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  Basics of Wavelets
Referenc  Daubechies (Ten Lectures on ; Orthonormal Bases ofes: I. Wavelets
Compactly  Supported Wavelets)
 
Also:    Y.  , S. MallatMeyer

Outline:

1. Need for time-frequency localization
2. Orthonormal wavelet bases: examples
3. Meyer wavelet
4. Orthonormal wavelets and multiresolution analysis

1. Introduction

Signal:

 

fig 1

Interested in  of signal, locally in time.  E.G., what is the“frequency content”
frequency content in the interval [.5, .6]?
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Standard techniques: write in Fourier series as sum of sines and cosines:
given function defined on     as above:Ò  Pß PÓ

0ÐBÑ œ

"

#
+  + 8BÐ ÎPÑ  , 8BÐ ÎPÑ! 8 8

8œ"

_" cos sin1 1

Ð+ ,8ß 8   constants)

+ œ .B 0ÐBÑ 8BÐ ÎPÑ
"

P
8

P

P( cos 1

, œ .B 0ÐBÑ 8B Ð ÎPÑ
"

P
8

P

P( sin 1

(generally   is complex-valued and    are complex numbers).0 + ß ,8 8

FOURIER SERIES:

Consider function    defined on   .0ÐBÑ Ò  PßPÓ

Let   square integrable functionsP ÒPßPÓ œ#

œ 0 À Ò  PßPÓ Ä .B l0 ÐBÑl  _ Ÿº (‚
P

P
#

where     complex numbers.  Then      forms a Hilbert space.‚ œ P#

 Basis for Hilbert space:

 ŸÈ È" "

P P
8BÐ ÎPÑß 8BÐ ÎPÑcos sin1 1

Rœ"

_

(together with the constant function   )."Î #PÈ
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These vectors form an orthonormal basis for    (constants    giveP "Î P# È
length 1).

1.  Recall the complex form of Fourier series:

Equivalent representation:

Can use Euler's formula   .   Can show similarly that the/ œ ,  3 ,3, cos sin
family

 ŸÈ
 ŸÈ È

"

#P
/

œ 8BÐ ÎPÑ  8BÐ ÎPÑ
" 3

#P #P

38BÐ ÎPÑ

8œ_

8œ_

8œ_

_

1

cos 1 1sin

is orthonormal basis for   P Þ#

Function        can be written0ÐBÑ

0ÐBÑ œ - ÐBÑ"
8œ_

_

8 89

where

- œ 0 œ .B ÐBÑ0ÐBÑß8 8ß 8
P

P  ¡ (9 9

where

98
"

#P
38BÐ ÎPÑÐBÑ œ 8 œ />2 basis element    .È 1

2.  Recall derivation of the Fourier transform from Fourier series:

We start with function      on   :0ÐBÑ Ð  PßPÑ
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fig 2
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Note as   we have  , andP Ä _ß Ä !?0
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Now (informally) take the limit   The interval becomesP Ä _Þ

Ò  PßPÓ Ä Ð _ß_ÑÞ

We have

0ÐBÑ œ -Ð Ñ /
"

#È "
1

0 ?0
8œ_

_

8
3B08

Ò 0 0
1P Ä _

"

#
-Ð Ñ/ .È (

_

_
3B0

Finally, from above

-Ð Ñ œ .B 0ÐBÑ /
"

#
0

1È (
P

P
3B0

Ò
1P Ä _

"

#
.B 0ÐBÑ /È (

_

_
3B0.

Thus, the informal arguments give that in the limit, we can write
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0ÐBÑ œ -Ð Ñ / .
"

#È (
1

0 0
_

_
3B0 ,

where      (called  of    )-Ð Ñ 00 Fourier transform
is

-Ð Ñ œ .B 0ÐBÑ /
"

#
0

1È (
_

_
3B0

(like Fourier series with sums replaced by integrals over the real line).

Note: can prove that writing   in the above integral form is valid for0ÐBÑ
arbitrary   .0 − P Ð _ß_Ñ#

3.  FREQUENCY CONTENT AND GIBBS PHENOMENON

Consider Fourier series of a function     which is discontinuous at0ÐBÑ

B œ 0ÐBÑ œ À0.  E.g. if lBl
B
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the first few partial sums of the Fourier series of     look like this:0

5 terms:

% B % $B % &B
 

$ &

sin sin sin
1 1 1
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fig 3

10 terms of Fourier series:

% B % $B % &B % "!B
  á 

$ & "!
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20 terms:
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40 terms:
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fig 3

Note that there are larger errors appearing near the “singularity"

Specifically:  “overshoot” of about 9% of the jump near singularity no
matter how many terms we take!

In general, singularities (discontinuities in      or its derivatives) cause0ÐBÑ
high frequency components so that the Fourier series

0ÐBÑ œ - / Î #" È
8œ_

_

8
38B 1
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has large  for n large (bad for convergence).-8

But notice that the singularities are in only , but cause all the  toone point -8
be too large.

Wavelets deal with the problem of localization of singularities, since they
are localized.

Advantages of Fourier series:

ì  “Frequency content" displayed in sizes of the coefficients   and .+ ,5 5

ì  Easy to write derivatives of    in terms of series (and use to solve0
differential equations)

 Fourier series are a natural for differentiation.

Equivalently, sines and cosines are “eigenvectors" of the derivative operator
.
.B .

Disadvantages:

ì Usual Fourier transform or series not well-adapted for time-frequency
analysis  (i.e., if high frequencies are there, then we have large   and + ,5 5

for .  But what part of the function has the high frequencies?5 œ "!!
Where   ?   Where   ?B  ! #  B  $

Possible solution:

Sliding Fourier transform -

 
fig 4
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Thus first multiply      by a “window”   ,   and then take a0ÐBÑ 1ÐB  5B Ñ!
look at the Fourier series or take Fourier transform:  look at

( (
P P

P P

45 ! 45
34 B.B 0ÐBÑ 1 ÐBÑ œ .B 0ÐBÑ 1ÐB  5B Ñ/ ´ -=

Note however:  the functions      are not1 ÐBÑ œ 1ÐB  5B Ñ/45 !
34 B=

orthonormal like sines and cosines; do not form a nice basis as in Fourier
series; need something better.

4.  The wavelet transform

Try: Wavelet transform - first fix an appropriate function   .2ÐBÑ

     
    
Then form all possible translations by integers, and all possible “stretchings"
by powers of 2:

2 ÐBÑ œ # 2Ð# B  5Ñ45
4Î# 4

(  is just a normalization constant)#4Î#
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fig. 5:   and  2Ð#BÑ 2Ð%B  $Ñ

Let

- œ .B0ÐBÑ 2 ÐBÑÞ45 45(
If  chosen properly, then can get back   from the   :2 0 -45

0ÐBÑ œ - 2 ÐBÑ"
4ß5

45 45

These new functions and coefficients are easier to manage.  Sometimes
much better.

Advantages over windowed Fourier transform:
 ñ   Coefficients      are all real-45
 ñ   For high frequencies   (    large), the functions      have good4 2 Ð>Ñ45

localization (they get thinner as   ;   see above diagram).  Thus short4 Ä _
lived (i.e. of small duration in  )   high frequency components can be seenB
from wavelet analysis, but not from windowed Fourier transform.

Note      has width of order   ,   and is centered about       (see2 # 5#45
4 4

diagram earlier).

DISCRETE WAVELET EXPANSIONS:
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Take a basic function      (the basic wavelet);2ÐBÑ

   
fig 6

 let

2 ÐBÑ œ # 2Ð# B  5ÑÞ45
4Î# 4

Form discrete wavelet coefficients:

- œ .B 0ÐBÑ 2 ÐBÑ ´ Ø0 ß 2 Ù45 45 45( .

Questions:

  ñ  Do the coefficients      characterize   ?- 045

  ñ  Can we expand      in an expansion of the0
         ?245

ñWhat properties must   have for this to happen?2
ñ How can we reconstruct  in a numerically stable way from knowing0
-45?

We will show: It is possible to find a function  such that the functions 2 245

form such a perfect basis for the functions on ‘ .

That is, the functions   are orthonormal:245
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  ¡ (2 ß 2 ´ 2 ÐBÑ2 ÐBÑ.B œ !45 4 5 45 4 5w w w w

unless      and   4 œ 4 5 œ 5 Þw w

And any function  can be represented by the functions :0ÐBÑ 245

0ÐBÑ œ - 2 ÐBÑÞ"
4ß5

45 45

So: just like Fourier series, but the  have better properties (e.g., they are245

non-zero only on a small sub-interval, i.e., compactly supported)

5.  A SIMPLE EXAMPLE: HAAR 
 WAVELETS

Motivation:  suppose we have a basic function

9ÐBÑ œ
Ÿ B Ÿ

 = basic “pixel".
1 if 0 1
0 otherwise  

We wish to build all other functions out of this pixel and translates 9ÐB  5Ñ

   
    fig 7:   and its translates9

Linear combinations of the :9ÐB  5Ñ

0ÐBÑ œ # ÐBÑ  $ ÐB  "Ñ  # ÐB  #Ñ  % ÐB  $Ñ9 9 9 9
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  fig 8:  a linear combination of 9ÐB  5Ñ

[Note that any function which is constant on the integers can be written in
such a form:]

Given function , approximate  by a linear combination of0ÐBÑ 0ÐBÑ
9ÐB  5Ñ:

  
fig 9:  approximation of  using the pixel  and its translates.0ÐBÑ ÐBÑ9

Define  = all square integrable functions of the formZ!

1ÐBÑ œ + ÐB  5Ñ"
5

59

=  all square integrable functions which are constant on integer
    intervals
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    fig 10:  a function in Z!

To get better approximations  shrink the pixelß À

  
   fig 11:  , , and 9 9 9ÐBÑ Ð#BÑ Ð# BÑ#

  
fig 12: approximation of  by translates of .0ÐBÑ Ð#BÑ9

Define

Z" = all square integrable functions of the form

1ÐBÑ œ + Ð#B  5Ñ "
5

59

œ   all square integrable functions which are constant on all half-
   integers
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   fig 13:  Function in Z"

Define  = sq. int. functionsZ#

1ÐBÑ œ + Ð# B  5Ñ"
5

5
#9

= sq. int. fns which are constant on quarter integer intervals

-4 -2 2 4

-2

2

4

6

  

    fig 14: function in Z#

Generally define  = all square integrable functions of the formZ4

1ÐBÑ œ + Ð# B  5Ñ"
5

5
49
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= all square integrable functions which are constant on  length intervals#4

[note if  is negative the intervals are of length greater than 1].4
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2.  Haar Wavelets, General Theory

1.  The Haar wavelet

Now define the desired wavelet  <ÐBÑ

´
" ! Ÿ B Ÿ "Î#  " "Î# Ÿ B  "

!œ    if   if
   otherwise

-1 -0.5 0.5 1 1.5

-2
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0.5

1
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2

   

fig 15:  <ÐBÑ

Now define family of Haar wavelets by translating:

-1 1 2 3 4 5 6
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-1.5

-1

-0.5

0.5

1

1.5

2

   

fig 16 À ÐB  &Ñ œ< <!ß&

and stretching:
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fig  17:   # Ð# B  (Ñ œ$Î# $

$ß(< <

In general:

< <45
4Î# 4´ # Ð# B  5Ñ

Show Haar wavelets are orthogonal, i.e.,

  ¡ (< < < <45 4 5 45 4 5
_

_

ß ´ .B ÐBÑ ÐBÑ œ !w w w w

 if       or  4 Á 4 5 Á 5 Àw w

(i)  if   , :4 œ 4 5 Á 5w w

  ¡< <45 4 5ß œ !w w

because      wherever      and vice-versa.< <45 45œ ! Á !w

(ii)  if    :4 Á 4w

  ¡< <45 4 5ß œ !w w

because:
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fig 18

Ê ß !   integral      is   .  ¡< <45 4 5w w

2.  Can any function be represented as a combination of Haar wavelets?

[A general approach:]

Recall:

Z œ + Ð# B  5Ñ4 5

5

4square int. functions of form  " 9

œ square int. functions constant on dyadic intervals of length # Þ4

[note if j is negative the intervals are of length greater than 1:]

Z" = functions constant on intervals of length 2

Z œ# functions constant on intervals of length 4
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-4 -2 2 4

-2

2

4

6

   fig. 19: function in  Z Ð4 œ #Ñ4

We have:

(a)     áZ § Z § Z § Z § Z § Z á# " ! " # $

[i.e., piecewise constant on integers  piecewise constant on half-integers,Ê
etc.]

  
Fig.  20:  Relationship of the nested spaces Z4

(b)           (only  function in all spaces) Z œ Ö!× !
8

8
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[if a function is in all the spaces, then it must be constant on arbitrarily large
intervals  must be everywhere constant; also must be square integrable;Ê
so must be 0].

(c)     is dense in L ( ) Z
8

8
2 ‘

[i.e. the collection of all functions of this form can approximate any function
0ÐBÑ]

 Proof:  First consider a function of the form  = .  Assume0ÐBÑ ÐBÑ;Ò+ß,Ó

that , and , where .+ œ 5Î#  + , œ jÎ#  , + ß ,  "Î#8 8 8
" " " "

   

fig 21:  Relationship of  with  and .+ß , 5Î# jÎ#8 8

Let

1ÐBÑ œ ÐBÑ − Z;Ò5Î# ßjÎ# Ó

4

48 8 . .  

Then

m0  1m œ .B Ð0  1Ñ œ 0  1 Ÿ #Î#( # 8area under 
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    fig 22:  area under 0  1

Since  is arbitrary,  can be made arbitrarily small.  Thus8 ² 0  1 ²
arbitrary char. functions  can be well-approximated by functions0
1ÐBÑ − Z Þ-

3
3

 Now if  is a step function:0ÐBÑ

-4 -2 2 4

-4

-2

2

4

   

fig 23:  step function

We can write

0ÐBÑ œ - ÐBÑ œ Þ"
3

3 Ò+ ß, Ó;
3 3

linear combination of char. functions

So by above argument, step functions  can be approximated arbitrarily well0
by 1 − Z Þ-

4
4

 Now step functions are dense in  (see R&S, problem II.2), soP Ð Ñ# ‘
that  must be dense in -

4
4

#Z P Ð ÑÞ‘

(d)        0ÐBÑ − Z Ê 0Ð#BÑ − Z8 8"
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[because a function constant on intervals of length 2  when shrunk is8

constant on intervals of length ]#8"

(e)           0ÐBÑ − Z Ê 0ÐB  5Ñ − Z! !

[i.e. translating a function by an integer does not change that it is constant on
integer intervals]

(f)   There is an orthogonal basis for the space V  in the family of functions0
9 9!5 ´ ÐB  5Ñ   

where  varies over the integers.  This function  is (in this case)  =5 9 9
;Ò!ß"ÓÐBÑ.

9 is called a scaling function.

Definition:  A sequence of spaces  together with a scaling function ÖZ ×4 9
which generates  so that above are satisfied, is called aZ! (a) - (f) 
multiresolution analysis.

3.  Some more Hilbert space theory

Recall:   Two subspaces  and  of  vector space  are  ifQ Q Z" # orthogonal
every vector  is perpendicular to every vector .A − Q A − Q" " # #

Ex:  Consider .  Then letZ œ P Ð ß Ñ# 1 1

Q œ Ö0ÐBÑ À 0ÐBÑ œ + 8B×" 8

8œ!

_" cos  

be the set of Fourier series with cosine functions only.  Let

Q œ Ö0ÐBÑ À 0ÐBÑ œ , 8B×# 8

8œ"

_" sin

be the set of Fourier series with sin functions only.
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Then if    and if , then using0 œ + 8B − Q 0 œ , 5B − Q" 8 " # 8 #
8œ"

_ _

5œ"

! !cos sin

usual arguments:

Ø0 ß 0 Ù œ + , Ø 8Bß 5BÙ œ !" # 8 5

8œ"

_" cos sin 

Thus  is orthogonal to .Q Q" #

Recall:  A vector space  is a  of subspaces  ifZ ŠQ Q ßQdirect sum M" # " #

every vector  can be written uniquely as a sum of vectors @ − Z A − Q" "

and .A − Q# #

Z Q ŠQ is an direct sum  if the above holds and in additionorthogonal " #

Q Q" # and  are orthogonal to each other.

Ex:   If , andZ œ ‘$

Q œ B  C œ ÖÐBß Cß !Ñ À Bß C − ×" plane ‘

Q œ D  œ ÖÐ!ß !ß DÑ À D − ×ß# axis ‘

then every vector  can be written uniquely as a sum ofÐBß Cß DÑ − Z
ÐBß Cß !Ñ − Q Ð!ß !ß DÑ − Q Z" # and , so that  is an orthogonal direct sum
Q ŠQ Þ" #

Ex:  Z œ P Ò ß Ó 0ÐBÑ# 1 1 .  Then every function can be written uniquely as

0ÐBÑ œ + 8B  , 5B" "
8œ!

_ _

8 8

5œ"

cos sin 

 [note first sum in  and second in ]Q Q" #

Thus  is an orthogonal direct sum.  Note:  not hard to showP œ Q ŠQ#
" #

that

Q P"
# =  even functions in 

Q P#
# = odd functions in 
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[thus L  is an orthogonal direct sum of even functions and odd functions]2

Theorem 1:  If  is a Hilbert space and if  and ,Z Q ¼ Q Z œ Q Q" # " #

i.e.,     s.t.  , then is ana @ − Z b 7 − Q @ œ 7 7 Z œ Q ŠQ3 3 " # " #

orthogonal direct sum of  and Q Q" #

 Pf:  In exercises.

Note: no assumption of uniqueness of  necessary above.@3

Def:  If   is an orthogonal direct sum, we also writeZ œ [ Š[" #

[ œ Z ‹[ à [ œ Z ‹[ Þ" # # "

Recall:  Given a subspace ,Q § Z

Q œ Q¼ vectors which are perpendicular to everything in 

œ Ö@ − Z À @ ¼ AaA − [×

Ex:   If     and   -   plane, then   -axisZ œ ß [ œ B C [ œ D‘$ ¼

Ex:   If      then if     even functions,    odd functions.Z œ P ß [ œ [ œ# ¼

Pf.  exercise

Recall : (R&S, Theorem II.3)   Given a complete inner product space   Z
and a complete subspace   ,  then    is an orthogonal direct sum of Q Z Q
and Q¼

4.  Back to wavelets:

Recall:
 ñ Z œ Ò5# ß Ð5  "Ñ# ÓÞ4

4 4 functions constant on dyadic intervals   
 ñ  áZ § Z § Z § Z § Z á# " ! " #

Since ,  there is a subspace  such that Z § Z [ œ Z ‹ Z Z Š[ œ Z Þ! " ! " ! ! ! "
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fig 24:  Relationship of    and    as the  -   plane and   as theZ [ À Z B C [! ! ! !

D Z Š[ œ Z œ Þ  axis ...     ! ! "
$‘

Similarly define

[ œ Z ‹ Z Þ" # "

Generally:

[ œ Z ‹ Z4" 4 4"

Then relationships are:
    áZ § Z § Z § Z § Z á# " ! " #

[ [ [ [# " ! "

Also note, say, for :Z$

Z œ Z Š [$ # #

œ Z Š[ Š[ " " #

œ Z Š[ Š[ Š [! ! " #

œ Z Š[ Š[ Š[ Š[" " ! " #

    
Thus if , we have:@ − Z$ $
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@ œ @  A$ # #

œ @ A A" " #

œ @ A A A! ! " #

œ @  A  A  A  A ß" " ! " #

with  and @ − Z A − [ Þ3 3 3 3

[successively decomposing the  into another  and a ].@ @ A

In general À

@ œ @  A Þ$ 8 5

5œ8

#" (1)

Now let  .  Since all vectors in above sum orthogonal, we have (see8 Ä _
exercises):

m@ m œ m@ m  mA m Þ$ 8 5
# # #

5œ8

#"    

Thus

"
5œ8

#

5 $
# #mA m Ÿ m@ m

a8, so

!
5œ_

#

5
#mA m  _Þ

    
Lemma:   In a Hilbert space , if  are orthogonal vectors and the sumL A5! !
5 5

5 5
#mA m  _ A,  then the sum  converges.
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Pf:     We can show that the sum  forms a Cauchy sequence by noting!
5œ"

R

5A

if :R  Q

m A  A m œ m A m œ mA m !Þ" " " "
5œ" 5œ" 5œQ" 5œQ"

R Q R R

5 5 5 5
# # # Ò

RßQ Ä _

Thus we have a Cauchy sequence.  The sequence must converge (  isL

complete), and so  exists.  !
5œ"

_

5A

From above:

@ œ @  A Þ8 $ 5

5œ8

#"
Letting  get   .  Thus vectors     have8 Ä _ß @ @  A @8 $ 5 8

5œ_

#

Ò8 Ä _
!

limit as   8 Ä _ À @ Ä @ Þ8 _

But notice
                         @ − Z § Z § Z á8 8 8" 8#

Ê

@ − Z  Z  Z á œ Z8 8 8" 8# 5

5œ8

_,
Thus  intersection of all 's @ − Z œ_ 8

     (by condition  on spaces ).Ê @ œ ! Z_ 4 (b)

Thus taking the limit as  in (1)8 Ä _ À

@ œ @  A$ 8 5

5œ8

#" (1)

get
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@ œ A Þ$ 5

5œ_

#"
   
So by definition of direct sum:

Z œ á[ Š [ Š[ Š [ Š [ œ [$ # " ! " # 5

#

5œ_

:
i.e., every vector in  can be uniquely expressed as a sum of vectors in theZ$

[ [ Þ4 4.  Further this is an orthogonal direct sum since 's  orthogonal

Generally:

Z œ á[ Š [ Š [ Š [ Š [ Š á Š[ œ [8 # " ! " # 8" 5

8"

5œ_

:
Now note

P œ Z Š Z# ¼
$ $  

œ Z Š Z% %
¼ 

œ Z Š [ Š Z Þ$ $ %
¼ 

Thus comparing above get

Z œ [ Š Z$ %
¼ ¼

$ .

Similarlyß

Z œ [ Š Z Þ% &
¼ ¼

%

So

Z œ [ Š [ Š Z$ &
¼ ¼

$ % .

Generally:   
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                           .Z œ [ Š [ Š [ Šá Š[ Š Z$ 8"
¼ ¼

$ % & 8

   
Letting  and using same arguments, we see that the 8 Ä _ Z8"

¼

components “go to ” as , so that! 8 Ä _

Z œ [ Š[ Š[ Š á$
¼

$ % &

Thus:

P œ Z Š Z œ á[ Š [ Š [ Š[ Š[ Šá# ¼
$ # " ! " #$    

[Thus every function in  can be uniquely written as a sum of functions inP#

the 's].[4

Thus:

Theorem:  Every vector  can be uniquely expressed as a@ − P Ð_ß_Ñ#

sum

"
4œ_

_

4 4 4A A − [ Þ where  

Conclusion - relationship of  and :Z [4 4

   
5.  What are the  spaces?[4

Consider .[!
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Claim:   functions which are constant on half-integers and take[ œ E ´!

equal and opposite values on half of each integer intervalÞ

-4 -2 2 4

-4

-3

-2

-1

1

2

3

4

   
fig 24:  Typical function in E

Proof:  Will show that with above definition of ,E

Z Š E œ Z! ",

and that  and  are orthogonal.  Then it will follow thatZ E!

E œ Z ‹ Z ´ [" ! !, 

First to show  and  are orthogonal:  let  and   Then  looksZ E 0 − Z 1 − EÞ 0! !

like:

   
fig 24:  0ÐBÑ − Z à 1ÐBÑ − [! !

Thus

Ø0 ß 1Ù œ 0ÐBÑ1ÐBÑ.B œ    á 0ÐBÑ1ÐBÑ.B( ( ( ( ( 
_ # " ! "

_ " ! " #

 

œ !
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since  takes on equal and opposite values on each half of every0ÐBÑ1ÐBÑ
integer interval above, and so integrates to  on each interval.!

Thus  and  orthogonal, and so  and  are orthogonal.0 1 Z E!

Next will show that if , then , where  and 0 − Z 0 œ 0  1 0 − Z 1 − E" ! ! ! ! !

(which is all that's left to show).

Let .  Then  is constant on half integer intervals:0 − Z 0"

-4 -2 2 4

-8

-6

-4

-2

2

4

6

8

   
    fig 25: 0ÐBÑ − Z"

Define  to be the function which is constant on each integer interval, and0!
whose value is the of the two values of  on that interval:average 0ÐBÑ

   
   fig 26:   as related to .0 ÐBÑ 0ÐBÑ!

Then clearly  is constant on integer intervals, and so is in .0 ÐBÑ Z! !

Now define 1 ÐBÑ œ 0ÐBÑ  0 ÐBÑ À! !
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-4 -2 2 4
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   fig 27:  1 ÐBÑ œ 0ÐBÑ  0 ÐBÑ! !

Then clearly  takes on equal and opposite values on each half of every1!
integer interval, and so is in .  Thus we have:  for E 0ÐBÑ − Z ß"

   ,0ÐBÑ œ 0 ÐBÑ  1 ÐBÑ! !

where  and .  Thus  by Theorem 1 above.0 − Z 1 − E Z œ Z Š E! ! ! " !

Thus , so .E œ Z ‹ Z œ [ E œ [" ! ! !

Thus  functions which take on equal and opposite values on each half[ œ!

of an integer interval, as desired.  

Similarly, can show:

[4 = functions which take on equal and opposite values on each half of the
dyadic interval of length  and are square integrable:#4

-4 -2 2 4

-8

-6

-4

-2

2

4

6

8

  
  fig 28:  typical function in  [ Ð4 œ "Ñ4
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6   What is a basis for the space ?[4

Consider

[! = functions which take equal and opposite values on each integer interval

What is a basis for this space?   Let

<ÐBÑ œ
" ! Ÿ B Ÿ "Î#
" "Î#  B Ÿ "œ if 

if  .

Claim a basis for  is .[ Ö ÐB  5Ñ×! 5œ_
_<

Note linear combinations of  look like:<ÐB  5Ñ

1ÐBÑ œ # ÐBÑ  $ ÐB  "Ñ  # ÐB  #Ñ  # ÐB  $Ñ< < < < .

-4 -2 2 4
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-2

-1

1

2

3

4

   
fig 29:  graph of .1ÐBÑ

I.E., linear combinations of translates functions equal and<ÐB  5Ñ œ
opposite on each half of every integer interval.

Can easily conclude:

[ œ P!
# functions in  equal and opposite on integer intervals

œ P ÐB  5Ñ functions in  which are linear combinations of translates .# <
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Also easily seen translates  are orthonormal.<ÐB  5Ñ

Conclude:   form orthonormal basis for .Ö ÐB  5Ñ× [< !

Similarly can show  form orthonormal basis for .Ö# Ð#B  5Ñ× ["Î#
5 "<

    form orthonormal basis for .Ö# Ð# B  5Ñ× [#Î# #
5 #<

Generally,

Ö# Ð# B  5Ñ× [4Î# 4 _
5œ_ 4<  form orthonormal basis for .

Define .< <45
4Î# 4ÐBÑ œ # Ð# B  5Ñ

Recall every function  can be written0 − P#

0 œ A"
4

4

where .  But each  can be writtenA − [ A4 4 4

A œ + ÐBÑ4 5 45

5

" <

 [note  fixed above replace  by  since need to keep track of ].4 + + 45 45

so:

0 œ + ÐBÑ""
4 5

45 45< .

Furthermore we have shown the  orthonormal.  Conclude they form<45

orthonormal basis for .P#

7.  Example of a wavelet expansion:

Let .    Find wavelet expansion.if 
otherwise0ÐBÑ œ

B ! Ÿ B  "
!œ #
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8.  Some more Fourier analysis:

Recall Fourier transform (use instead of  for Fourier variable):= 0

0ÐBÑ œ 0Ð Ñ/ .
"

#
sÈ (

1
= =

_

_
3B=

0Ð Ñ œ .B 0ÐBÑ /s "

#
=

1È (
_

_
3B=.

 [earlier had  ]0Ð Ñ œ -Ð Ñs = =

Write Fourier transform of 0Ð Ñ œ 0Ð Ñ œ Ð0ÑÞs s= = Y

9.  Plancherel theorem:

Plancharel Theorem:
(i) The Fourier transform is a one to one correspondence from  to itself.P#

That is, for every function  there is a unique  function which is0ÐBÑ − P P# #

its Fourier transform, and for every function  there is a unique1Ð Ñ − Ps = #

P# function which it is the Fourier transform of.

(ii)  The Fourier transform preserves inner products, i.e., if  is the FT of 0 0s

and   is the FT of , then .1 1 Ø0Ð Ñß 1Ð ÑÙ œ Ø0ÐBÑß 1ÐBÑÙs ss = =

(iii)  Thus

m0ÐBÑm œ m0Ð Ñm Þs# #=

Now for a function , consider the Fourier series of , given0 − P Ò  ß Ó 0# 1 1
by

"
5œ_

_

5
35B- / Þ    
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The above theorem has analog on .  Theorem below followsÒ ß Ó1 1

immediately from fact that  form orthonormal basis forÖ/ Î # ×38B _
8œ_

È 1
P Ò ß ÓÞ# 1 1

Plancharel Theorem for Fourier series:

(i)   The correspondence between functions    and the0 − P Ò  ß Ó# 1 1
coefficients   of their Fourier series is a one to one correspondence, ifÖ- ×5

we restrict  .  That is, for every   there is a unique!
5

5
# #-  _ 0 − P Ò  ß Ó1 1

series of square summable Fourier coefficients    of    such thatÖ- × 05!
5

5 5
#l- l  _Þ Ö- ×  Conversely for every square summable sequence   there

is a unique function    such that  are the coefficients of0 − P Ò  ß Ó Ö- ×#
51 1

the Fourier series of  .0

(ii)  Furthermore,    !
5

5
# #"

#m- ² œ m0ÐBÑm1
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3. General Wavelet Constructions    

1.  Other constructions:
Suppose we use another “pixel” function :9ÐBÑ

-1 1 2

-0.5

0.5

1

1.5

2

   

fig 30: another pixel function 

Can we use this to build approximations to other functions?  Consider linear
combination:

# ÐBÑ  $ ÐB  "Ñ  # ÐB  #Ñ  ÐB  $Ñ9 9 9 9

-1 1 2 3 4 5

-3

-2

-1

1

2

3

4

   
fig 31:  graph of linear combination of translates of 9

Note we can try to approximate functions with other pixel functions.

Question:  Can we repeat the above process with this pixel (scaling)
function? What would be the corresponding wavelet?
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Assumptions:     has finite integral and .l ÐBÑl ÐBÑ.B Á !9 9'
More general construction:

As before define   all linear combinations of  and its translates:Z œ P!
# 9

œ Ö0ÐB œ + ÐBÑ + − à 0 − P ×Þ) (2)" ¹
5

5 !5 5
#9 ‘

with

9 9!5ÐBÑ œ ÐB  5ÑÞ

and

Z œ Ö0ÐBÑ œ + ÐBÑl + − à 0 − P ×Þ" 5 "5 5

5

#" 9 ‘ (3)

9 9"5
"Î#ÐBÑ œ # Ð#B  5Ñ      

etc.      

We want the same theory as earlier.

 [Note  no longer piecewise constant functions]Z!

Recall condition

(d)    0ÐBÑ − Z Ê 0Ð#BÑ − Z8 8"

 This is automatically true by definition of , since if , thenZ 0ÐBÑ − Z8 !

0 0Ð#BÑ has the form of an element of (2).  Then  has form of an element of
(3), and  .0Ð#BÑ − Z"

Similarly can be shown that  holds for any pair of spaces  and  of(d) Z Z8 8"

above form.

2 Some basic properties of F.T.:Þ
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 Assume that   Then0 œ Ð0ÑÞs Y

   (a) Y = =Ð0ÐB  -ÑÑÐ Ñ œ / 0Ð Ñs3 -=

 (b)  Y =Ð0Ð-BÑÑ œ 0Ð Î-Ñs"
-

 Proofs:  Exercises.

3.  Orthogonality of the 's:9

Another property of Z À4

(f) The basis  for is orthogonal, i.e. Ö ÐB  5Ñ× Z Ø ÐB  5Ñß ÐB  jÑÙ œ !9 9 9!

for 5 Á jÞ

Not automatic.  Let F.T. of .Y =Ð0Ñ ´ 0 ´ 0Ð Ñs

Require a condition on  of the following sort:  if  , then (note use  as9 =5 Á j
Fourier variable) À

! œ Ø ÐB  5Ñß ÐB  jÑÙ œ Ø Ð ÐB  5ÑÑß Ð ÐB  jÑÑÙ9 9 Y 9 Y 9

œ Ø/ Ð Ñß / Ð ÑÙs s

œ / l Ð Ñl .s

3 5 3 j

_

_
3 Ð5jÑ #

= =

=

9 = 9 =

9 = =(
Thus conclude if 7 Á !ß

! œ / Ð Ñl .s(
_

_
37 #=|9 = =

œ á    / l Ð Ñl .sŒ ( ( (
% # !

# ! #
37 #

1 1 1

1 1 1
= 9 = =

œ / l Ð Ñl .s" (
8œ_

_

8†#

Ð8"Ñ†#
37 #

1

1
= 9 = =
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œ / l Ð  #8 Ñl .s" (
8œ_

_

!

#
37 #

1
= 9 = 1 =

œ / l Ð  #8 Ñl .s( "
!

#
37 #

8œ_

_1
= 9 = 1 =    

[since we can show that the integral of the absolute sum converges because!
8œ_

_
#l Ð  #8 Ñl .s9 = 1 = absolutely integrable; see exercises]

Conclude function    on    is in    because it has!
8œ_

_
# #l Ð  #8 Ñl Ò!ß # Ó Ps9 = 1 1

square summable Fourier coefficients (in fact they are    if   ).! 7 Á !

Further   is - periodic in , and has a Fourier series!
8œ_

_
#l Ð  #8 Ñl #s9 = 1 1 =

" "
8œ_ 7œ_

_ _
# 37

7l Ð  #8 Ñl œ - / ßs9 = 1 =   

where

- œ / l Ð  #8 Ñl . œ ! 7 Á !Þ
"

#
s

7
!

#
37 #

8œ_

_

1
9 = 1 =( "1

=        if  

And

- œ / l Ð Ñl . œ l Ð Ñl .
" "

# #
s s

!
_ _

_ _
37 # #

7œ!1 1
9 = = 9 = =( (º=

œ ÐBÑl .B œ Þ
" "

# #1 1
9(

_

_
# |

Thus

" "
8œ_ 7œ_

_ _
# 37B

7l Ð  #8 Ñl œ - / œ Þs "

#
9 = 1

1



43

This condition equivalent to orthonormality of .Ö ÐB  5Ñ×9

V V0 1§ À

Recall the condition

(a)   Z § Z! "

 What must be true of  for this to hold in general?  This says that every9
function in  is in .  Thus since , it follows ,   i.e.Z Z ÐBÑ − Z ÐBÑ − Z! " ! "9 9

9 9ÐBÑ œ # Ð#BÑ linear combination of translates of È
= (4)"

5

5 "52 ÐBÑ9

9 9"5
"Î#ÐBÑ œ # Ð#B  5Ñ

 [recall normalization constant  is so we have unit  norm]È# P Þ#

Ex:   If  Haar wavelet, then9ÐBÑ œ

9 9 9ÐBÑ œ Ð#BÑ  Ð#B  "Ñ

œ ÐBÑ  ÐBÑ
" "

# #È È9 9"! ""

œ 2 ÐBÑ  2 ÐBÑ"! "! "" ""9 9
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-2 -1 1 2

0.5

1

1.5
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2.5

  

            fig 32:  9 9 9ÐBÑ œ Ð#BÑ  Ð#B  "Ñ

 Thus in this case all 's are  except   and   ;2 ! 2 2"! ""

2 œ à 2 œ Þ"! ""
" "

# #È È
Note in general that since this is an orthonormal expansion,

"
5

5
# #2 œ m ÐBÑm  _Þ9

   
4.  What must be true of the scaling function for (1) above to hold?

Thus in general we have:

9 9 9ÐBÑ œ 2 ÐBÑ œ 2 ÐBÑ" "
5œ_ 5œR

_ R

5 "5 5 "5
RÄ_
lim (3)

in  norm.  DenoteP#

"
5œR

R

5 "5 R2 ÐBÑ ´ J ÐBÑ9
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Specifically,

m ÐBÑ  2 ÐBÑm Ä !Þ9 9"
5œR

R

5 "5

 [recall  is Fourier transform]Y

Corollary of Plancherel Theorem:

Corollary:   The Fourier transform is a bounded linear transformation.  In
particular, if the sequence of functions    converges in  norm,ÖJ ÐBÑ× PR

#

then

Y = Y =Ð J ÑÐ Ñ œ ÐJ ÑÐ Ñlim lim
8Ä_

R R
RÄ_

in    norm, i.e., Fourier transforms commute with limits.P#

  
Thus since  sums are limits and  is linear:_ Y

Y 9 Y 9 =Œ " "
Oœ_

_ _

5 "5 5 "5

5œ_

2 ÐBÑ œ 2 Ð Ð ÑÑ

 [i.e.,  commutes with  sums]Y _

Let .   Then generally:Y 9 = 9 =Ð ÑÐ Ñ œ Ð Ñs

         Y 9 = Y 9 =Ð ÑÐ Ñ œ Ð# Ð# B  5ÑÑÐ Ñ45
4Î# 4

 
œ # Ð Ð# B  5ÑÑÐ Ñ4Î# 4Y 9 =

  [recall dilation properties of Fourier transform earlier]

œ # Ð ÐB  5ÑÑÐ Î# Ñ4Î# 4"
#4 Y 9 =

  [recall translation by  pulls out an ]5 /3 5=

      œ # / Ð ÐBÑÑÐ Î# Ñ4Î# 3 5Î# 4= 4
Y 9 =

                       œ # / Ð Î# Ñs4Î# 3 5Î# 4= 4
9 =
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 Specifically for :4 œ "

Y 9 = 9 =Ð ÑÐ Ñ œ # / Ð Î#Ñ
"

#
s

"5
3 5Î#È =

Recall (3):

9 9ÐBÑ œ 2 ÐBÑ"
5œ_

_

5 "5

Fourier transforming both sides:

9 = Y 9

Y 9

9 =

sÐ Ñ œ Ð ÑÐBÑ

œ 2 ÐBÑ

œ 2 / Ð Î#Ñ
"

#
s

Œ "
" È

5œ_

_

5 "5

5œ_

_

5
35Ð Î#Ñ=

(5)

Define

7Ð Î#Ñ œ 2 /
"

#
= " È

5œ_

_

5
35Ð Î#Ñ= (6)

note  is - periodic Fourier series of  given above.7 #  7Ð Î#Ñ1 =

Note , since .7Ð Ñ − P Ò!ß # Ó 2  _= 1# #

5
5

!
Thus by (5):

9 = = 9 =s sÐ Ñ œ 7Ð Î#Ñ Ð Î#ÑÞ

with  a -periodic  function.7Ð † Ñ # P1 #

[Note:  This condition exactly summarizes our original demand that Z!

§ Z"!]
          
Note if , then it follows (same arguments) that , andZ § Z Z § Z! " " #

Z § Z4 4" in general.
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5.  Some preliminaries:

Given a Hilbert space  and a closed subspace , for  writeL Z 0 − L

0 œ @  @¼

where  and @ − Z @ − Z Þ¼ ¼

Definition:  The operator  defined byT

T0 œ TÐ@  @ Ñ œ @¼

is the  onto .orthogonal projection Z

Note  is a bounded linear operator (see exercises).T

Easy to check that if  (see exercises). mTm œ " T Á !

Ex:  Z œ Þ T ÐBß Cß DÑ œ ÐBß Cß !Ñ œ‘$   is the orthogonal projection onto the
BC plane.

 orthogonal projection onto  axis.TÐBß Cß DÑ œ Ð!ß !ß DÑ œ D

Ex:  Z § P Ò ß Ó 0 − P# #1 1   is the even functions.  Then for 

T0ÐBÑ œ 0 ÐBÑ œ
0ÐBÑ  0ÐBÑ

#
even
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(see exercises).

6.  How to construct the wavelet?

Recall we have now given conditions on the scaling function:

Condition

(a)     áZ § Z § Z § Z § Z § Z á# " ! " # $

is equivalent to:

(i) 9 = = 9 =s sÐ Ñ œ 7 Ð Î#Ñ Ð Î#Ñß!

where  is a function of period .7 #! 1

Condition

(f)   There is an orthogonal basis for the space V  in the family of functions0
9 9!5 ´ ÐB  5Ñ   

is equivalent to:

(ii) "
5

#l Ð  # 5Ñl œs "

#
9 = 1

1

Condition

(b)     Z œ Ö!×
8

8

can also be shown to follow from (ii) as follows:

Proposition:  If  and satisfies (ii), then 9 ‘− P Ð Ñ  Z œ Ö!×Þ#

4−
4

™

 Proof:  Denote  to be compactly supported continuous functions.G-

Let   Let  be arbitrarily small.  By arguments as in problem0 −  Z Þ  !
4−

4
™

%

II.2 in R&S,  is dense in , so that there exists an  with˜G P Ð Ñ 0 − G- -
# ‘

m0  0m  ß˜ %
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with  denoting  norm.  Letm † m P#

T œ Z Þ4 4orthogonal projection onto 

Then since :0 − Z4

m0  T 0m œ mT 0  T 0m œ mT Ð0  0Ñm Ÿ m0  0m Ÿ Þ4 4 4 4
˜ ˜ ˜ ˜ %

Thus by triangle inequality

m0m Ÿ m0  T 0m  mT 0m Ÿ  mT 0mÞ4 4 4
˜ ˜ ˜% (7)

Since  we have˜T 0 − Z ß4 4

T 0 œ - ÐBÑÞ4 45 45

5

˜ " 9

where    (recall  is an orthonormal basis for ).- œ Ø ß 0Ù Ö ÐBÑ× Z45 45 45 45œ_
_9 9

Thus if m0m œ l0ÐBÑlß_
B

sup

mT 0m œ l- l œ lØ ß 0Ùl4 45 45
# # #

5 5

˜ ˜" " 9

œ ÐBÑ 0ÐBÑ .B"º º(
5

45

#

9 ˜

[assuming  is supported in  ]0̃ ÒVßVÓ

Ÿ # m0m " † l Ð# B  5Ñl.B4 # 4
_

5 ÒVßVÓ

#

˜ " ( 9

[using Schwartz inequality ]Ø+ÐBÑ,ÐBÑÙ Ÿ m+ÐBÑmm,ÐBÑm

Ÿ # m0m " .B l Ð# B  5Ñl .B4 # # 4 #
_

5 ÒVßVÓ ÒVßVÓ

˜ "( ( 9

œ # m0m #V l Ð# B  5Ñl .B4 # 4 #
_

5 ÒVßVÓ

˜ "( 9
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œ m0m #V l ÐCÑl .C
Cœ# B54  ˜  # #

_
W

(
Vß4

9

[where  (note we replaced in theW œ  Ò5  # Vß 5  # VÓ 5 Ä 5Vß4 5−
4 4

™

union) assuming  large and negative, so Note that then the 4 # V  Þ 54 "
#

sum becomes a sum over disjoint intervals after the change of variables
above, and we therefore replace a sum over  by a union over these5
intervals, as above]

œ m0m #V ÐCÑl ÐCÑl .C !# #
_ W ( ; 9 Ò

Vß4 4 Ä _

by the dominated convergence theorem, since if , C Â ÐCÑ !Þ™ ; ÒWVß4 4 Ä _

Thus by (7), we have for  large and negative and all 4  ! À%

m0m Ÿ m0  T 0m  mT 0m Ÿ  mT 0m Ÿ4 4 4
˜ ˜ ˜ 2 .% %

Thus  and   m0m œ ! 0 œ !Þ

Condition

(c)     is dense in L ( ) Z
8

8
2 ‘

also follows from (ii):

Proposition:  If  and satisfies (ii), then 9 ‘ ‘− P Ð Ñ  Z œ P Ð ÑÞ# #

4−
4

™

 Proof:  Similarly technical proof.

Condition

(d)        0ÐBÑ − Z Ê 0Ð#BÑ − Z8 8"

is automatic from the definition of the .Z8

Condition

(e)           0ÐBÑ − Z Ê 0ÐB  5Ñ − Z! !
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is also automatic from definition.

Thus we conclude:

Theorem:  Conditions (i) and (ii) above are necessary and sufficient for the
spaces  and scaling function  to form a multiresolution analysis.ÖZ ×4 9

Thus if (i), (ii) are satisfied for  and we define the spaces  as usual, the9 Z4

spaces will satisfy properties  -  of a multiresolution analysis.(a) (f)

Recall:  orthonormality of translates is equivalent to:Ö ÐB  5Ñ×9 5−™

(ii) "
5

#l Ð  # 5Ñl œs "

#
9 = 1

1

Rewrite (ii):

!
5

!
# # "

#l7 Ð Î#  5Ñl l Ð Î#  5Ñl œs= 1 9 = 1 1

   Ê œ l7 Ð  5Ñl l Ð  5Ñls"
#

5
!

w # w #
1

! = 1 9 = 1

         [ ]  = =w œ Î#

=!
5

!
w # w #

 even
l7 Ð  5Ñl l Ð  5Ñls= 1 9 = 1

 l7 Ð  5Ñl l Ð  5Ñls!
5

!
w # w #

 odd
= 1 9 = 1

œ l7 Ð  † #5Ñl l Ð  † #5Ñls!
5

!
w # w #

 
= 1 9 = 1

 l7 Ð  Ð#5  "ÑÑl l Ð  Ð#5  "Ñls!
5

!
w # w #= 1 9 = 1

œ l7 Ð Ñl l Ð  # 5Ñl  l7 Ð  Ñl l Ð   # 5Ñls s   7!  periodic
! !

w # w # w # w #

5 5

= 9 = 1 = 1 9 = 1 1" "
 .  

œ l7 Ð Ñl †  l7 Ð  Ñl †
by (ii)

! !
w # w #" "

# #= = 11 1

This implies that
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l7 Ð Ñl  l7 Ð  Ñl œ "Þ! !
w # w #= = 1 (8)

What about wavelets?  Recall we define  .  We now know[ œ Z ‹ Z4 4" 4

that   form basis for .  The wavelets  will form basis for .Ö ÐBÑ× Z [9 <45 4 45 4
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4.   More on General Constructions

1.  What are ?<45

[Recall norms and inner products of functions are preserved when we take
Fourier transform.   Let's take FT to see.]

Note if we find   , then we will be done.[ œ Z ‹ Z! " !

[Let's look at Fourier transforms of functions in these spaces:]

Note that if  then0 − Z ß!

0ÐBÑ œ + ÐB  5Ñ œ + ÐBÑ" "
5 5

5 5 !59 9 (9)

gives by F.T.:

0Ð Ñ œ + ÐBÑ œ + / Ð Ñ ´ 7 Ð Ñ Ð Ñs s s= Y 9 9 = = 9 =" "
5 5

5 !5 5 0
35( ) = (10)

where

7 Ð Ñ ´ + / Þ0 5

5

35= " =

is a 2 periodic  function which depends on .  In fact reversing1 1P Ò!ß # Ó 0#

argument shows (9) and (10) are equivalent.
      
Similarly can show under Fourier transform that   equivalent to:1 − Z"

1Ð Ñ œ 7 Ð Î#Ñ Ð Î#ÑÞs s= = 9 =1 (11)

with  some other  periodic function on 7 Ð † Ñ # P Ò!ß # ÓÞ1
#1 1

Notice functions  and  both have period  (look at their Fourier7 7 #0 1 1
series).  Also note above steps are reversible, so equation (10) implies (9) by
reverse argument.

Thus:
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0 − Z Í 0 œ 7 Ð Î#Ñ Ð Î#Ñs s
" 0 = 9 =

Recall:  we want to characterize ;  such an  has the property that0 − [ 0!

0 − Z 0 ¼ Z" ! and .

Now note:

0 ¼ Z Í 0 ¼ a5 Í 0 ¼ ßs s
! !5 !59 9

Í 0Ð Ñ / Ð Ñ . œ !s s(
_

_
3 5= 9 = ==

Í ! œ 0Ð Ñ / Ð Ñ . œ 0Ð Ñ / Ð Ñs ss s( ("
_ # 7

_ # Ð7"Ñ
3 5 3 5

7

= 9 = = = 9 == =

1

1

 

œ 0Ð  # 7Ñ/ Ð  # 7Ñ .s s"(
7 !

#
35Ð # 7Ñ

1
= 1= 1 9 = 1 =

œ / 0Ð  # 7Ñ Ð  # 7Ñ . Þs s( "
!

#
35

7

1
= = 1 9 = 1 =

where above identities hold for all .5

Hence   [viewing sum as some function of ]=

"
7

0Ð  # 7Ñ Ð  # 7Ñ œ !Þs s= 1 9 = 1

Thus:

! 0Ð  # 7Ñ Ð  # 7Ñs sœ !
7

= 1 9 = 1

œ !
7

0 !7 ÐÐ  # 7ÑÎ#Ñ ÐÐ  # 7ÑÎ#Ñ7 ÐÐ  # 7ÑÎ#Ñ ÐÐ  # 7ÑÎ#Ñs s= 1 9 = 1 = 1 9 = 1

œ !
7

0 !7 Ð Î#  7Ñ Ð # 7 7 Ð Î#  7Ñ Ð Î#  7Ñs s= 1 9 = = 1 9 = 1/ ) 
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œ ! !
7 7

0
 even odd

 +   7 Ð Î#  7Ñ Ð Î#  7Ñs= 1 9 = 1

         ‚ 7 Ð Î#  7Ñ Ð Î#  7Ñs
! = 1 9 = 1

œ !
7

0 !7 Ð Î#  # 7Ñ Ð Î#  # 7Ñ7 Ð Î#  # 7Ñ Ð Î#  # 7Ñs s= 1 9 = 1 = 1 9 = 1

 / + + 7 Ð Î#   # 7Ñ Ð # # 7Ñs!
7

0 = 1 1 9 = 1 1

     ‚ 7 Ð Î#   # 7Ñ Ð Î#   # 7Ñs
! = 1 1 9 = 1 1

 œ 7 Ð Î#Ñ7 Ð Î#Ñ Ð Î#  # 7Ñ Ð Î#  # 7Ñs s
0 !

7
= = 9 = 1 9 = 1!

     / /7 Ð #  Ñ7 Ð Î#  Ñ Ð Î#   # 7Ñ Ð #   # 7Ñs s
0 !

7
= 1 = 1 9 = 1 1 9 = 1 1!

 œ 7 Ð Î#Ñ7 Ð Î#Ñ l Ð Î#  # 7Ñls
0 !

7

#= = 9 = 1!
   /7 Ð #  Ñ7 Ð Î#  Ñ l Ð Î#   # 7Ñls

0 !
7

#= 1 = 1 9 = 1 1!
œ Ð7 Ð Î#Ñ7 Ð Î#Ñ †  7 Ð Î#  Ñ7 Ð Î#  ÑÑ †0 ! 0 !

" "
# #= = = 1 = 11 1

(3) Ê 7 Ð Ñ7 Ð Ñ 7 Ð  Ñ7 Ð  Ñ œ !0 ! 0 !
w ww w= = = 1 = 1

Thus (note   and    cannot vanish together) let 7 Ð Ñ 7 Ð  Ñ à Ä À! !
w w w= = 1 = =

7 Ð Ñ œ  7 Ð  Ñ ´ Ð Ñ7 Ð  Ñ ß
7 Ð  Ñ

7 Ð Ñ
0 ! !

0

!

= = 1 - = = 1
= 1

=
(12)

where

- =
= 1

=
Ð Ñ ´ 

7 Ð  Ñ

7 Ð Ñ

0

!

and so  is  periodic.  Also,- = 1Ð Ñ #
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- = - = 1
= 1 = 1

= = 1
Ð Ñ  Ð  Ñ œ  

7 Ð  Ñ 7 Ð  # Ñ

7 Ð Ñ 7 Ð  Ñ

0 0

! !

(13)

           . œ !
combining fractions and using Ð$Ñ

Define   / = - =Ð# Ñ œ Ð Ñ / Þ3=

Then

/ = 1 - = 1Ð#  # Ñ œ Ð  Ñ /   3Ð  Ñ= 1

œ  Ð Ñ/ / œ Ð Ñ/ œ Ð# Ñ- = - = / =3 3 3= 1 =

so  has period ./ 1#

Thus  0Ð Ñ œ 7 Ð Î#Ñ Ð Î#Ñ œ Ð Î#Ñ7 Ð Î#  Ñ Ð Î#Ñs s s= = 9 = - = = 1 9 =0 !

œ Ð Ñ / 7 Ð Î#  Ñ Ð Î#ÑÞs/ = = 1 9 =3 Î#
!

=

Thus we define the wavelet by its Fourier transform:<ÐBÑ

< = = 1 9 =s sÐ Ñ œ / 7 Ð Î#  Ñ Ð Î#Ñ3 Î#
!

= (14)

Thus

0Ð Ñ œ Ð Ñ Ð ÑÞs s= / = < =

Going back in Fourier transform, we would get (compare with how we got
0Ð Ñ œ 7 Ð Ñ Ð Ñs s= = 9 =0 )

0ÐBÑ œ + ÐB  5ÑÞ"
5

5 < (15)

where  are coefficients of the Fourier series of i.e.,+ Ð Ñß5 / =

/ =Ð Ñ œ + / Þ"
5

5
35=

To justify process of Fourier transformation as above, need to also show that
the coefficients  are square summable (i.e. ), since we do not+ l+ l  _5 5

5

#!
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know whether Fourier transform properties which we have used in getting
(15) are valid otherwise.

Note since  are coefficients of Fourier series of , we just need to show +5 / /
is square integrable on  (recall this is equivalent to the  being squareÒ!ß # Ó +1 5

summable).  To show that  is square integrable, note that with  as in :/ 70 (0)

_  . l7 Ð Ñl
use 7 −P Ò!ß# Ó0

# 1 '
!

#
0

#1
= =

  by (12)
œ !

# # #
!' 1

. l Ð Ñl l7 Ð  Ñl= - = = 1

      œ  . l Ð Ñl l7 Ð  ÑlŒ ' '
!

# # #
!

1 1

1 = - = = 1

   [substitute   in second integral; then rename   again]= = 1 = =w wœ  œ

œ . l Ð Ñl l7 Ð  Ñl  . l Ð  Ñl l7 Ð  # Ñl( (
! !

# # # #
! !

1 1

= - = = 1 = - = 1 = 1

 [recall that by periodicity  and use ]l7 Ð  # Ñl œ l7 Ð Ñl! !
# #= 1 = (13)

= (
!

# # #
! !

1

. l Ð Ñl Ðl7 Ð  Ñl  l7 Ð Ñl Ñ= - = = 1 =

œ . l Ð Ñl
use (8)  (

!

#
1

= - =

œ . l Ð# Ñl(
!

#
1

= / =

= =
= / =

w

!

#
#œ # "

œ #
. l Ð Ñl( 1

Thus we have that    so that    is square integrable, as_  . l Ð Ñl ß'
!

# #1
= / = /

desired.
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 This was only thing left to show  span .  Wish to show<Ð#B  5Ñ [!

also orthonormal.  Use almost exactly the same argument as was used to
show the same for :9ÐB  5Ñ

" "
5 5

# # #
!l Ð  # 5Ñl œ l7 Ð Î#  5  Ñl l Ð Î#  5Ñls s< = 1 = 1 1 9 = 1

use (14)

[now break up the sum into even and odd   again and use the same method5
as before]

œ 7 Ð Î#  5  Ñl l Ð Î#  5ÑlsŒ ! !    +    |
5 5

!
# #

 even  odd
= 1 1 9 = 1

 œ l7 Ð Î#  † #5  Ñl l Ð Î#  † #5Ñls!
5

!
# #= 1 1 9 = 1

(16)
 l7 Ð Î#  † Ð#5  "Ñ  Ñl l Ð Î#  † Ð#5  "ÑÑls!

5
!

# #= 1 1 9 = 1

œ l7 Ð Î#  Ñl l Ð Î#  † #5Ñls
!

# #

5

= 1 9 = 1!   

 l7 Ð Î#Ñl l Ð Î#  † Ð#5  "ÑÑls
!

# #

5

= 9 = 1!   

using (ii) above again
œ #! !

# # "Ðl7 Ð Î#  Ñl  l7 Ð Î#Ñl Ñ †= 1 = 1

  
  œ "

#1

By same arguments as used for , it follows by  9 <ÐB  5Ñ ÐB  5Ñ(16)
orthonormalÞ

 This proves our choice of  gives a basis for  as desired.< [!

Specifically,

< <!5ÐBÑ œ ÐB  5Ñ

form an orthogonal basis for  (in fact can show their length is  so they[ "!

are orthonormal).
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In same way as for , can show immediately that since functions in  are9 [4

functions in  stretched by factor , the functions[ #!
4

< <45
4Î# 4ÐBÑ œ # Ð# B  5Ñ

form a basis for  (  fixed   varies).[ 4 ß 54

Since  direct sum of the  spaces, conclude functionsP œ [#
4

Ö ÐBÑ× 4 5 P<45 4ß5œ_
_ # over all integers and  form orthonormal basis for  .

Conclusion:
If we start with a pixel function , which satisfies9ÐBÑ

(i)   ( ) (with  some -periodic function)9 = = 9 = 1s sœ 7 Ð Î#Ñ Ð Î#Ñ 7 #! !

(ii)   !
5

# "
#l Ð  # 5l œ9 = 1 1

then the set of spaces  form a multiresolution analysis, i.e., satisfyZ4

properties  from earlier.(a) - (f)

 Further, if define function  with Fourier transform:<ÐBÑ

< = = 1 9 =s sÐ Ñ œ / 7 Ð Î#  Ñ Ð Î#Ñ3 Î#
!

=                (17)

(here  is from (i) above), then7!

< <45
4Î# 4ÐBÑ œ # Ð# B  5Ñ.

form orthonormal basis for P#

 Next we'll construct some waveletsÒ Ó

2.  Additional remarks:

Note further that   has another interpretation without Fourier(17)
transform À

Recall the two scale equation:
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9 9ÐBÑ œ 2 ÐBÑÞ"
5

5 "5

Also then we have (see eq. (5)  ) that if

7 Ð Ñ œ / ß
2

#
!

5

5 35= "È =

then:

9 = = 9 =s sÐ Ñ œ 7 Ð Î#Ñ Ð Î#Ñ! .

Then we have from :Ð Ñ17

< = 9 =

9 =

9 =

s s/ 2 /
"

#

œ / 2 / /
"

#
s

œ 2 Ð"Ñ /
"

#
s

( ) =  ( /2)

  ( /2)

  ( /2)

3 # 35Ð Î# Ñ

5œ_

_

5

3 # 35 35 Î#

5œ_

_

5

5œ_

_

5
5 3Ð5 "Ñ Î#

= = 1

= 1 =

=

/

/

+

" È
" È

" È
Inverse Fourier transforming:

< Y < =

Y 9 =

9

9

ÐBÑ œ Ð Ð ÑÑs

œ 2 Ð"Ñ Ð/ Ñ
"

#
s

œ Ð"Ñ # Ð#B  Ð5  "ÑÑ
2

#

œ Ð"Ñ # # Ð#B  5ÑÑ
2

#

œ 2 Ð

"

5œ_

_

5
5 " 3Ð5"Ñ Î#

5œ_

_
5 5

5œ_

_
5" 5"

5œ_

_

5"

" È
" È
" È È È
"

=  ( /2)

"Ñ ÐBÑ

œ 1 ÐBÑ

5"
"5

5œ_

_

5 "5

9

9"
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where

1 œ 2 Ð"Ñ œ 2 Ð"Ñ œ 2 Ð"Ñ ß5 "5 "5 "5
5" 5" 5"standard form   

and (recall)  defined by25

9 9ÐBÑ œ 2 ÐBÑÞ"
5

5 "5

3.  Some comments on the scaling function:

Recall

9 = = 9 =s sÐ Ñ œ 7 Ð Î#Ñ Ð Î#Ñ!

from earlier.  This stated that the Fourier transform of  and its stretched9
version are related by some function , where  is a periodic7 Ð Î#Ñ 7! !=
function of period .#1

Lemma:  The Fourier transform of an integrable function is continuous.

Proof:  exercise

Assumption:  9ÐBÑ (the scaling function) is integrable (i.e., its absolute
value has a finite integral).

Fact:   Under our assumptions, it can be shown that '
_

_
.B ÐBÑ œ "9  

 [proof is an exercise]

Consequence:  A consequence of the above assumption is that the Fourier
transform  satisfies:9 =s Ð Ñ

9 9 9
1 1 1

sÐ!Ñ ´ .B ÐBÑ / œ .B ÐBÑ œ Þ
" " "

# # #È È È( (
_ _

_ _
3†!B

Now recall we had

9 = = 9 =s sÐ Ñ œ 7 Ð Î#Ñ Ð Î#Ñ! (18)

for some periodic function .  Replacing  by  above:7 Î#! = =
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9 = = 9 =s sÐ Î#Ñ œ 7 Ð Î%Ñ Ð Î%Ñà!

Plugging into :(18)

9 = = = 9 =s sÐ Ñ œ 7 Ð Î#Ñ7 Ð Î%Ñ Ð Î%ÑÞ! ! (19)

Now taking  and replacing  by , and then plugging into :(18) (19)= =Î%

9 = = = = 9 =s sÐ Ñ œ 7 Ð Î#Ñ7 Ð Î%Ñ7 Ð Î)Ñ Ð Î)ÑÞ! ! !

   
Continuing this way  times, we get:8

9 = = = = = 9 =s sÐ Ñ œ 7 Ð Î#Ñ7 Ð Î%Ñ7 Ð Î)Ñá7 Ð Î# Ñ Ð Î# ÑÞ! ! ! !
8 8

or:

9 = = 9 =s sÐ Ñ œ 7 Ð Î# Ñ Ð Î# Ñ $
4œ"

8

!
4 8

 Ê

9 =

9 =
=

sÐ Ñ

sÐ Î# Ñ
œ 7 Ð Î# ÑÞ

8
4œ"

8

!
4$ (20)

Now let    on both sides of equation.  Since  is continuous (above8 Ä _ s9
assumption), we get

9 = Ò 9
1

s sÐ Î# Ñ Ð!Ñ œ Þ
"

#

8
8 Ä _ È

Since the left side of  converges as   , the right side also(20) 8 Ä _
converges.  After letting    on both sides of 8 Ä _ (20):

9 =

9
=

sÐ Ñ

sÐ!Ñ
œ 7 Ð Î# Ñß$

4œ"

_

!
4

Ê
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9 = =
1

sÐ Ñ œ 7 Ð Î# ÑÞ
"

#È $
4œ"

_

!
4

Conclusion:   If we can find ), we can find the scaling function .7 Ð! = 9

4.  Examples of wavelet constructions using this technique:

Haar wavelets:  Recall that we chose the scaling function

9ÐBÑ œ
" ! Ÿ B  "
!œ if

otherwise ,

and then we defined spaces Z Þ4

From  we constructed the wavelet  whose translates and dilates form a9 <
basis for .P#

Such constructions can be made automatic if we use above observations.

Note first in Haar case:

9 =
1 1 1= = =

sÐ Ñ œ / .B œ  œ  
" " / " / "

# # #3 3 3È È È( º ” •
!

"
3 B

3 B 3

!

"
=

= =

œ  / 
# / /

# #3 #3È Œ 
1 =

3 Î#
3 Î# 3 Î#

=
= =

œ / Î#Þ
#

#È 1 =
=3 Î#= sin

For Haar wavelets we can find  from:7 Ð Ñ! =

9 = = 9 =s sÐ Ñ œ 7 Ð Î#Ñ Ð Î#Ñß!

so
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7 Ð Î#Ñ œ œ /
sÐ Ñ " Î#

sÐ Î#Ñ # Î%
!

3 Î%=
9 = =

9 = =
= sin

sin

œ /
" Ð# † Î%Ñ

# Î%
3 Î%= sin

sin
=

=
 

œ /
" # Î% Î%

# Î%
3 Î%= sin cos

sin
= =

=

 
  

œ / # Î%
"

#
3 Î%= cos  =

œ / Î%Þ3 Î%= cos  =

Recall wavelet Fourier transform is:

(4) < = = 1 9 =s sÐ Ñ œ / 7 Ð Î#  Ñ Ð Î#Ñ3 Î#
!

=

In this case

< = = 1 =
1 =

sÐ Ñ œ / / Ð Î%  Î#Ñ / Î%Þ
%

#

3 Î# 3Ð Î% Î#Ñ 3 Î%= = 1 =cos sin È
[using

cos  + cos  cos   sin  sin  sin ]Ð Î% Î#Ñ œ Î% Î#  Î% Î# œ  Î%= 1 = 1 = 1 =

œ  / Ð Î%Ñ
%3

#È 1 =
=3 Î#= sin2

Can check (below) this indeed is Fourier transform of usual Haar wavelet ,<
except the complex conjugate (which means the original wavelet is reflected
about , i.e., translated and negated, which still yields a basis for ).! [!

To check this, recall Haar wavelet:

<ÐBÑ œ
" ! Ÿ B  "Î#
 " "Î# Ÿ B  "œ if

if
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Thus:

< = <
1

sÐ Ñ œ ÐBÑ / .B
"

#È (
_

_
3 B=

                œ  ÐBÑ / .B
"

#È Œ ( (
1

<
! "Î#

"Î# "
3 B=

                    œ / .B  / .B
" "

# #È È( (
1 1! "Î#

"Î# "
3 B 3 B= =

                            œ     
" / " " / /

# #3 3 3 3È ÈŠ ‹ Š ‹
1 1= = = =

3 Î# 3 3 Î#= = =

œ  
#/ /  "

# 3 # 3

3 Î# 3= =

È È1 = 1 =

                                   œ  /  /
# Ð/  / Ñ

# 3 #È Œ 
1 =

3 Î# 3 Î#
3 Î# 3 Î#

= =
= =

              œ  /  / Î#
#

# 3È Œ 
1 =

=3 Î# 3 Î#= = cos

              œ  /  / # † Î%
#

# 3È Š ‹
1 =

=3 Î# 3 Î#= = cos

     [using cos  sin ]#B œ "  # B2

                        œ  /  / Ð"  # Î%Ñ
#

# 3È Š ‹
1 =

=3 Î# 3 Î# #= = sin

œ / Î%
 %

# 3È Š ‹
1 =

=3 Î# #= sin
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              œ / Î%
%3

#È Š ‹
1 =

=3 Î# #= sin
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5.   Constructing Wavelets

1.  Meyer wavelets:  another example -

Scaling function:

9 =
1

= 1

/ = 1 = 1sÐ Ñ œ
"

#

" l l Ÿ # Î$

l l  " # Î$ Ÿ l l Ÿ % Î$

!
È

Ú
ÛÜ  ‘ˆ ‰    if    

   if    
  otherwise

.cos 1
1#
$

2

 [error in Daubechies  instead of  inside ]À $Î% $Î#1 1 /

where  is any infinitely differentiable non-negative function satisfying/

/
/

ÐBÑ œ
! B Ÿ !
" B   "

! " B ! "

Ú
ÛÜ

    if  
if  

smooth transition in  from  to  as  goes from  to 

and

/ /ÐBÑ  Ð"  BÑ œ ".

  
fig 33:   and / /ÐBÑ Ð"  BÑ
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 fig 34:  Fourier transform  of the Meyer scaling function9 =sÐ Ñ

Need to verify necessary properties for a scaling function:
(i)

"
5

#l Ð  # 5Ñl œs "

#
9 = 1

1
Ð Ñ21

To see this, consider the two possible ranges of values of  :=

(a)   for some   In that case (see diagram above):l  # 5 l Ÿ # Î$ 5 Þ= 1 1" "

9 = 1 9 = 1
1

s sÐ  # 5 Ñ œ à Ð  # 5Ñ œ ! 5 Á 5
"

#
" "È    if 

since if , then  for .  Thus l  # 5 l Ÿ # Î$ l  # 5l   % Î$ 5 Á 5= 1 1 = 1 1" " (21)
holds because there is only one non-zero term in that sum.

(b)   for some .  In this case we also have# Î$ Ÿ  # 5 Ÿ % Î$ 51 = 1 1" "

 % Î$ Ÿ  # 5  "Ñ Ÿ  # Î$Þ1 = 1 1( "

Also, for all values  or , can calculate that5 Á 5 5  "" "

# 5 Â Ò% Î$ß % Î$Óß1 1 1

so

9 = 1sÐ  # 5Ñ œ !Þ

So sum has only two non-zero terms:
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     # l Ð  # 5Ñl œ # l Ð  # 5 Ñl  l Ð  # Ð5  "Ñl Þs s s

œ l  # 5 l  "  l  # Ð5  "Ñl  "
# # # #

$ $

œ 
# #

$

1 9 = 1 1 9 = 1 9 = 1

1 1
/ = 1 / = 1

1 1

1
/ =

1

" Š ‹
” • ” •Œ  Œ 
” •Œ 

5

# # #
" "

# #
" "

#

cos cos

cos $5  "    # Ð5  "Ñ  "
# #

$

œ  $5  "    $5  #
# # # #

$ $

œ  $5  "  "  "  
# # # #

$ $

" "
#

# #
" "

# #
"

cos

cos cos

cos cos

” •Œ a ba b
” • ” •Œ  Œ 
” • ” •Œ  Œ Œ Œ 

1
/ = 1

1

1 1
/ = / =

1 1

1 1
/ = /

1 1
=

1 1 1
/ = / =

1 1

1 1
/ = / =

1 1

 $5  #

œ  $5  "    $5  "
# # # # #

$ $

œ  $5  "   $5  "
# # # #

$ $

œ "

"

# #
" "

# #
" "

cos cos

cos sin

” • ” •Œ  Œ 
” • ” •Œ  Œ 

Note that above , since quantity inl  # Ð5  "Ñl œ   # Ð5  "Ñ= 1 = 1" "a b
parentheses always negative for our range of  .  In next to last equality have=
used cos sinˆ ‰1

#  B œ BÞ

Note since cases   cover all possibilities for   (since they cover a(a) (b), =
range of size  for ), we are finished proving .#  # 51 = 1 " (21)

Also need to verify:

(ii)

9 = = 9 =s sÐ Ñ œ 7 Ð Î#Ñ Ð Î#Ñ!

for some -periodic  .  Indeed, looking at pictures:# 7 Ð Î#Ñ1 =!
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fig 35:   and    (----)9 = 9 =s sÐ Ñ Ð Î#Ñ

ratio of these two looks like:

   
fig. 36:   in the interval 9 = 9 = 1 9 = 1 1Ð ÑÎ Ð Î#Ñ œ # Ð Ñ Ò# ß # ÓÞs s sÈ

Note since ratio  in , we can define9 = 9 = 1 9 = 1 1s s sÐ ÑÎ Ð Î#Ñ œ # Ð Ñ Ò# ß # ÓÈ
7 Ð Î#Ñ œ œ # Ð Ñ

sÐ Ñ

sÐ Î#Ñ
s

! = 1 9 =
9 =

9 =
È Ð Ñ22

if = 1 1− Ò# ß # ÓÞ

Definition ambiguous when numerator and denominator are 0.

Definition also ambiguous for ,  since numerator and= 1 1Â Ò# # Ó
denominator both .  So define  by periodic extension of above for! 7 Ð Î#Ñ! =
all real .=

How to do that?  Just add all possible translates of the bump   to make it9 =sÐ Ñ
4 -periodic:1
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7 Ð Î#Ñ œ # Ð  % 5ÑÞs
!

5

= 1 9 = 1È "
Check:

7 Ð Î#Ñ Ð Î#Ñ œ # Ð  % 5Ñ Ð Î#Ñs s s
!

5

= 9 = 1 9 = 1 9 =È "

œ # Ð Ñ Ð Î#Ñs sÈ 1 9 = 9 =

œ Ð Ñs9 =

where we have used the fact that (  has no overlap with (  if9 = 1 9 =s s % 5Ñ Î#Ñ
5 Á !Þ

 [So we expect a full MRA.]

2.  Construction of the Meyer wavelet

 Standard construction:

< = = 1 9 =s sÐ Ñ œ / 7 Ð Î#  Ñ Ð Î#Ñ3 Î#
!

=

œ / Ð  # Ð#5  "ÑÑ Ð Î#Ñs s3 Î#

5

= "9 = 1 9 =

œ / Ð  # Ñ  Ð  # Ñ Ð Î#Ñs s s3 Î#= ’ “9 = 1 9 = 1 9 =

[supports of 2d and 3d factors do not overlap for other values of ; note5

9 9 9s s sœ  since  is real]
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fig 37:   and     (dashed) 9 = 1 9 = 1 9 =s s sÐ  # Ñ  Ð  # Ñ Ð Î#Ñ

 

fig 38:  ’ “9 = 1 9 = 1 9 =s s sÐ  # Ñ  Ð  # Ñ Ð Î#Ñ

Thus have 2 distinct regions:

(a)  For  we see in diagram that# Î$ Ÿ Ÿ % Î$1 = 1
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/ Ð Ñ œ # Ð  # Ñ  Ð  # Ñ Ð Î#Ñs s s s

œ Ð  # Ñs

œ l  # l  "
" $

# # #

œ  Ð  # Ñ  "
" $

# # #

œ   #
" $

# # #

œ
"

3 Î#= < = 1 9 = 1 9 = 1 9 =

9 = 1

1

1
/ = 1

1

1

1
/ = 1

1

1

1
/ =

1

È ’ “

È ” •Œ 
È ” •Œ 
È ” •Œ 
È

cos

cos

cos

# # #
"  "    #

$

œ "   "
" $

# # #

œ  "
" $

# # #

1

1
/ =

1

1

1
/ =

1

1

1
/ =

1

cos

cos

sin

” •” •Œ Œ 
È ” •” •Œ 
È ” •Œ 

So by symmetry same is true in , so replace  by # Î$ Ÿ Ÿ  % Î$ l l1 = 1 = =
above to get:

/ Ð Ñ œ l l  " # Î$ Ÿ l l Ÿ % Î$s " $

# # #
3 Î#= < = / = 1 = 1

1

1

1È ” •Œ sin     for     

(b) For , we see from diagram (note% Î$ Ÿ Ÿ ) Î$1 = 1
# Î$ Ÿ Î# Ÿ % Î$Ñ1 = 1 :

/ Ð Ñ œ # Ð  # Ñ  Ð  # Ñ Ð Î#Ñs s s s

œ Ð Î#Ñs

œ Î#  "
" $

# # #

œ  "
" $

# # %

3 Î#= < = 1 9 = 1 9 = 1 9 =

9 =

1

1
/ =

1

1

1
/ =

1

È ’ “

È ” •Œ 
È ” •Œ 

cos

cos
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Again by symmetry same is true in , so replace  by) Î$ Ÿ Ÿ  % Î$1 = 1 =
l l= :

/ Ð Ñ œ l l  " % Î$ Ÿ l l Ÿ ) Î$s " $

# # %
3 Î#= < = / = 1 = 1

1

1

1È ” •Œ cos     for     

Thus:

< =
1

/ = 1 = 1

/ = 1 = 1sÐ Ñ œ
"

#

/ Ð l l  " # Î$ Ÿ l l Ÿ % Î$

/ Ð l l  "Ñ % Î$ Ÿ l l Ÿ ) Î$

!
È

ÚÝÛÝÜ
 ‘ ‘

3 Î#
# #

$

3 Î#
# %

$

= 1
1

= 1
1

sin
cos

,   if   
 ,  if  

    otherwise

 
Fig. 39:  The wavelet Fourier transform l Ð Ñls< =

Fig. 40:  The Meyer wavelet <ÐBÑ

3. Properties of the Meyer wavelet
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Note: If  is chosen as above and has all derivatives  at , can check/ 1! Î#

that  is:< =sÐ Ñ

ì infinitely differentiable (since it is a composition of infinitely
differentiable functions , and one can check that all derivatives are  fromÑ !
both sides at the break For example, the derivatives coming in from the leftÞ
at  are:= œ #

$
1

.

.
sÐ Ñ œ !

8

8


œ=
< = º

= #
$
1

and similarly

.

.
sÐ Ñ œ !

8

8
œ=

< =+ º
= #

$
1

(proof in exercises).

ì supported (non-zero) on a finite interval

Lemma:
(a)  If a function  has  derivatives which are integrable, then the<ÐBÑ 8
Fourier transform satisfies

l Ð Ñl Ÿ OÐ"  l lÑ Þs< = = 8 Ð Ñ23

Conversely, if  holds, then  has at least  derivatives.(23) <ÐBÑ 8  #

(b)  Equivalently, if  has  integrable derivatives, then< =sÐ Ñ 8

l ÐBÑl Ÿ OÐ"  lBlÑ< 8 Ð Ñ24

Conversely, if  holds, then  has at least  derivatives.(24) < =sÐ Ñ 8  #

Proof:  in exercises.

Thus:  <ÐBÑ

ì  Decays at  faster than any inverse power of _ B
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ì  Is infinitely differentiable

Claim:

< <45
4Î# 4ÐBÑ œ # Ð# B  5Ñ

form an orthonormal basis for .P Ð Ñ# ‘

ì Check (only to verify above results - we already know this to be true from
our theory):

( (
_ _

_ _
# #l ÐBÑl .B œ l Ð Ñl . œ "s< < = =

 Pf:

( ( ” •Œ 
( ” •Œ  

_

_ Ÿ Ÿ

# #

Ÿ Ÿ

#

l Ð Ñl . œ . l l  "s " $

# # #

 . l l  "
# %

$

< = = = / =
1 1

1

= / =
1

1

 
# %
$ $

% )
$ $

1 1

1 1

| |

| |

=

=

sin

cos

[getting rid of the | | and doubling; changing vars. in second integral]†

œ .  "
" $

# #1 1
= / =

1( ” •Œ 
# %
$ $
1 1Ÿ Ÿ

#

=

 sin

 # .  "
# #

$( ” •Œ  2 41 1
$ $Ÿ Ÿ

#

=

= / =
1

1
cos

œ .  "  #  "
" $ $

# # # #1 1 1
= / = / =

1 1 ( œ ” • ” •Œ  Œ 
# %
$ $
1 1Ÿ Ÿ

# #

=

sin cos

œ . "   "
" $

# #1 1
= / =

1 ( œ ” •Œ 
# %
$ $
1 1Ÿ Ÿ

#

=

cos



77

[letting ]= œ  " Ê œ # Î$Ð=  "Ñ$
#1= = 1

œ .= "  Ð=Ñ
#

$ # ( Š ‹’ “
!

"
#cos  

1
/

œ .= "  Ð=Ñ  .= "  Ð=Ñ Ñ
#

$ # # ( (Š ‹ Š ‹’ “ ’ “
! "Î#

"Î# "
# #cos cos
1 1
/ /

œ .= "  Ð=Ñ  .= "  Ð=  "Î#Ñ
#

$ # # ( (Š ‹ Š ‹’ “ ’ “
! !

"Î# "Î#
# #cos cos
1 1
/ /

[using ( ]/ /=  "Î#Ñ œ "  Ð"Î#  =Ñ

œ .= "  Ð=Ñ  .= "  Ð"  Ð"Î#  =ÑÑ
#

$ # # ( (Š ‹ Š ‹’ “ ’ “
! !

"Î# "Î#
# #cos cos
1 1
/ /

œ .= "  Ð=Ñ  .= "  Ð"Î#  =Ñ
#

$ # # ( (Š ‹ Š ‹’ “ ’ “
! !

"Î# "Î#
# #cos sin
1 1
/ /

œ .= "  Ð=Ñ  .= "  Ð=Ñ
#

$ # #

=Ä"Î#=  ( (Š ‹ Š ‹’ “ ’ “
! !

"Î# "Î#
# #cos sin
1 1
/ /

œ .=Ð#  "Ñ œ "
#

$ (
!

"Î#

ì  To show in another way that they form an orthonormal basis, sufficient to
show that for arbitrary ,0 − P Ð Ñ# ‘

"   ¡ (
4ß5

_

45
# #

_

_

l ß 0 l œ l0ÐBÑl .B<

[this is a basic analytic theorem].
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Now note:

" "  ¡ º º(
4ß5 4ß5

_ _

45 45
#

#

l ß 0 l œ .B ÐBÑ0ÐBÑ.B< <

œ . 0Ð Ñ Ð Ñ Þs s"º º(
4ß5

_

45

#

= = < =

Note if
< <45

4Î# 4ÐBÑ œ # Ð# B  5ÑÞ
Then as usual:

< = < =s sÐ Ñ œ # Ð# Ñ / Þ45
4Î# 4 3# 54 =

Plug this in above and can do calculation to show (we won't do the
calculation):

"   ¡ (
4ß5

_

45
# #

_

_

l 0 ß l œ .B l0ÐBÑl ß<

as desired.

CONCLUSION:
 The wavelets

< <45
4Î# 4ÐBÑ ´ # B  5Ñ(2

form an orthonormal basis for the square integrable functions on the real
line.

4.  Daubechies wavelets:

Recall that one way we have defined wavelets is by starting with the scaling
(pixel) function .  Recall it satisfies:9sÐBÑ

9 = = 9 =s sÐ Ñ œ 7 Ð Î#Ñ Ð Î#Ñ!
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for all , where   is some periodic function.  If we use  as the= =7 Ð Ñ 7! !

starting point, recall we can write

9 = =
1

sÐ Ñ œ 7 Ð Î# ÑÞ
"

#È $
4œ"

_

!
4 (25)

Recall  is periodic, and so has Fourier series:7!

7 Ð Ñ œ + /! 5

5

35= " = .

If  satisfies ,  then it is a candidate for7 l7 Ð Ñl  l7 Ð  Ñl œ "! ! !
# #= = 1

construction of wavelets and scaling functions.

For Haar wavelets, recall  so we could plug into 7 Ð Ñ œ / Î#ß!
3 Î#= == cos (25)

to get , and then use previous formulas to get wavelet 9 <s ÐBÑÞ

If we  with a function , when does  lead to a genuinestart 7 Ð Ñ! = Ð Ñ25
wavelet?  Check conditions:
(1)

9 = =
1

sÐ Ñ œ 7 Ð # Ñ
"

#È $
4œ"

_

!
4/

œ 7 Ð Î#Ñ 7 Ð # Ñ
"

#È $
1

= =! !

4 #

_
4

=
/

œ 7 Ð Î#Ñ 7 Ð # Ñ
"

#
! !

"

_
4"= =

1È $
j=

/

œ 7 Ð Î#Ñ Ð Î#Ñs
! = 9 = (26)

Recall this implies that  whereZ § Z4 4"

Z œ + ÐBÑ l+ l  _4 5 45 5

5œ_ 5

_
# Ÿ" "º9

(usual definition) with 9 945
4Î# 4ÐBÑ œ # Ð# B  5Ñ
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(2)  The second condition we need to check is that translates of 9
orthonormal, i.e.,

"
5

#l Ð  # 5Ñl œ Þs "

#
9 = 1

1

If

7 Ð Ñ œ œ + / œ! 5

5œR

R
3 5= finite Fourier series trigonometric polynomial" =

there is a simple condition which guarantees condition (2) holds.

Theorem (Cohen, 1990):  If the trigonometric polynomial   satisfies7!

7 Ð!Ñ œ "!  and

l7 Ð Ñl  l7 Ð  Ñl œ "! !
# #= = 1 (27)

(our standard condition on , and also 0 for , then7 Ñ 7 Ð Ñ Á l l Ÿ Î$! ! = = 1
condition  above is satisfied by(2)

9 = =
1

sÐ Ñ œ 7 Ð Î# Ñ
"

#È $
4œ"

_

!
4

Proof:  Daubechies, Chapter 6.

Since condition  is also automatically satisfied, this means  is a scaling(1) 9
function which will lead to a full orthonormal basis using our algorithm for
constructing wavelets.

Another choice of  is:7!

   7 Ð Ñ œ ÒÐ"  $Ñ  Ð$  $Ñ/  Ð$  $Ñ/  Ð"  $Ñ / Ó
"

)
!

3 #3 $3= È È È È= = =

(Fourier series with finite number of terms).
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-2 -1 1 2

-1.5

-1

-0.5

0.5

1

1.5

2

   
Fig 41:  Real (symmetric) and imaginary (antisymmetric) parts of 7 Ð Ñ! =

To check Cohen's theorem satisfied:

(i)   Equation (27) satisfied (see exercises).

(ii)  If Re  Im ,7 Ð Ñ œ 7 Ð Ñ  3 7 Ð Ñ! ! != = =

l7 Ð Ñl œ l 7 Ð Ñl  l 7 Ð Ñl Á !! ! !
# # #= = =Re Im

for , as can be seen from graph above.l l Ÿ Î$= 1

 So: conditions of Cohen's theorem are satisfied.

In this case if we define scaling function  by computing infinite product9
(25) (perhaps numerically), and then use our standard procedure to construct
wavelet , we get:<ÐBÑ

0.5 1 1.5 2 2.5 3
t

-0.25

0.25

0.5

0.75

1

1.25

phi(t)
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-1 -0.5 0.5 1 1.5 2
t

-1

-0.5

0.5

1

1.5

psi_2(t)

  
fig 42: pictures of  and 9 <

Note meaning of : In terms of the original wavelet, this states7!

9 9 9ÐBÑ œ ÒÐ"  $Ñ Ð#BÑ  Ð$  $Ñ Ð#B  "Ñ"
%

È È
 Ð$  $Ñ Ð#B  #Ñ  Ð"  $Ñ Ð#B  $ÑÓÈ È9 9

     
(see  above).  Note this equation gives the information we need on ,(26) 9
since it determines 7 Ð ÑÞ! =
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6.   Examples, applications

1.  Other examples
Note again it is possible to get other wavelets this way:  If we demand

9 9 9 9ÐBÑ œ Þ##' Ð#BÑ  Þ)&% Ð#B  "Ñ  "Þ#% Ð#B  #Ñ

 Þ"*' Ð#B  $Ñ  "Þ%$% Ð#B  %Ñ  Þ!%' Ð#B  &Ñ9 9 9

 Þ""! Ð#B  'Ñ  Þ!!) Ð#B  (Ñ  Þ!") Ð#B  )Ñ9 9 9

 Þ!!% Ð#B  *Ñ9 (28)

  
Then this results with an 7 Ð Ñ! =

7 Ð Ñ œ Þ""$  Þ%#( /  Þ&"# /  Þ!*)/ á  Þ!!#/ Þ!
3 #3 $ *3= = = = =  

-2 -1 1 2

-4

-2

2

4

   
Fig 43:  Real (symmetric) and imaginary parts of ; note condition  of7! (ii)

Cohen's theorem is satisfied. 

Can check it satisfies condition (ii) of Cohen's theorem and resulting  is9
obtained:

9 = =sÐ Ñ œ 7 Ð Î# Ñ$
4œ"

_

!
4 .
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It satisfies required properties  -  of a multiresolution analysis.(a) (f)
Corresponding scaling function  and wavelet  are below5 59 <ÐBÑ ÐBÑ

   

   
Fig 44:  Scaling function and wavelet for the above  choice9

NOTE:  Can show that if there is a finite number of terms on the right side
of , then corresponding wavelet and scaling function are compactly(28)
supported.

2.  Numerical uses of wavelets
 Note that once we have an orthonormal wavelet basis , can writeÖ ×<45

any function:

0ÐBÑ œ + ÐBÑß"
4ß5

45 45<

with .  Numerically, can find  using numerical+ œ Ð0ß Ñ + œ Ø ß 0Ù45 45 45 45< <
integration to evaluate inner productÞ

With Daubechies and other wavelets, there are no closed form for the
wavelets, so above integrations must be performed on the computer.
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But there are very efficient methods of doing this: in order to get theall 
wavelets  into the computer, we just need to input one - all others are<45

rescalings and translations of the original one.

There are efficient algorithms to get coefficients ; more details in+45

Daubechies' book.

3. SOME GENERAL PROPERTIES OF ORTHONORMAL
WAVELET BASES:

Theorem:   If  the basic wavelet      has exponential decay, then   < <ÐBÑ
cannot be infinitely differentiable.

(in particular, if      has compact support, then      cannot be infinitely< <
differentiable).

 Proof:  Daubechies, Chapter 5.

Compactly Supported Wavelets:

So far we are able to get wavelets

< <45
4Î# 4ÐBÑ œ # Ð# B  5Ñ

which form an orthonormal basis for   Note Haar wavelets had compactP Þ#

support.  When will wavelets be compactly supported in general?

Recall we assume that given basic scale space ,  that we have scalingZ!

(pixel) function  such that   form basis for   .9 9Ö ÐB  5Ñ× Z5 !

Recall

ì   ,Z § Z! "

ì        9 9ÐBÑ − Z Ê ÐBÑ − Z! "

ì  È# Ð#BÑ − Z9 "

ì    form a basis for Ö # Ð#B  5Ñ× ZÈ 9 5œ"
_

"



86

Recall since , we have for some choice of :   9ÐBÑ − Z 2" 5

9 9ÐBÑ œ 2 # Ð#B  5Ñ" È
!

_

5 .

Constants   relate the space     to   .2 Z Z5 ! "

We will see that:

Theorem:

finitely many   ,   have compact support.2 Á ! Í5 < 9

Proof:
 :  Assume  has compact support.  Then note since É # Ð#B  jÑ9 9È
are orthonormal,

2 œ # Ð#B  jÑ ÐBÑ.Bj ( È 9 9

œ ! j Àfor all but a finite number of  

   

fig 45 Note integral of product  for all but finite number of À 2 œ œ ! j6

To prove :  (rough sketch only)Ê

Assume that  are  for all but a finite number of .  Then need to show2 ! 55

9ÐBÑ has compact support.
 Strategy of proof:  look at 9 =sÐ ÑÞ

 Recall we defined
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7 Ð Ñ œ /
2

#
!

5

5 35= " È =

Recall:

9 = =
1

sÐ Ñ œ 7 Ð# Ñ
"

#È $
4œ"

_

!
4 .

ì  From this show that ( ) extends to an analytic function of  in whole9 = =s

complex plane satisfying:  

l Ð Ñl Ÿ GÐ"  l lÑ /s9 = = Q Rl lIm=

for constants  and Q RÞ

ì   This implies by Paley-Wiener type theorems that  is9 9ÐBÑ œ J Ð Ñs"

compactly supported. 

4.  GENERIC PRESCRIPTION FOR COMPACTLY SUPPORTED
WAVELETS:

ì  Start with finite sequence of numbers (define how  will be related2 Z5 !

to )Z"

ì  Construct

7 Ð Ñ œ /
2

#
!

5

5 35= " È =

check that it satisfies Cohen's theorem conditions À

l7 Ð Ñl Á ! l l Ÿ Î$Þ! = = 1 for 

and

l7 Ð Ñl  l7 Ð  Ñl œ "Þ! !
# #= = 1

ì  Construct   
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"

#
7 Ð# Ñ œ Ð ÑsÈ $

1
= 9 =

4œ"

_

!
4

ì  Construct Fourier transform of wavelet by:

< = = 1 9 =s sÐ Ñ ´ / 7 Ð Î#  Ñ Ð Î#Ñ3 Î#
!

= ,

ì  Take inverse Fourier transform to get wavelet<ÐBÑ œ

5.  SOME FURTHER PROPERTIES OF WAVELET EXPANSIONS

QUESTION:  Do wavelet expansions actually converge to the function
being expanded at individual points  ?B

Assume that scaling function  is bounded by an integrable decreasing9
function.  Then:

Theorem:  If  is a square integrable function, then the wavelet expansion0
of    0

0ÐBÑ œ + ÐBÑ"
4ß5

_

45 45<

converges to the function  almost everywhere (i.e., except on a set of0
measure ).!

QUESTION:  How fast do wavelet expansions converge to the function ?0

ANSWER:  That depends on how “regular" the wavelet  is.  More<
particularly it depends exactly on the Fourier transform of :<

Theorem:   In  dimensions, the wavelet expansion     .

0ÐBÑ œ + ÐBÑ"
4ß5

45 45<

converges to a smooth  in such a way that the partial sum    0
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"
4ŸRß5

45 45+ ÐBÑ<

differs from  at each  by at most , iff  0ÐBÑ B G † #R=

( l Ð Ñl l l .  _s< = = =# #=. .

6.  CONTINUOUS WAVELET TRANSFORMS

Consider a function  (i.e.,  is square integrable), such that < < <ÐBÑ − P ÐBÑ#

decays fast enough at  (faster than ), and such that_ "ÎB#

(
_

_

<ÐBÑ .B œ !.

Then we can define an integral wavelet expansion (integrals instead of sums)
using re-scalings of   :<ÐBÑ

Define rescaled functions

< <+ß,
"Î#ÐBÑ ´ l+l Ð+ÐB  ,ÑÑ.

    [note  in definition of Daubechies]+ Ä "Î+

Here .  Thus  measures how much  has been stretched (dilation+ß , − +‘ <
parameter), and  measures how much  has been moved to the right, <
(translation parameter).

New point: dilation parameter  and translation parameter  can take on any+ ,
real value.

Now define wavelet expansions in this case (analogous to Fourier transform
-- called wavelet transform): given , we define the transform0 − P Ð Ñ# ‘
(assuming that  is real)<
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Ð[0ÑÐ+ ,Ñ œ .B 0ÐBÑ l+l Ð+ÐB  ,ÑÑ, ( "Î#<

œ .B 0ÐBÑ ÐBÑ( <+ß,    

œ ß 0Ù <+ß,

How to recover  from ?0 Ð[0ÑÐ+ß ,Ñ

Claim:

0ÐBÑ œ G .+ ., Ð[0ÑÐ+ß ,Ñ ÐBÑ( (
_ _

_ _

+ß,<

where

G œ # . l l l Ð Ñl Þs" " #1 = = < =(
Pf. of claim (sketch; details in Daubechies, Ch. 2):

We will show that for any ,1ÐBÑ − P#

  ¡   ¡( (1ÐBÑß 0ÐBÑ œ 1ÐBÑß G .+ ., Ð[0ÑÐ+ß ,Ñ ÐBÑ
_ _

_ _

+ß,<

To see this, note that

  ¡ (1ÐBÑß 0ÐBÑ œ 1ÐBÑ 0ÐBÑ .B
_

_

    

œ . 1 Ð Ñ 0Ð Ñs s(
_

_

= = =

[use “Plancherel Theorem” for wavelet transforms]

œ G .+ ., Ð[1ÑÐ+ß ,ÑÐ[0ÑÐ+ß ,Ñ( (
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œ G .+ ., Ø1ÐBÑß ÐBÑÙÐ[0ÑÐ+ß ,ÑÐBÑ( ( <+ß,

œ 1ÐBÑß G .+ ., Ð[0ÑÐ+ß ,Ñ ÐBÑ ß¤ ¥( (  <+ß,

as desired, completing the proof.

Thus we know how to recover  from (analogous to0ÐBÑ [0Ð+ß ,Ñ

recovering  from  in Fourier transform).0ÐBÑ 0Ð Ñs =

QUESTION: What sorts of functions are ?   For some choices ofÐ[0ÑÐ+ß ,Ñ
<, these are spaces of analytic functions.

7.  Convolutions:

Definition:  The convolution of two functions  and  is defined to be0ÐBÑ 1ÐBÑ

0ÐBÑ‡1ÐBÑ ´ 0ÐB  CÑ1ÐCÑ.CÞ(
_

_

Theorem 2:  The convolution is commutative:  0‡1 œ 1‡0
 Exercise.Proof:  

Theorem 3:  The Fourier transform of a convolution is a product.
Specifically,

Y 1 = =Ð0ÐBÑ‡1ÐBÑÑ œ # 0Ð Ñ1Ð Ñs sÈ
 Proof:  Exercise.

Lemma 4:   For any function , 0 Ð0ÐBÑÑ œ 0Ð ÑsY =
 Exercise.Proof:  

8.  APPLICATION OF INTEGRAL  WAVELET TRANSFORM:
IMAGE RECONSTRUCTION (S. Mallat)
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Dyadic wavelet transform: a variation on continuous wavelet transform.

Now define new dilation only by powers of 2; arbitrary translations:

< <4ß,
4 4ÐBÑ œ # Ð# ÐB  ,ÑÑ

Define

< <4
4 4ÐBÑ œ # Ð# BÑ.

(Still allow  to take all values, but restrict .), − + œ #‘ 4

Define this dyadic (partially discrete) wavelet transform by:

Ð[0ÑÐ4ß ,Ñ œ 0ÐBÑ ÐBÑ .B( <4ß,

i.e., usual set of wavelet coefficients, except that  is continuous.,

Note:

Ð[0ÑÐ4ß ,Ñ œ 0ÐBÑ ÐBÑ .B( <4ß,     

œ .B 0ÐBÑ # Ð# ÐB  ,ÑÑ( 4 4<    

œ .B 0ÐBÑ ÐB  ,Ñ( <4

œ Ð0‡ ÑÐ,Ñ<4

(a convolution) where as above

< < <4
4 4 4ÐBÑ œ # Ð# BÑ œ # shrinking of  by a factor .

New assumption: Fourier transform ( ) satisfies< =s

"
4œ_

_
4 #l Ð# Ñl œs "

#
< =

1
.
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Now: given , consider dyadic wavelet transform;  only:0ÐBÑ + œ #4

Can show under our assumptions that can recover  in this case too:0
Recovery formula for  is:  0

0ÐBÑ œ Ð[0ÑÐ4ß BÑ‡ ÐBÑ"
4œ_

_

4<

(convolution in variable ).  It is easy to check that this is correct:  if B Y
denotes Fourier transform:

Y < Y < <   " "
4œ_ 4œ_

_ _

4 4 4Ð[0ÑÐ4ß BÑ‡ ÐBÑ œ 0ÐBÑ‡ ÐBÑ‡ ÐBÑ

œ 0ÐBÑ‡ ÐBÑ‡ ÐBÑ" a b
4œ_

_

4 4Y < <

œ # 0Ð Ñ Ð Ñ Ð Ñs s s1 = < = < ="
4œ_

_

4 4

œ # 0Ð Ñ Ð# Ñ Ð# Ñs s s1 = < = < ="
4œ_

_
4 4 .  

œ # 0Ð Ñl Ð# Ñls s1 = < ="
4œ_

_
4 #   

œ 0Ð Ñ # l Ð# Ñls s= 1 < ="
4œ_

_
4 #    

œ 0Ð Ñs = .

QUESTION: Given , what sort of function is the wavelet transform0ÐBÑ
Ð[0ÑÐ4ß ,Ñ 4 ,, as a function of  and ?
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Let  the collection of possible functions  collection ofZ œ Ð[0ÑÐ4ß ,Ñ œ
possible wavelet transforms.  When is an arbitrary function  a wavelet1Ð4ß ,Ñ
transform?

Can check that  must satisfy a so-called reproducing kernel equation:1
1Ð4ß ,Ñ is the wavelet transform of some function iff

1Ð4ß ,Ñ œ ÐO1ÑÐ4ß ,Ñ ´ Ð,Ñ‡ Ð  ,Ñ‡1Ðjß ,Ñ   "
jœ_

_

4 j< <

[this equation defines  ; note convolution is in .]O1 ,

Back to recovering  from wavelet transform:0

Thus we can recover  as a sum of  at different scales:  0 0

0 œ Ð[0ÑÐ4ß BÑ‡ Ð  BÑ"
4œ_

_

4< .

Since    is a known function, we can recover   from the sequence of< 0
functions.  Assume  is a cubic B-spline:+ÐBÑ

Fig.  46:  A cubic B-spline is a symmetric compactly supported piecewise cubic+ÐBÑ
polynomial function whose transition points are twice continuously differentiable
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Now let the wavelet be its first derivative:  <ÐBÑ œ +ÐBÑ.
.B

Fig 47:  is the wavelet<ÐBÑ œ +ÐBÑ.
.B

Using the wavelet <ÐBÑ À

  Ð[0ÑÐ  #ß BÑ
  Ð[0ÑÐ  "ß BÑ
  Ð[0ÑÐ!ß BÑ
  Ð[0ÑÐ"ß BÑ
  Ð[0ÑÐ#ß BÑ
      Ð[0ÑÐ$ß BÑ
    
To see that these pieces of  represent  at different scales, look at example:0 0

   



96

  

    
So: one can recover  from knowing the functions0

Ð[0ÑÐ4ß BÑ.

This is a lot of functions.  What advantage of storing  in such a large0
number of functions?  We can compress the data.

CONJECTURE:  We can recover  not from knowing all of the functions0
[Ð4ß BÑ, but just from knowing their maxima and minima.

Meyer has proved this conjecture false strictly speaking certain choices of <
(including the above derivative  of the cubic spline).  It has been proved<ÐBÑ
true for another choice, the derivative of a Gaussian.

<ÐBÑ œ /
.

.B
B#

However, for either choice of  numerically it is possible to recover < 0ÐBÑ
from knowing only the maxima and minima of the functions [Ð4ß BÑÞ

Numerical method:
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Assume that we are given only the maxima and minima points of the
function  for each .  How to recover ?[Ð4ß BÑ 4 0

Given , first take its wavelet transform; get .  Define0 [Ð4ß BÑ

> œ 1Ð4ß BÑ set of all functions  which have the same set of maxima and
minima (in ) as  for each .B [Ð4ß BÑ 4

Z œ 1Ð4ß BÑ B set of all  which are wavelet transforms of some function of .

Idea is: the true wavelet transform  of our given function  is[0Ð4ß BÑ 0ÐBÑ
in   (i.e. has the same maxima as itself) and is in  (i.e., in the collection> Z
of functions which are wavelet transforms).

Thus

[0 −  Z> .

intuitive picture:

   
fig 48

Thus if we know just the maxima of  , we can try to find [0Ð4ß BÑ [0Ð4ß BÑ

That is:

1. We know maxima of , so[0Ð4ß BÑ
2. know  all functions with same maxima as > œ [0Ð4ß BÑ



98

3. Find   as “unique” point in  which is also a wavelet transform,[0Ð4ß BÑ >
i.e., unique point in :>  Z

Algorithm:

1. Start with only the maxima information about . Call the[Ð4ß BÑ Q
maxima information.

2. Make initial guess using function  which has the same maxima as1 Ð4ß BÑ"

[Ð4ß BÑ .

3. Find closest function in  set of wavelet transforms to .  CallZ œ 1 Ð4ß BÑ"

this function 1 Ð4ß BÑÞ#

4. Find closest function in   functions with same maxima as  to> œ Q
1 Ð4ß BÑ 1 Ð4ß BÑÞ# $.  Call this function 

5. Find closest function in  to ; call this .Z 1 Ð4ß BÑ 1 Ð4ß BÑ$ %

6. Find closest function in  to ; call this > 1 1 Þ% &

7. Continue this way: at each stage  find the closest function  to 4 1 14 4"

in
the space  or  (alternatingly).Z >

Eventually the   as desired.1 Ð4ß BÑ [0Ð4ß BÑ
4 Ä _

4 Ò
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CONCLUSION:  We can recover the wavelet transform  of a[0Ð4ß BÑ
function just by knowing its maxima in  .B

THE POINT:  Compression.  We can store the maxima of  using a lot[0
less memory.

APPLICATION:  Compression of images:

   
Fig. 49
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Fig.  50

9.  Wavelets and Wavelet Transforms in Two Dimensions

Multiresolution analysis and wavelets can be generalized to higher
dimensions.  Usual choice for a two-dimensional scaling function or wavelet
is a product of two one-dimensional functions. For example,

9 9 9#ÐBß CÑ œ ÐBÑ ÐCÑ

and scaling equation has form

9 9ÐBß CÑ œ 2 † # Ð#B  5ß #C  6ÑÞ"
5ß6

56

Since  and  both satisfy the sclaing equation9 9ÐBÑ ÐCÑ

9 9ÐBÑ œ 2 † # Ð#B  5Ñß" È
5

5

we have   Thus two dimensional scaling equation is product of2 œ 2 2 Þ56 5 6

two one dimensional scaling equations.
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We can proceed analogously to construct wavelets using products of
one-dimensional functions. However, unlike one-dimensional case, we have
three rather than one basic wavelet. They are:

< 9 <ÐMÑÐBß CÑ œ ÐBÑ ÐCÑ

< < 9ÐMMÑÐBß CÑ œ ÐBÑ ÐCÑ

< < <ÐMMMÑÐBß CÑ œ ÐBÑ ÐCÑÞ

The generalization of the one-dimensional wavelet equation leads to
the following relations:

< 9ÐMÑ

5ß6
56
ÐMÑ

ÐBß CÑ œ 1 † # Ð#B  5ß #C  6Ñ"

< 9ÐMMÑ

5ß6
56
ÐMMÑ

ÐBß CÑ œ 1 † # Ð#B  5ß #C  6Ñ"

< 9ÐMMMÑ

5ß6
56
ÐMMMÑ

ÐBß CÑ œ 1 † # Ð#B  5ß #C  6Ñ"
where and  1 œ 2 1 ß 1 œ 1 2 ß 1 œ 1 1 Þ56 56 56

ÐMÑ ÐMMÑ ÐMMÑ
5 6 5 6 5 6

We can generate two-dimensional scaling functions and wavelets using the
functions ScalingFunction and Wavelet then taking the product. For
example, here we plot the Haar wavelets in two dimensions. Various
translated and dilated versions of the wavelets can be plotted similarly.
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Fig. 51:  Two dimensional Haar scaling function 9ÐBß CÑ

   

Fig. 52:  Haar wavelet <ÐMÑÐBß CÑ
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Fig. 53:  Second wavelet < <ÐMMÑ ÐMÑÐBß CÑ œ ÐCß BÑ

   

Fig. 54:  Third wavelet <ÐMMMÑÐBß CÑ

As example of another wavelet, here is so-called "least asymmetric wavelet"
of order 8 in two dimensions À
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Fig. 55:  Least asymmetric wavelet of order 8


