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Abstract—Peer-to-Peer overlay networks are an attractive
foundation for video streaming. However, live Peer-to-Peer media
streaming systems face many challenges such as bandwidth
heterogeneity, node churn, and selfish nodes. Although many tree
based and mesh based streaming protocols have been proposed,
each has its own drawbacks such as unreliability and unfairness
in tree based and long startup delay and complex scheduling in
mesh based protocols.

In this paper, we propose a new video streaming protocol called
LayeredCast main features of which are: 1) Hybrid: Drawbacks
of the simple approaches are compensated using a hybrid of
mesh and tree overlays. 2) Layered Video: Provides an adaptive
scheme to enhance the video quality using a layered video
codec for heterogeneous clients. 3) QoS: LayeredCast scheduling
aims at moving complexity of Multi-Service network core to
the network clients application layer, thus providing better QoS
over simple regular networks. LayeredCast’s tree network pushes
the base layer to all peers while the enhancement layers and
missing base layer segments are pulled over a mesh network by
peers with extra bandwidth using a new data-driven scheduling
scheme. We have evaluated the performance of LayeredCast on
an innovative simulation framework. Simulation results verify
better performance of LayeredCast in term of decodable video
frames over CoolStreaming, especially when network resources
are limited.

I. INTRODUCTION

The accessibility of broadband Internet to home users has
pushed video broadcasting applications up in the list of the
most favorite IP-based applications. Such applications involve
delivering the data generated in a single sender to a set of
users which are scattered around the world. Since their advent,
Peer-to-Peer applications have mitigated many problems pre-
viously unsolved in the field of communication. File sharing,
distributed file systems, distributed databases, and many other
applications have used the idea of resource sharing behind
Peer-to-Peer systems. In this architecture, end-systems receive
the stream content form a self-organized efficient overlay over
the IP network instead of joining an IP Multicast [1] session.
On this overlay, media content is distributed, and each end-
system plays the role of a relay that retransmits the contents
to some other participating peers in the network.

Different Peer-to-Peer streaming systems differ in their
topology control and scheduling mechanism, thus topology
and scheduling can be used to classify these systems into tree
based, mesh based and hybrid systems. Many protocols form

a tree structured overlay and push data along the branches
to the leaves. Tree based structure inspired by IP Multicast
is the most simple structure used to provide application layer
multicast service. On the other hand, some other protocols use
a data driven approach and form a mesh with loosely bounded
links. In this scheme, data forwarding is dynamically deter-
mined according to data availability in the peers. Recently,
a new class of Peer-to-Peer streaming protocols which uses
hybrid overlay structures has emerged.

Our proposed protocol, LayeredCast, uses layered video
in order to distribute video with adaptive quality. Adaptive
video enables the system to serve clients with heterogeneous
bandwidths. In the layered coding, a video bitstream is par-
titioned into layers so that the base layer is decodable by its
own, while the upper ones are only decodable if the lower
layers are decodable. If the base layer were well protected,
a minimum picture quality would be guaranteed. Therefore,
although LayeredCast regularly transmits base layer over a
tree overlay and enhancement layers on a mesh, it compensates
base layer loses in mesh. LayeredCast uses the hybrid topology
in order to have low delay advantage of tree topologies and
reliability and fairness of mesh ones. Besides the robust adopt-
able mechanism for streaming layered video, we proposed a
new heuristic for NP-Hard problem [2] of scheduling layered
video over mesh with the aim of maximizing video play back
quality measured via number of decodable frames.

The rest of the paper is organized as follows: The next
section will present some related hybrid protocols. We will
introduce our protocol in four subsections under the Section
III. In Section IV, simulation results will be discussed and at
last, Section V discusses on future work we planned to do on
LayeredCast.

II. RELATED WORK

Previous protocols have used hybrid structures in different
schemes but these schemes can be categorized in the following
classes: 1) Some protocols use hybrid structures to separate
data and control traffic. 2) Another scheme is to use one
overlay as a compensatory structure. Thus content delivery
in the reserve overlay is invoked in case the primary overlay
fails to deliver media content. 3) In final class, media is
distributed over both overlays. The first overlay is used to
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deliver part of video contents, while the second overlay is
used to consume extra network resources to improve video
quality. AnySee2 [3], for instance, is using a hybrid topology
and divides the transmission of control messages and media
data into two different overlays, one with tree topology which
is used to transfer control messages, and another one with
mesh structure which is used to deliver data messages to
end systems. AnySee2’s scheduler on the other hand is very
similar to the one in CoolStreaming [4], but some new ideas
are introduced like zonal buffer request. Although Anysee2
uses a hybrid topology, the previously defined roles of each
overlay structure, prevents the topology from benefiting of
both their advantages. In mTreeBone [5], the main idea is to
identify a set of stable nodes to construct a tree based backbone
with most of the data being pushed over the backbone tree.
The stable nodes along with other participating peers are
organized through an auxiliary mesh overlay (compensatory
role) which facilitates the tree bone to accommodate node
dynamics and fully exploit the available bandwidth between
overlay nodes. The system’s main drawback arises when an
unlimited video is being streamed, e.g. a TV channel. In
this case, the threshold cannot be calculated optimally. In
this scheme, the mesh topology is only used when the tree
fails to deliver video data, thus the protocol is suitable for
high dynamic circumstances. Bullet [6] uses both the tree and
the mesh structures to send video data packets. It distributes
video contents as much as possible through the tree using the
push mechanism and exploits the unused uplink bandwidth
in a mesh structure by pull requests. Bullet developers also
used tree structure to distribute video segment advertisements.
Advertisement packets collected in the root node will be
distributed downward in the tree structure in each Epoch.
LayeredCast actually benefits from advantages of the last two
categories. Although both overlays are used to deliver media
content, the mesh structure plays a compensatory role when
the tree fails to deliver the base layer. Since enhancement
layers can be only decoded when the base layer is available
in a peer, layered video priorities suggest that mesh overlay
should be used to deliver base layer; otherwise, the consumed
bandwidth would be in vain.

Another set of related work are those which have taken a
more theoretical approach. In [7], [8], it is assumed that all
peers in the network are partners. This full mesh structure
enables each peer to provide media for all other peers in the
networks. In [7] a centralized optimization problem is solved
to optimally divide each peer’s bandwidth among all other
peers in the network and a central greedy scheduling algorithm
is used to determine each peer’s schedules. Although the
successive water-filling algorithm used in [8] is not centralized,
but its sequential nature imposes a large delay over the
algorithm performance. Both schemes could not be used in
real P2P networks since their premises are totally different to
those of large P2P networks. In contrary, the PWF heuristic
algorithm proposed in LayeredCast uses the same rationale
in [7], [8] to discriminate between its neighbors based on
the content reserve level, but in a totally decentralized and

applicable fashion.

III. LAYEREDCAST

A. Peer Architecture
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Fig. 1. The node architecture of LayeredCast

A LayeredCast node architecture is depicted in Figure 1. As
Peer-to-Peer nature of the system suggests, all nodes have the
same structure, except for the source node which is capable of
capturing video. In the top level of this layered design, video
camera and video player are responsible for encoding and
decoding video data. In the lower layer, Multicast Manager
contains Overlay Buffer, Overlay Manager, and Packetization
modules. Overlay Buffer stores video segments which can
be feed to other peers in the network. The Overlay Man-
ager synchronizes the two Overlay Topology Managers below
and the Packetization module packeteizes video segments to
be transmitted over the network. Mesh and Tree Overlay
Managers reside in the lower level. While the Tree Overlay
Manager has a simple structure, the Mesh Overlay Manager
has more complex structure and comprises Data Advertiser,
Receiver Side and Sender Side Scheduler in addition to Topol-
ogy Manager module. Data Advertiser advertises segments
which are stored in the Overlay Buffer and the latter two
modules are described in detail in the following sections.
Transmission Scheduler resides in the lowest level of this
design and controls packet transmission sequence.

B. Topology Control

As LayeredCast uses both a tree and a mesh topology, we
need to design and construct both topologies. We tried to
decrease the coupling of these protocols and manage them
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only on separated layers interacting with predefined interface
to the overlay protocols to be able to reuse the architecture
with different protocols.

1) Tree: Every overlay protocol with tree topology should
specify its solutions for four problems: locating potential
parents, selecting the best parent, refining the structure, and
avoiding a loop construction. Each node in the tree uses a
centralized node to get a list of limited number of potential
parents in LayeredCast. This list is sorted by node’s reliability
and depth. Upon receiving the list, the node can select the best
parent by calculating and comparing the RTT for each node.

The new node sends a JOIN-REQ message to the selected
parent node. If the parent’s available bandwidth equals or
exceeds the amount needed for data transmission in tree, parent
responds with JOIN-RSP and reserves the required bandwidth;
otherwise, it sends a JOIN-DENY message. Then the accepted
child sends JOIN-ACK if it does not need to improve its
position. As we used the tree structure to multicast only base
layer blocks, it does not need to be refined seriously. However,
its refinement based on the reliability measures would be
appropriate in presence of node churn. In order to avoid a
loop construction, each node sends a detection packet to its
children containing its signature on changing its parent. A
node receiving the packet checks if it contains the node’s
signature and disconnects from the parent if detects a loop;
otherwise, adds its signature and passes the packet to its
children. The detection packet method has less overhead than
putting signature on data packets. However, it increases the
complexity of protocol.

2) Mesh: Mesh overlay network is used along with the tree
network to pull enhancement video layers and to retransmit
missing base layer segments. In order to build a mesh struc-
ture, we need to determine a solution for each of the following
problems: locating potential neighbors, selecting neighbors,
and refining mesh structure. To join the mesh, a new node
asks a centralized bootstrap server for a depth-based sorted
list of nodes already joined to the network. However, after
joining the network, nodes can find out about more peers via
neighbor list which is embedded in JOIN-RSP, JOIN-ACK,
and advertisement messages they receive from their immediate
neighbors.

Each node tries to find a distinct provider for each required
video layer and accepts a join request if it has enough free
bandwidth and video block in the required window of interest.
Although the join mechanism in mesh is similar to the mecha-
nism in tree, we have noticed that we can use the information
that nodes got about their neighbors in advertisement packets
to decrease the join delay time. The central server knows the
number of required layers for each node; however, it could
not tell which part of video they are playing or where is
the window of interest in each node. Therefore, a suggestion
mechanism is designed in which a list of potential neighbors is
provided in response to a denied join request. This knowledge
could be very helpful when the churn rate is high as the regular
waterfall order in nodes’ buffer breaks in the mesh.

Mesh refinement in LayeredCast runs to allay content

bottleneck [9]. Content bottleneck occurs when a node could
not find a needed block in its neighbors. Data clustering on
overlay network clusters, poor network construction method,
or node churn are some reasons behind content bottleneck. If
a content bottleneck occurs, scheduler finds out that it cannot
request wanted blocks from the layer provider(s) and notifies
the overlay controller to drop the neighbor and to find a new
one.

C. Mesh Scheduling

Using a data driven scheme for the mesh overlay, each
node’s scheduler uses information about video segments avail-
able in the node itself and in its neighbors to determine
segments to be requested from each neighbor and to distribute
outgoing bandwidth among them. It worth mentioning that the
size of video segments is fixed and each frame contains video
data from one GoP (Group of Picture) of a single enhancement
layer. Scheduling process is invoked periodically every ∆
seconds, namely every Epoch and includes following activities.

1) Sender Side Scheduling: In each peer, the sender sched-
uler module distributes outgoing bandwidth among the peer’s
neighbors for the next Epoch every time the scheduler is
invoked. A Pseudo Water-Filling algorithm is devised for this
purpose. The rationale behind this algorithm is that the optimal
case in a fully dynamic P2P Streaming happens when all peers
have the same amount of data in their buffer [7].

As stated earlier, every peer in the system finds a neighbor to
play the role of layer provider for each enhancement layer it is
willing to fetch from the mesh overlay, thus a contract is made
among two peers. Sender scheduler uses a token allocation
scheme to distribute outgoing bandwidth among neighbors
to which it has agreed to provide enhancement layers. Total
number of tokens is equivalent to the number of segments the
peer can provide during an Epoch.

In order to avoid a bandwidth bottleneck, the scheduler
initially allocates the minimum bandwidth declared in the
contract, i.e. if ∆ equals play back time of four segment
and a neighbor contract includes first and third enhancement
layers, eight tokens will be allocated to that neighbor in the
first step. In the second step, content reserve level (i.e. segment
received but not played) and possible segment demand (i.e.
segment available in peers buffer but not received in the
neighbor) of all neighbors are evaluated, and the remaining
tokens are distributed in a water-filling fashion, with the goal
of equalizing the content reserve level of all neighbors.

Number of tokens allocated to each neighbor is piggybacked
on segment advertisement messages, thus each neighbor is
informed of the number of segments it can request from the
peer.

2) Receiver Side Scheduling: A windowing Mechanism in
addition to a utility based scheme is used to decide which
segment to request from which neighbor. As Figure 2 de-
picts, Window of Interest (WoI) comprises three sub-windows,
namely urgent, relaxed and aggressive sub-windows. The
height of the WoI is set proportional to the peer’s incoming
bandwidth, thus different nodes could enjoy different types
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of service in accordance to their bandwidth. Aggressive sub-
window covers base layer segments and its width is set in a
way each base layer segment would be covered by this sub-
window just once. Urgent window covers enhancement layer
segments which have a single chance to be requested, i.e.
WoI would not cover these segment the next time scheduler is
invoked and other interesting segments are covered by relaxed
sub-window. Every time the scheduler invoked, WoI is pushed
forward ∆ seconds to maintain fixed distance with play back
pointer and cover fresh segments.

In the first phase, receiver side scheduler initially checks the
base layer buffer. If a missing segment is found in aggressive
window (this may happen due to delay loss or parent departure
in tree), the scheduler tries to fetch base layer segments using
its mesh allocated bandwidth. A simple Round Robin among
neighbors is used for this purpose and selected neighbors’
tokens are consumed for each requested base layer segment. In
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Fig. 2. Window of interest (WoI) and its sub-windows

the second phase, the receiver scheduler aims at maximizing
value of requested segments given available segments in neigh-
bors and the peer itself and the value of each segment. A utility
function is designed to value video segments. Value of each
segment is proportional to the layer number and the number
of remaining request chance of the segment. As the utility
function depicted in Figure 3 shows, value of the most valuable
segment with n + 1 remaining request chance is lower than
value of the least valuable segment with n remaining request
chance. Thus, an optimization problem of Eq. 1 should be
solved in which ws is segment s’s value, N is set of all
neighbors, S is set of all segments in the WoI and Sn is set
of all segment in the WoI available in neighbor n’s buffer.
BWmeshn is neighbor n’s allocated bandwidth and ∆ is Epoch
duration. ysn is equal to one when the segment s is available
at neighbor n’s buffer and variable xsn would equal to one if
segment s is going to be requested from neighbor n.

In order to solve the optimization problem of Eq. 1, given
the neighbors’ and the peer’s buffer content and the seg-
ments’ values, in addition to the number of tokens remaining
from phase one, the receiver side scheduler forms a bipartite
weighted graph. Nodes in the first party represent enhancement
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Fig. 3. The utility function

layer segments covered by WoI which are not yet received
in the peer. Second party’s nodes represent peer’s neighbors.
If a segment s which is covered by the WoI is available at
neighbor n and has not been requested before, a link with
weight value(s) would connect node s from the first party to
node n from the second party. If the segment s from layer li is
covered by relaxed sub-window, the weight of its connecting
links would be dropped to the minimum value unless the node
nj had accepted to be the provider for that specific layer in
their contract. In fact, the peer delays requesting segments
beyond contracts to the time the segments happen to reside in
the urgent WoI or when a neighbor allocates extra tokens.

max
∑
n∈N

∑
s∈S

ws × xsn (1)

subject to

{
∀n ∈ N

∑
s∈Sn

xsn×sizeof(s)
∆ ≤ BWmeshn

∀s ∈ S
∑

n∈N xsn ≤ 1

variables xsn ∈ {0, ysn}

The node representing peer nx is then duplicated Tx times
where Tx is the number of tokens neighbor nx has allocated
to the peer, thus the maximum matching of the constructed
bipartite graph is the solution to the maximization problem
of Eq. 1. The Hungarian Method can be used to solve this
maximum matching problem with the complexity of O(n3)
where n is the maximum of the number of segments and the
total number of tokens assigned to the peer by neighbors.

D. Transmission Scheduling

The transmission scheduler comprises leaky buckets and a
combination of priority and weighted queues. A leaky bucket
for each child in the tree overlay, shapes tree traffic to avoid
link congestion in the receiver side. Besides, a queue is
formed for each neighbor or child of the peer in addition to
a single high priority queue for control messages to address
congestion in the sender side. A priority scheduling scheme is
used to prioritize control message but a weighted fair queuing
mechanism is used to select next transmitted packet when the
control queue is empty. The weight values are set in each
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Epoch in accordance to the number of tokens assigned to
each neighbor. Moreover, the scheduler attempts to drop video
packets of removed neighbors and the GoPs deadlines of which
are passed. To address congestion in access link of senders, the
available bandwidth is divided between mesh and tree structure
according to the base layer and enhanced layers bit rate.

IV. SIMULATION FRAMEWORK & SIMULATION RESULTS

Our simulation framework has three phases (Figure 4): In
the first phase, we have generated our underlay topology using
the two levels top-down model in the Brite topology generator
[10] with 15 AS and 10 routers in each AS using the BA
model in each level. The bandwidth of the core network
is assumed high enough to let the congestion occur only
in the access links. Then each scenario has been run ten
times to locate 50 nodes in different parts of the network
with a Weibull [11] random lifetime. We used OMNet++
simulator [12] as our simulation foundation. Besides, INET
and OverSim [13] packages are used to simulate network
protocols and configure the P2P overlay network. Next, we
implemented overlay protocols and multimedia applications on
top of them. In the third phase, we used Graphviz library and
Pajek software to visualize the overlay graph. We have used
the FGS codec traces [14] containing a 800kbps base layer and
four 200kbps enhancement layers. There are three bandwidth
schemes in our simulation results: Tight in which half of the
nodes could receive one and others two enhancement layers;
in Generous, the second half can receive all layers. Finally,
all nodes in High scheme download all layers. The resource
index [15] of the schemes is 1.07, 2.26, and 2.4 respectively.
Quality of a played frame has been measured by the number
of its layers and the Quality Percentage measure is the ratio of
quality of played frames to the required quality per each node.
The join delay is computed by the average time a layer has
been without provider and the computation complexity is the
CPU ticks used by our implementation obtained by a profiler
tool. Figure 5(a) shows the effect of mesh improvement on the
average quality percentage over the simulation time in which
more quality improvement is gained for high churn rates and
tighter bandwidth schemes. Base layer compensation is one of
the mesh uses effect of which is depicted in Figure 5(b). The
figure shows that base layer preservation in the mesh network
helped us to improve video quality up to 10 percent without
losing the real-time nature of tree structure. Besides, we tested
our protocol with 16, 8, 4 seconds for initial buffer length and
it could keep the video quality upper than 95 percent for 16 and
8 seconds. Hybrid structure, neighbor suggestion, bootstrap
list creation algorithm, and mesh improvement algorithm are
reasons behind small initial buffer requirement. We have
assumed that when a node leaves the network gracefully, it
could inform its neighbors, parent, and children one second
before. However, the protocol could resist ungraceful leaves
using precise timeout mechanisms in nodes’ interactions as
depicted in Figure 5(c).
Using neighbor suggestion in mesh topology earned us 50
percent improvement in mesh join delay, but the interesting ob-

Fig. 4. A logical view of the simulation framework components

servation is that the number of neighbor suggestions increases
with node degrees which has correlation with the number of
layers and nodes’ bandwidth. Besides, nodes suggestion mech-
anism would be more helpful in unstable networks. Figure
5(d) presents a comparison between applying the proposed
pseudo water-filling algorithm and a normal scheme in which
all neighbors receive equal tokens. This result verifies that
LayeredCast token assignment algorithm improves play back
quality by considering status of lagged neighbors. On the other
hand, as we have expected, we noticed that by increasing the
segment size and decreasing the length of WoI in the scheduler
modules, the play back quality and the computation overhead
decreased.
Lastly, we have compared the performance of our mesh
protocol with CoolStreaming protocol, which is the base of
most of the proposed mesh protocols today. Figure 5(e) and
5(f) show that quality percentage in CoolStreaming protocol
is lower than our protocol, especially when the churn rate
is high. The effect of churn is obvious in second 26 when
nodes start to leave the network. We believe that being aware
of layer dependencies and using a bandwidth allocation, a
data-aware neighbor selection, and a mesh refinement scheme
along with the hybrid structure in LayeredCast protocol are
its winning factors over CoolStreaming. However, it should be
noticed that the computation overhead of LayeredCast protocol
is about 30 times of CoolStreaming protocol, which means
that LayeredCast could not be used in devices with limited
computation power. Moreover, the play back quality in Tight
bandwidth scheme turned down (Figure 5(f)) because content
bottleneck occurs when provider nodes leave the network.
Provider reservation and multi-provider for each layer could
alleviate this situation and are a part of the future work.
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Fig. 5. The Average Playback Quality Percentage in each scenario

V. CONCLUSIONS & FUTURE WORK

We have presented LayeredCast, a hybrid Peer-to-Peer live
layered video streaming protocol, which has the advantages
of both tree and mesh protocols. LayeredCast uses layered
video to serve clients having various downlink bandwidths
with different video quality. Moreover, an innovative scheduler
is introduced to manage mesh and tree collaboration in order
to minimize frame loss and avoid congestion in the network.
LayeredCast also tries to create more reliable overlay networks
and avoid content and bandwidth bottlenecks using refinement
algorithms and bandwidth reservation. Our simulation results
approve our claims on performance of our hybrid protocol,
LayeredCast, against an available mesh protocol.

As future work, we aim at using incentive mechanisms
in LayeredCast design, handling error prone networks with
the help of error resilient solutions, and considering the
background traffic in the congestion avoidance mechanism.
Besides, we planned to implement lateral applications of the
universal tree network such as broadcasting PSNR of video
frames to be used in scheduling, browsing channels, and
distributing incentive information.
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