction to Machine Learning



Regularization

Regularization

Learning



Regularization

Overfitting

v

Early in lecture we made assumption data was i.i.d.

v

Rarely is this true

» E.g., syntactic analyzers typically trained on 40,000 sentences
from early 1990s WSJ news text

» Even more common: 7T is very small

v

This leads to overfitting

v

E.g.: ‘fake’ is never a verb in WSJ treebank (only adjective)
» High weight on “¢(x,y) = 1 if x=fake and y=adjective”
» Of course: leads to high log-likelihood / low error

v

Other features might be more indicative
Adjacent word identities: ‘He wants to X his death’ — X=verb

v

Introduction to Machine Learning



Regularization

Regularization

> In practice, we regularize models to prevent overfitting

argmax L(T;w) — AR(w)

» Where R(w) is the regularization function

> )\ controls how much to regularize

» Common functions
» L2 R(w) « ||w|2 = [|w]| = /X, w? — smaller weights desired

» L0 R(w)  [|wllo = >_,[[wi > 0]] — zero weights desired
> Non-convex
» Approximate with L1: R(w)  [|wl|j1 = >, |wil

Introduction to Machine Learning



Regularization

Logistic Regression with L2 Regularization

» Perhaps most common classifier in NLP
71
L(T;w) — A\R(w) = Z log (e ( w- ¢(wt,yt)/z ) _ _“w“2

t=1

» What are the new partial derivatives?

0 0

» We know %ﬁ(T: w)

2
> Just need 23wl = 23 (VI w?) = 3 Xw? = dwi

Introduction to Machine Learning



Regularization

Support Vector Machines

Hinge-loss formulation: L2 regularization already happening!

w = argmin L(T;w) + AR(w)

|71
= argmin Z loss((x¢,yt); w) + AR(w)
d t=1
|71
= argmin Z max (0,14 max w - @(xe,y) — w - P(xr, yt)) + AR(w)
w pa Y7#Ye
[T] A
= argmin Z max (0,1 + max w - @(@r,y) — w - d(xe, yr)) + = |||
w Y7#Yr 2

t=1

1 SVM optimization 1

Introduction to Machine Learning



Regularization

SVMs vs. Logistic Regression

w = argmin L£(T;w)+ AR(w)

7]
= argmin Z loss((z+, yt); w) + AR(w)
@ t=1

Introduction to Machine Learning



SVMs vs. Logistic Regression

w = argmin L£(T;w)+ AR(w)

|71

arg min Z loss((z+, yt); w) + AR(w)
@ t=1

SVMs/hinge-loss: max (0,1 + maxyy, (w - @d(xt,y) — w - d(xr, Yt)))

I7]
A
w=argmin ) _max (0,1+ max w- (@, y) — w - (e, yr)) + 7 o]
w o YAyt 2

Introduction to Machine Learning



SVMs vs. Logistic Regression

w = argmin L£(T;w)+ AR(w)

|71

arg min Z loss((z+, yt); w) + AR(w)
@ t=1

SVMs/hinge-loss: max (0,1 + maxyy, (w - @d(xt,y) — w - d(xr, Yt)))

I7]
A
w=argmin ) _max (0,1+ max w- (@, y) — w - (e, yr)) + 7 o]
w o YAyt 2

Logistic Regression/log-loss: — log (e""'d’(wf’yf)/zw)

[T]
A
w = arg min Z —log (e“"d’(w"yt)/zw) + Z|w]l?
w =1 2

Introduction to Machine Learning



Regularization

Generalized Linear Classifiers

||
w =argmin £(7;w)+ AR(w) = argmin E loss((xt, yt); w) + AR(w)
w

« t=1

8 T T T T T T T
— Zero-one loss
7l — Hinge loss B
— Perceptron loss
— Log loss |
— Squared hinge loss

Modified huber loss | |

Introduction to Machine Learni



Online Learning

Online Learning

Learning



Online vs. Batch Learning

Batch(T): Online(7);
sl » forl ... N
e e > for (zr,y:) €T
, > w ¢ update((x, yt); w)
> return w > end for
» end for

> return w

E.g., SVMs, logistic regres- E.g., Perceptron
sion, NB

w=w+ ¢(x:,y:) — d(xt,y)

Introduction to Machine Learning



Online Learning

Online vs. Batch Learning

» Online algorithms
» Tend to converge more quickly
» Often easier to implement
» Require more hyperparameter tuning (exception Perceptron)
» More unstable convergence
» Batch algorithms

» Tend to converge more slowly

Implementation more complex (quad prog, LBFGs)
Typically more robust to hyperparameters

More stable convergence

v vy

Introduction to Machine Learning



Online Learning

Gradient Descent Reminder

> Let £(T;w) = Y11 loss((@e, ye); )
» Set w? = O™
> lterate until convergence
171
W =w Tl avL(T,w' ) = wi_l—z avloss((xs, y:); w' 1)
t=1

» a > 0 and set so that £(T;w') < L(T;w' 1)

Introduction to Machine Learning



Online Learning

Gradient Descent Reminder

> Let £(T;w) = Y11 loss((@e, ye); )
» Set w? = O™
> lterate until convergence
171
W =w Tl avL(T,w' ) = wi_l—z avloss((xs, y:); w' 1)
t=1

» a > 0 and set so that £(T;w') < L(T;w' 1)

» Stochastic Gradient Descent (SGD)
» Approximate VL(T; w) with single Vioss((x:, y:); w)

Introduction to Machine Learning



Online Learning

Stochastic Gradient Descent
> Let L(T,w) = Z'lll loss((x+, y:); w)

» Set w0 = 0™
> iterate until convergence

» sample (x4, y:) €T // “stochastic”
i—1

W =w — aV/OSS((wt, yt);w‘)

> return w

Introduction to Machine Learning



Online Learning

Stochastic Gradient Descent

> Let L(T;w) = Z 7l 1 loss((x+, yt); w)

» Set w0 = 0™
> iterate until convergence

» sample (x4, y:) €T // “stochastic”
» w =Wt — avioss((x:, yi ); w)
> return w
In practice
» Set w® = O™
» for1...N
» for (a:t,yt) eT
W =w'Tt — avioss((x, yr); w)
> return w

Introduction to Machine Learning



Online Learning

Stochastic Gradient Descent

> Let L(T;w) = Z 7l 1 loss((x+, yt); w)

» Set w0 = 0™
> iterate until convergence

» sample (x4, y:) €T // “stochastic”
» w =Wt — avioss((x:, yi ); w)
> return w
In practice Need to solve V/ioss((x, y:); w)
» Set w0 = 0™
» forl... N
» for (a:t,yt) eT
b ow = w ! — aVioss((x¢, yi); w)
> return w

Introduction to Machine Learning



Online Learning

Online Logistic Regression

v

Stochastic Gradient Descent (SGD)
loss((x¢,y:); w) = log-loss

Vloss((x¢,y:);w) = V (—log (e ¥@t9) /7, )
From logistic regression section:

v (~tog (e ¥)z,,)) = - <¢(wt, OEDY P(ylw)¢(wt,y)>

Y

v

v

v

v

Plus regularization term (if part of model)

Introduction to Machine Learning



Online Learning

Online SVMs

» Stochastic Gradient Descent (SGD)
» loss((x¢,y:); w) = hinge-loss

Vioss((xs,y:);w) = V <max 0,1+ Max w - d(xr,y) —w - ¢(:ct,yt)))
Y7Yt

» Subgradient is:
v (max (0,14 max w- ¢(xt,y) —w - ¢(-’Bt,yt)))
Y#Y:

_ O’ if w- ¢(wtayt) — maXy w - ¢(:Bt)y) >1
N d(xe,y) — d(xe, y:), otherwise, where y = maxy w - P(x¢, y)

> Plus regularization term (required for SVMs)

Introduction to Machine Learning



Online Learning

Perceptron and Hinge-Loss

SVM subgradient update looks like perceptron update

W — w1 0, if w- ¢(xt, yt) — maxy w - Pp(xt,y) > 1
¢(xt,y) — P(xe, yr), otherwise, where y = maxy w - ¢(xt,y)

Perceptron

W —w1_ad® if w - @(@r, yr) — maxy w - Pz, y) >0
(e, y) — P(xt,yt), otherwise, where y = maxy w - ¢(xt,y)

where o = 1, note ¢(x+,y) — (e, y:) not ¢p(xe, yr) — (e, y) since ‘—' (descent)

Perceptron = SGD with no-margin hinge-loss

max (0, max w - @(xt,y) —w - (T, Yt))
Y7 Ye

Introduction to Machine Learning 92(107)



Online Learning

Margin Infused Relaxed Algorithm (MIRA)

Online (MIRA):
Batch (SVMs):
Training data: 7 = {(mr,yr)}‘tl

min 1”“’”2 1. wO@=0i=0
2 2 forn:1..N
3. fort:1..T
such that: 4 WD) = arg min_x ||w* _ w(i)”
such that:
w-(xe,Yt) —w - (e, y') > 1 w- Pz, yt) —w- P(xe,y') > 1
vy’ € Vr
Y(zt,yt) €T and y' € Dt 5. i=i+1

6. return w'

» MIRA has much smaller optimizations with only |J;|
constraints

Introduction to Machine Learning



Quick Summary

Introduction to Machine Learni



Summary

Linear Classifiers

v

Naive Bayes, Perceptron, Logistic Regression and SVMs

Generative vs. Discriminative

v

v

Objective functions and loss functions

» Log-loss, min error and hinge loss
» Generalized linear classifiers

v

Regularization

v

Online vs. Batch learning

Introduction to Machine Learning



Non-Linear Classifiers

Non-linear Classifiers

Introduction to Machine Learning



Non-Linear Classifiers

Non-Linear Classifiers

» Some data sets require more than a linear classifier to be
correctly modeled
» A lot of models out there
» K-Nearest Neighbours
» Decision Trees
» Kernels
» Neural Networks

Introduction to Machine Learning



Non-Linear Classifiers

Kernels

> A kernel is a similarity function between two points that is
symmetric and positive semi-definite, which we denote by:

@(mt, *'-l:r) € R

v

Let M be a n X n matrix such that ...

Mt,r = ‘P(mt, mr)

» ... for any n points. Called the Gram matrix.

v

Symmetric:
(e, @) = o(xr, T¢)

Positive definite: for all non-zero v

v

vMv T >0

Introduction to Machine Learning



Non-Linear Classifiers

Kernels

> Mercer’'s Theorem: for any kernal ¢, there exists an ¢, such

that:
(e, ) = d(x¢) - d(r)

» Since our features are over pairs (x,y), we will write kernels
over pairs

(P((:Bt, yt)? (:I?r, yr)) = ¢(mt7 yf) ’ ¢(mra yr)

Introduction to Machine Learning



Non-Linear Classifiers

Kernel Trick — Perceptron Algorithm

Training data: 7 = {(:, yt)}ltl-{

1. w®=0i=0

2 for n:1..N

3 for t:1..T

4, Let y = argmax,, w - (e, y)

5. ify # y:

6. Wt = w0 + p(a¢, ye) — P(xe, y)
7 i=i+1

8 return w’

» Each feature function ¢(xt,y:) is added and ¢(x¢,y) is
subtracted to w say ay + times

>y ; is the # of times during learning label y is predicted for
example t

» Thus,
w = Z ay t[P(xe, Ye) — P(xe, y)]

t’y

Introduction to Machine Learning 100(107)



Non-Linear Classifiers

Kernel Trick — Perceptron Algorithm

» We can re-write the argmax function as:

yx = argmaxw() . ¢(xz¢, y")
-

= argmaxZayt[cb(wt,yt) é(ze,y)] - d(xe, y™)

ty

= aIg maXZay t[¢(mtayt) (wtyy*) - ¢(wt7y) : ¢(wt7y*)]

ty

= argmax Y agale((@e,ye). (@ y7)) — o((@e y), (2, y7))]

ty

» We can then re-write the perceptron algorithm strictly with
kernels

Introduction to Machine Learning 101(107)



Non-Linear Classifiers

Kernel Trick — Perceptron Algorithm

Training data: 7 = {(=:, yt)}LZ{
1. Vy,tsetay:=0
forn: 1.N
fort:1..T

2
3
4. Let y* = arg maX,,« Zt,y O‘y,t[@((mt’ yt): (:Bt: y*)) - @((mt’ y): (:Bh y*))]
5 if y* # y:

6 Qyr t = Qgx t + 1

» Given a new instance

Y= arg max Y agele((@e o). (=.97)) e (2. y). (2,y7))]

> But it seems like we have just complicated things???

Introduction to Machine Learning 102(107)



Non-Linear Classifiers

Kernels = Tractable Non-Linearity

> A linear classifier in a higher dimensional feature space is a
non-linear classifier in the original space

» Computing a non-linear kernel is often better computationally
than calculating the corresponding dot product in the high
dimension feature space

» Thus, kernels allow us to efficiently learn non-linear classifiers

Introduction to Machine Learning 103(107)



Linear Classifiers in High Dimension

1

0.5

R — R

(x1,22) +—— (Zl,zz,Z3)=($§,\/§$1$2,$§)

Introduction to Machine Learning



Non-Linear Classifiers

Example: Polynomial Kernel

» ¢(x) €RM, d >2

> p(@e,x5) = (P(xe) - D(s) + 1)
» O(M) to calculate for any d!!

» But in the original feature space (primal space)
» Consider d =2, M =2, and ¢(x:) = [x¢,1, Xe 2]

([Xt,l,Xt,Z] . [Xs,17X5,2] + 1)2
= (x,1%,1 4 xe,2xs,2 + 1)2
= (xe,1%,1)% + (xe,0%5,2)% 4+ 2(xe,1%,1) + 2(x¢,25,2)

+2(xe,1%¢,2%5,1%5,2) + (1)?

(¢(:) - Pp(xs) + 1)

which equals:

[(xe,1)%, (x¢,2)2, V2%¢,1, V2xe.2, V2xe1%0,2, 1] - [(%6,1)%, (%5,2)%5 V2Xs.1, V2xs 2, V25,1%5,2, 1]

105(107)

Introduction to Machine Learning



Non-Linear Classifiers

Popular Kernels

v

Polynomial kernel

p(xe, zs) = (d(xr) - d(@s) + 1)d

Gaussian radial basis kernel (infinite feature space
representation!)

v

—||(xe) — p(xs)])?
plae ) = exp( 122~ A2,

v

String kernels [Lodhi et al. 2002, Collins and Duffy 2002]
Tree kernels [Collins and Duffy 2002]

v

Introduction to Machine Learning



Non-Linear Classifiers

Kernels Summary

» Can turn a linear classifier into a non-linear classifier
» Kernels project feature space to higher dimensions

» Sometimes exponentially larger
» Sometimes an infinite space!

» Can "kernalize” algorithms to make them non-linear

Introduction to Machine Learn



References and Further Reading

References and Further Reading

> A. L. Berger, S. A. Della Pietra, and V. J. Della Pietra. 1996.
A maximum entropy approach to natural language processing. Computational

Linguistics, 22(1).

> C.T. Chu, S.K. Kim, Y.A. Lin, Y.Y. Yu, G. Bradski, A.Y. Ng, and K. Olukotun.
2007.
Map-Reduce for machine learning on multicore. In Advances in Neural Information

Processing Systems.
» M. Collins and N. Duffy. 2002.

New ranking algorithms for parsing and tagging: Kernels over discrete structures,
and the voted perceptron. In Proc. ACL.

> M. Collins. 2002.
Discriminative training methods for hidden Markov models: Theory and
experiments with perceptron algorithms. In Proc. EMNLP.

> K. Crammer and Y. Singer. 2001.
On the algorithmic implementation of multiclass kernel based vector machines.
JMLR.

> K. Crammer and Y. Singer. 2003.
Ultraconservative online algorithms for multiclass problems. JMLR.

Introduction to Machine Learn



References and Further Reading

» K. Crammer, O. Dekel, S. Shalev-Shwartz, and Y. Singer. 2003.
Online passive aggressive algorithms. In Proc. NIPS.

> K. Crammer, O. Dekel, J. Keshat, S. Shalev-Shwartz, and Y. Singer. 2006.
Online passive aggressive algorithms. JMLR.

» Y. Freund and R.E. Schapire. 1999.
Large margin classification using the perceptron algorithm. Machine Learning,
37(3):277-296.

> T. Joachims. 2002.
Learning to Classify Text using Support Vector Machines. Kluwer.

> J. Lafferty, A. McCallum, and F. Pereira. 2001.
Conditional random fields: Probabilistic models for segmenting and labeling
sequence data. In Proc. ICML.

» H. Lodhi, C. Saunders, J. Shawe-Taylor, and N. Cristianini. 2002.
Classification with string kernels. Journal of Machine Learning Research.

» G. Mann, R. McDonald, M. Mohri, N. Silberman, and D. Walker. 2009.
Efficient large-scale distributed training of conditional maximum entropy models. In
Advances in Neural Information Processing Systems.

> A. McCallum, D. Freitag, and F. Pereira. 2000.

Introduction to Machine Learn



References and Further Reading

Maximum entropy Markov models for information extraction and segmentation. In
Proc. ICML.

» R. McDonald, K. Crammer, and F. Pereira. 2005.
Online large-margin training of dependency parsers. In Proc. ACL.

> K.R. Miiller, S. Mika, G. Ratsch, K. Tsuda, and B. Schélkopf. 2001.
An introduction to kernel-based learning algorithms. IEEE Neural Networks,
12(2):181-201.

> J Nocedal and SJ Wright. 1999.
Numerical optimization, volume 2. Springer New York.

> F. Sha and F. Pereira. 2003.
Shallow parsing with conditional random fields. In Proc. HLT/NAACL, pages
213-220.

> C. Sutton and A. McCallum. 2006.
An introduction to conditional random fields for relational learning. In L. Getoor
and B. Taskar, editors, Introduction to Statistical Relational Learning. MIT Press.

» B. Taskar, C. Guestrin, and D. Koller. 2003.
Max-margin Markov networks. In Proc. NIPS.

> B. Taskar. 2004.

Introduction to Machine Learning



References and Further Reading

Learning Structured Prediction Models: A Large Margin Approach. Ph.D. thesis,
Stanford.

» |. Tsochantaridis, T. Hofmann, T. Joachims, and Y. Altun. 2004.
Support vector learning for interdependent and structured output spaces. In Proc.
ICML.

> T. Zhang. 2004.
Solving large scale linear prediction problems using stochastic gradient descent
algorithms. In Proceedings of the twenty-first international conference on Machine

learning.

Introduction to Machine Learni



	introduction
	Preliminaries
	Linear Classifiers
	Naive Bayes
	Logistic Regression
	Perceptron
	Support Vector Machines
	Regularization
	Online Learning
	Summary
	Non-Linear Classifiers
	Wrap Up
	Appendix
	References and Further Reading


