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1 Hirzebruch and genera

In the spring of 1953, Hirzebruch was at IAS in Princeton, thinking hard about something called the Riemann-
Roch problem for analytic varieties. It said that a certain invariant having to do with complex analysis
could be computed using topology. In May, Thom announced his now-famous results on cobordism, and
Hirzebruch realized he had a way in. He made a first thrust towards a solution in July, and then finished it
off in December. The key was to solve a related problem having to do with an invariant called the signature
of a manifold. Let me tell that story first, and we’ll get back to this ‘Riemann-Roch’ business later.

(1.1) Most of the invariants of manifolds we’ve met (excluding cobordism class) are invariants of the
homotopy type of M - like its cohomology together with the ring structure and cohomology operations.
Compact, oriented 4n-manifolds have a bit more structure on their cohomology than just any old space. An
orientation provides an identification H4n(M,R) ∼= R and Poincaré duality tells us that the cup product
pairing

H2n(M,R)⊗H2n(M,R) −→ H4n(M,R) ∼= R

is a non-degenerate, symmetric bilinear form. Whenever you have a symmetric bilinear form on a real vector
space V it is possible to choose a basis e1, ..., ed such that 〈ei, ej〉 = 0 whenever i 6= j and 〈ei, ei〉 = ±1. Let
n+ denote the number of times you get +1 and n− the number of times you get −1. Then the signature of
the bilinear form is defined to be n+−n− (it turns out to be independent of the choice of basis of this form.)

Definition 1.1. The signature of a compact, oriented 4k-manifold M is defined to be the signature of the
Poincaré duality pairing on H2k(M,R). If M has dimension not divisible by 4, we define its signature to be
zero. The signature is denoted σ(M).

Example 1.2. The symmetric bilinear form B on R2 defined by B(x, y) = x1y2 + x2y1 has signature 0.

Example 1.3. Recall that H∗(CP 2n) = Z[x]/x2n+1 where |x| = 2. Then H2n = Z{xn} and the cup product
pairing is xn · xn = x2n, which is the orientation class in H4n. Thus σ(CP 2n) = 1.

In one of Thom’s earliest papers, he showed that the signature was actually a cobordism invariant.

Proposition 1.4 (Thom). The signature descends to a ring homomorphism:

σ : MSO∗ −→ Z.

At this point let me make a simple observation. The right hand side of the homomorphism σ is torsion-
free, so σ factors through the quotient of MSO∗ by its torsion subgroup. So it’s no loss of information to
just consider the rational invariant:

MSO∗ ⊗Q −→ Q.

The upshot here is that Thom knew a lot about MSO∗ ⊗ Q. For example, he showed that the image of a
compact, oriented manifold in MSO∗⊗Q is determined by its Pontryagin numbers. This leads to a natural
question:

1



Question 1.5. What is the relationship between the signature and the Pontryagin numbers of a compact,
oriented 4n-manifold?

The case n = 1 was dealt with by Thom himself, but the general question was settled by Hirzebruch.

(1.2) Let’s deal with Thom’s result first, because it contains the seed of the general strategy Hirzebruch
used later. Here’s the theorem.

Theorem 2.6 (Thom). Let M be a compact, oriented 4-manifold. Then

σ(M) =

∫
M

p1
3
,

where p1 is the first Pontryagin class of the tangent bundle TM .1

Remark 2.7. Note that this result has as a consequence the non-obvious fact that the first Pontryagin
number of a compact, oriented 4-manifold is divisible by 3.

First of all: why did Thom expect a result like this to be true? Well, he had already computed that

MSO4 ⊗Q ∼= Q

Both the signature and the first Pontryagin number give linear maps MSO4⊗Q ∼= Q −→ Q so we know they
must differ by a constant. To determine that constant, you need only evaluate σ(−) and

∫
(−) p1 on a single,

nontrivial cobordism class in dimension 4. The easiest one lying around is CP 2. We’ve already computed
that σ(CP 2) = 1, so we just need to show that ∫

CP 2

p1 = 3.

Since we’ll need it later, we may as well compute all the Chern and Pontryagin classes of all the complex
projective spaces.

(1.3) We’ll need to know something about the tangent bundle of CPn. A tangent vector is supposed to tell
me how to jiggle a point in CPn. But a point in CPn is a line ` ⊂ Cn+1. How do you jiggle a line? Well
you pick a point on the line and tell me a direction to move it- the rest of the line follows along for the ride.
A nice way to say this without picking a point is to say you’ve got a linear map

` −→ Cn+1

or, equivalently, you’ve got an (n+ 1)-tuple of linear functionals on `, (ε0, ..., εn). Putting this together we
get a surjective map:

(`∗)⊕ · · · ⊕ (`∗) −→ T[`]CPn.

if we let ` vary, then we get a surjective map of vector bundles:

O(1)⊕(n+1) −→ TCPn,

where O(1) denotes the dual of the tautological bundle, O(−1).
Now, if I happened to choose my jiggle parallel to the line ` itself, then that doesn’t move the point in

CPn. So the kernel is a copy of the trivial bundle 1 which maps into O(1)⊕(n+1) as the tuples which just
scale `. So we’ve shown:

TCPn ∼=
O(1)⊕(n+1)

1
.

1I’m using
∫
M to denote evaluation of a cohomology class on the fundamental class [M ].
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It follows that there’s an isomorphism of vector bundles:

TCPn ⊕ 1 ∼= O(1)⊕(n+1).

Now the only thing we should know is that

c(O(1)) = 1 + x

where x ∈ H2(CP 2) is the preferred generator (i.e. restricts to the preferred generator of S2 ∼= CP 1 under
the restriction map). This can be taken as one of the axioms of Chern classes. It follows from the Cartan
formula that:

c(TCPn) = c(TCPn ⊕ 1) = c(O(1))n+1

= (1 + x)n+1 = 1 + (n+ 1)x+

(
n+ 1

2

)
x2 + · · ·+

(
n+ 1

n

)
xn

So we know the Chern classes. The Pontryagin classes of a complex vector bundle are related to its Chern
classes by the formula

(1− p1 + p2 − · · · ± pn) = (1− c1 + c2 − · · · ± cn)(1 + c1 + · · ·+ cn).

It follows that the total Pontryagin class p(TCPn) is just (1− x2)n+1, so that the Pontryagin numbers are:

pk =

(
n+ 1

k

)
, 1 ≤ k ≤ n/2.

Example 3.8. The Pontryagin classes for the first few projective spaces are:

p(TCP 1) = 1, p(TCP 2) = 1 + 3x2, p(TCP 3) = 1 + 4x2, p(TCP 4) = 1 + 5x2 + 10x4.

In particular, the first Pontryagin number of CP 2 is 3, which proves Thom’s theorem.

(1.4) Hirzebruch’s strategy for the general case rests on another description of the oriented cobordism ring,
also due to Thom:

Theorem 4.9 (Thom). The natural map

Q[[CP 2], [CP 4], [CP 6], ...] −→MSO∗ ⊗Q

is an isomorphism of rings.

So all Hirzebruch needed to do was define a ring homomorphism on MSO∗ ⊗Q in terms of Pontryagin
numbers and check that it agrees with the signature on the even complex projective spaces.

Let’s flesh that out a bit. Hirzebruch wants to define a homomorphism that looks like:

M 7→
∫
M

Ln(p1, ..., pn)

for some polynomial in the Pontryagin classes Ln(p1, ..., pn) ∈ H4n(M). If this is gonna be a ring homomor-
phism, then we’ll need∫

M4k×N4r

Lk+r(p1, ..., pk+r) =

(∫
M

Lk(p′1, ..., p
′
k)

)
·
(∫

M

Lr(p
′′
1 , ..., p

′′
r )

)
,

where pi, p
′
i, and p′′i are the Pontryagin classes of M × N , M , and N , respectively. Now, if we had some

polynomials {Ln} in the Pontryagin classes where the coefficients didn’t depend on M , then we could evaluate
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them on any vector bundle. So this gives us a characteristic class. And how do we compute characteristic
classes? We use the splitting principle!

So suppose we have an SO(2)-bundle V . Then pi(V ) = 0 for i > 1, and our ‘total characteristic class’
looks like:

L(V ) = 1 + L1(p1) + L2(p1, 0) + L3(p1, 0, 0) + · · · .

In fact, let’s define once and for all the following formal power series:

L(u) = 1 + L1(x2) + L2(x2, 0) + · · · = 1 +
∑
n≥1

Ln(x2, 0, 0, ..., 0).

where |x| = 2 (which explains the squaring, because p1 has dimension 4). Then the multiplicative property
above amounts to the following: if V = V1 ⊕ · · · ⊕ Vn splits as a sum of line bundles, then

Lk(p1(V ), ..., pn(V )) = [L(u1) · · ·L(un)]4k .

I have to tell you how to interpret this formula. We think of the xi as dummy variables of dimension 2, and
identify the pi with the elementary symmetric polynomials in the x2i . The [−]k symbol denotes the operation
‘take the dimension k part’.

Now remember that TCP 2n ⊕ 1 = O(1)⊕(2n+1). It follows that

Ln(TCP 2n ⊕ 1) = coefficient of x2n in L(u)2n+1.

On the other hand, if we want the formula

σ(CP 2n) =

∫
CP 2n

Ln(p1, ..., pn)

to hold, we are forced to take this coefficient to be 1.
Putting all of this together we see that all Hirzebruch needs to do is find a formal power series L(u) with

the following properties:

(i) It is even- so L(u) is a polynomial in x2,

(ii) The coefficient of un in L(u)2n+1 is 1.

As it so happens: this uniquely characterizes L(u). He used something called the Lagrange inversion formula
to figure out that this formal power series is given by:

L(u) =
u

tanh(u)
= 1 +

1

3
u2 − 1

45
u4 +

2

32 · 5 · 7
u6 − 1

33 · 52 · 7
u8 + · · ·

Then he defines
Ln(p1, ..., pn) := [L(u1) · · ·L(un)]4n

where the pi are the elementary symmetric functions in the variables u21, ..., u
2
n. By construction, we get the

following theorem:

Theorem 4.10 (Hirzebruch). The signature of a compact, oriented 4n-manifold can be computed as

σ(M) =

∫
M

Ln(p1, ..., pn)

where Ln is the polynomial defined above.

Example 4.11. L0 = 1 by definition, and L1(p1) is 1
3p1, recovering Thom’s theorem.
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Example 4.12. For L2(p1, p2) I’ll need to compute a bit of L(u1)L(u2). It looks like:

L(u1)L(u2) = 1 +
1

3
(u21 + u22) +

1

9
u21u

2
2 +

1

45
(u41 + u42) + · · ·

= 1 +
1

3
p1 +

1

9
p2 −

1

45
(p21 − 2p2) + · · ·

= 1 +
1

3
p1 +

1

45
(7p2 − p21) + · · ·

So L2 =
1

45
(7p2 − p21).

Exercise 4.13. Show that L3 =
1

35 · 5 · 7
(
62p3 − 13p1p2 + 2p31

)
.

This is supposed to convince you that you could compute these by hand for a ways and make a computer
compute as many as you’d like.

Notice that the expression
∫
M
Ln(p1, ..., pn) is some linear combination of the Pontryagin numbers with

rational coefficients. On the other hand, the signature is clearly an integer. This has many ramifications.
Here is a cute application:

Example 4.14. There is no oriented 12-manifold M with

Hk(M ;Q) =

{
Q k = 0, 6, 12

0 else
.

Indeed, by Poincaré duality, the pairing on the middle dimension, 6, has to be non-degenerate, so we
necessarily have σ(M) = 1. On the other hand, p1 = p2 = 0 because H4 = H8 = 0, so Hirzebruch’s theorem

implies 1 =
62

35 · 5 · 7
p3. But p3 is an integer and 62 does not divide 35 · 5 · 7, so it’s a no-go.

Exercise 4.15. Is there a compact, oriented manifold of dimension 8 with

Hk(M ;Q) =

{
Q k = 0, 4, 8

0 else
?

Remark 4.16. The Hirzebruch signature formula puts constraints on the possible homotopy types of man-
ifolds. In fact, the Hirzebruch signature formula together with Poincaré duality essentially characterizes the
possible homotopy types of 4k-dimensional manifolds.

More explicitly: If X is a simply-connected, finite-dimensional CW -complex of dimension 4n with n > 1
equipped with an oriented vector bundle E and a fundamental class implementing Poincaré duality, then
there exists a homotopy equivalence f : M −→ X where M is a compact, oriented manifold with TM stably
equivalent to f∗E if and only if X satisfies the conclusion of the Hirzebruch signature formula. This is a
theorem of Browder.

Remark 4.17. Another application of integrality is due to Milnor, who used the Hirzebruch signature
formula to define and study a diffeomorphism invariant of 7-manifolds. He used this to prove that there
exist exotic 7-spheres. That was a surprise to pretty much everyone.

(1.5) The method of Hirzebruch applies in much greater generality. He came up with a recipe to find
formulas for any sort of cobordism invariant. First, here’s a fancy name for ‘cobordism invariant’:

Definition 5.18. A genus is any ring homomorphism

Ω∗ ⊗Q −→ R

where R is a Q-algebra and Ω∗ are cobordism groups of manifolds with some extra structure on their stable
normal bundle. Usually we take Ω∗ = MSO∗ or Ω∗ = MU∗.
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We have already seen that MSO∗ ⊗Q ∼= Q[[CP 2n]|n ≥ 1]. Recall that MU∗ is the cobordism theory of
manifolds with a complex structure on their stable normal bundle. These are called stably almost complex
manifolds. Any complex manifold is an example of such a thing. The other calculation we’ll need is the
following:

Theorem 5.19 (Milnor). The natural map

Q[[CPn]|n ≥ 1] −→MU∗ ⊗Q

is a ring isomorphism.

Corollary 5.20. The data of a genus φ for oriented manifolds is equivalent to the sequence of numbers
{φ(CP 2n)}. The data of a genus φ for stably almost complex manifolds is equivalent to the sequence of
numbers {φ(CPn)}.

That’s all well and good, but how do you actually compute the value of the genus on your favorite
manifold? We want a formula in terms of Chern or Pontryagin numbers.

Hirzebruch proved, using the same methods described above (namely the Lagrange inversion formula)
that one gets such a formula by doing the following.

First, record the sequence of numbers2 {φ(CPn)} in a power series, called the logarithm of the genus:

logφ(x) =
∑
n≥0

φ(CPn)
xn+1

n+ 1
= x+ φ(CP 1)

x2

2
+ · · ·

Then Hirzebruch defines the associated characteristic series by:

Kφ(u) :=
u

log−1φ (u)
.

From here he gets the associated multiplicative sequence by the formula:

Kφ,n(c1, c2, ..., cn) = [Kφ(u1) · · ·Kφ(un)]2n .

If Kφ(u) is even, i.e. is a power series in u2, then he instead defines:

K ′φ,n(p1, ..., pn) = [Kφ(u1) · · ·Kφ(un)]4n .

Here the ci are the elementary symmetric polynomials in the uk, and the pi are the elementary symmetric
polynomials in the u2k. The theorem is then:

Theorem 5.21 (Hirzebruch).

φ(M) =

∫
M

Kφ,n(c1, ..., cn).

φ′(N) =∈ TdnK
′
φ,n(p1, ..., pn).

where φ (resp. φ′) is a genus for stably almost complex (resp. oriented) manifolds.

Now, if you start with some random sequence of numbers φ(CPn), this probably won’t be an interesting
theorem. But if φ was a priori defined using some non-topological data, this gives you a topological way of
computing this invariant.

2We can treat the complex and oriented case simultaneously, since φ(CP 2n+1) = 0 when φ only depends on the oriented
cobordism class.
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Remark 5.22. In practice, you get theorems that look like:

global analytic invariant =

∫
M

local topological invariant.

A theorem like this is great for analysts and topologists. The left-hand side is usually hard to compute, but
satisfies some obvious rigidity (like being an integer). The right-hand side is usually easy to compute for
your favorite manifold, but not obviously rigid. A theorem like this is called an index theorem, and the über
version was proved by Atiyah-Singer. Their original proof mimicked Hirzebruch’s proof of the Riemann-Roch
theorem, which we discuss below.

2 Grothendieck, Atiyah-Hirzebruch and K-theory

(2.6) So that’s the story of Hirzebruch and genera, but I was supposed to tell you about what all this has to
do with K-theory. To understand that, I have to tell you why Hirzebruch was so interested in the signature
formula in the first place.

You see, Hirzebruch was actually interested in analytic varieties. An analytic variety is like a smooth
manifold except that you can make sense of complex analytic functions and not just smooth functions. (An
analytic function is a function that locally looks like a convergent power series in many variables.)

Analytic varieties were and still are incredibly important mathematical objects with lots of beautiful
structure. They were one of the motivations for the birth of topology. All the early pioneers of topology
and algebraic topology- Riemann, Poincaré, and Lefschetz- were really interested in proving things about
varieties.

In fact, our story starts with Riemann. He was really interested in analytic differential forms on complex
surfaces (nowadays called Riemann surfaces). One of the upshots of working with analytic differential forms
is that the vector space H0(Ω1) of analytic differential forms is finite dimensional. Riemann asked: how do
you compute its dimension? He gave half an answer, and his student Roch finished it off.

Theorem 6.1 (Riemann-Roch). 3 Let X be a compact, complex manifold of real dimension 2. Then X is,
in particular, an orientable compact surface of some genus, g, and

dim H0(Ω1) = g.

This is a pretty great theorem. The left-hand side makes heavy use of the complex structure- and the
right hand side only depends on the homotopy type of X. Algebraic geometers got a lot of mileage out of
this theorem, and, naturally, started to wonder what the story was for higher dimensional varieties.

Experience revealed that the correct generalization of the left hand side is:

χan(X) =
∑

(−1)kdimCH
0(Ωk).

Here H0(Ωk) denotes the vector space of analytic k-forms, that is, analytic sections of the complex vector
bundle Λk(T ∗X) over X. This is sometimes called the arithmetic genus of X- it’s a kind of analytic Euler
characteristic. So the question was: what should the right-hand side say?

Todd, in the 30s, used reasoning very similar to Hirzebruch’s to guess an answer in certain cases. Hirze-
bruch sharpened this reasoning as follows. He knew that

χan(CPn) = 1.

3This is actually just a special case of the Riemann-Roch theorem, but to state the more general version would take us too
far afield.
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Now we close our eyes and pretend that χan is a cobordism invariant for stably almost complex manifolds
(even though that makes no sense because there’s no such thing as ‘analytic differential forms’ in that
generality). Following Hirzebruch’s recipe, we are led to form the logarithm:

logTd(x) =
∑
n≥0

xn+1

n+ 1
.

This looks a lot like log(1 + x) =
∑

(−1)n x
n+1

n+1 . In fact:

logTd(x) = − log(1− x).

So:
log−1Td(u) = 1− e−u, KTd(u) =

u

1− e−u
.

This gives a multiplicative sequence, and polynomials {Tdn} called the Todd polynomials and leads to a
conjecture that Hirzebruch proves:

Theorem 6.2 (Hirzebruch). If X is a compact analytic variety, then

χan(X) =

∫
X

Tdn(c1, ..., cn).

This is often called the Hirzebruch-Riemann-Roch theorem. Note that it does not follow from the previous
theorem of Hirzebruch because the left-hand side is not a genus! On the other hand, it is a consequence of
the theorem that χhol extends to a genus on stably almost complex manifolds. This is called the Todd genus.

This raises a natural question:

Question 6.3. Is there a nice description of the left-hand side in the Hirzebruch-Riemann-Roch formula
that makes sense for all stably almost complex manifolds?

If there were such a description, we would expect it to be integer-valued. So a preliminary question
becomes:

Question 6.4. Is the Todd genus integer valued on stably almost complex manifolds?

And finally:

Question 6.5. Is there an analogous theorem for just plain-old smooth manifolds?

The answer to all of these questions turns out to be yes, but they weren’t answered until after K-theory
was invented. So, at long last, it’s time to talk about K-theory.

(2.7) There are many things one can say about Grothendieck, but here is one: he loved to replace theorems
about objects with theorems about morphisms. The original theorem about X would be the special case of
the new theorem for the morphism X → ∗.4

This didn’t just lead to more powerful theorems, it often lead to simpler proofs. If all you care about
is islands, you’ll be stuck on the one you’re on; but if you start thinking about bridges, you can really go
places.

His first great success with this technique was his generalization of the Riemann-Roch theorem. Recall
that the shape of this theorem is:∑

(−1)kdim H0(ΩkX) =

∫
X

Tdn(c1, ..., cn).

4It’s said that when he was at his desk, he would repeatedly draw a vertical arrow X −→ S while thinking.
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Grothendieck noticed that the right hand side has a generalization for a map X −→ S. For example, if
X −→ S is a fiber bundle, you can integrate a cohomology class along the fibers and get a class in H∗(S).
A quick way to formalize this that works in general is to use Poincaré duality.

Given a map X −→ S of compact, oriented manifolds and a class x ∈ H∗(X), define

f#(x) := Df∗(Dx) ∈ H∗−d(S),

where D denotes Poincaré duality and f∗ is the usual pushforward in homology. The number d is the relative
dimension dim(X)− dim(S) and comes from the dimension shifts in Poincaré duality.

So then Grothendieck needed to know: what’s the generalization of the left hand side,

χhol(X) =
∑

(−1)kdim H0(ΩkX) ?

Well, the natural replacement of a vector space was a vector bundle. So he wanted something like an alter-
nating sum of vector bundles, and then he needed a generalization of dimension that landed in cohomology
instead of the integers. He solved the first problem using a standard mathematical trick: if you can’t do
something, declare that you can.

Definition 7.6. Given a commutative monoid, (M,?), define its group-completion of Grothendieck group,
gp(M), to be the free abelian group on the symbols [m] where m ∈M modulo the relation [m?n] = [m]+[n].

Given a compact, analytic variety X, define5

Kan(X) to be gp(Vectan(X)), the Grothendieck group of (isomorphism classes of) complex analytic vector
bundles on X under direct sum.

Example 7.7. The group completion of N is Z.

Grothendieck then used some serious algebraic geometry to define a pushforward for K-theory. That is,
for any map f : X −→ S between compact analytic varieties, he produced a homomorphism f! : Kan(X) −→
Kan(S).

The correct generalization of dimension of a vector space is called the Chern character, which I don’t
want to go into. It’s a ring map ch : Kan(X) −→ H∗(X,Q). In a letter to Serre in 1956, Grothendieck
announced his now famous result.

Theorem 7.8 (Grothendieck). For any analytic vector bundle E on a compact6 analytic variety X, and
any map f : X −→ S, we have:

ch(f!(E)) = f#(ch(E) · Tdn(E)).

Hirzebruch’s theorem is the special case when E is the trivial bundle of rank 1 and S is a point.
The nice thing about Grothendieck’s version of the theorem is that, even if you were only interested in

Hirzebruch’s result, you get a simpler proof. Let X be a compact, analytic variety. Then you can embed X
into some projective space CPn by a closed immersion7, so you get a diagram:

X
i //

ε
""

CPn

p

��
∗

We were interested in ε!(1) = χhol(X). But, by functoriality this is the same as p!(i!(1)). It turns out the
theorem for projective space is really easy, so we are reduced to studying i!, and that turns out to not be so
bad.

5This isn’t quite right. I need to ask that, for short exact sequences 0 → E′ → E → E′′ → 0, we add the relation
[E′] + [E′′] = [E]. This relation is redundant in the topological case because every such exact sequence splits, topologically.

6I should probably say projective.
7Again, that’s not really true. You need X to be projective, but this is an acceptable lie for now.
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I realize this all seems pretty complicated and I’ve glossed over a bunch of things, but I needed to tell
you what motivated the next chapter of the story.

(2.8) You can safely forget about analytic varieties and Chern characters and just remember that Grothendieck
showed that it was a useful idea to take the group completion of the monoid of vector bundles and study push-
forward maps. After Grothendieck publicly announced his result in 1957, Atiyah and Hirzebruch, motivated
by the questions I listed previouslt, started to wonder if there was an analog of Grothendieck’s results for
smooth manifolds. In particular, they wanted to build an analog of K-theory and pushforwards in topology.

Before I tell you how that goes, let me give you another motivation for these weird pushforward maps.
Having nice pushforward maps for the map to a point is essentially the same as building a genus with an
integrality theorem that comes for free.

Indeed, suppose you have some homotopy invariant functor h : Spacesop −→ Rings equipped with
pushforward maps εX! : h(X) −→ h(∗) whenever X has, say, an almost complex structure on its stable
normal bundle. Then you could define a genus by:

X 7→ εX! (1) ∈ h(∗)⊗Q

and, by construction, it automatically lands in the image of h(∗) → h(∗) ⊗ Q. This is also evidence of the
usefulness of replacing the ring, R, that appears on the right hand side of a genus, by something like a
cohomology theory. That is the modern point of view and people have had a lot of success with it.

Anyway- back to Atiyah and Hirzebruch. Their first task was straightforward: define K-theory in
topology.

Definition 8.9. If X is a compact space, let K(X) (resp. KO(X)) denote the group completion of the
monoid VectC(X) (resp. VectR(X)) of complex (resp. real) vector bundles under direct sum.

Example 8.10. K(∗) = Z.

Example 8.11. K(S1) = Z. Indeed, any complex vector bundle on S1 is trivial on the upper and lower half
of the circle, and so determined by the transition function which is a map {±1} −→ GLn(C). Since GLn(C)
is connected, we can always deform this transition function to the trivial one. So VectC(S1) = 0 and hence
so is the group completion.

Exercise 8.12. Show that KO(S1) = Z⊕ Z/2 generated by the Möbius bundle and the trivial bundle.

This defines a contravariant functor on (compact) spaces which turns out to be homotopy invariant.

When X is pointed we define K̃(X) := ker(K(X)→ K(x0)) and similarly for K̃O(X).

Example 8.13. The above examples show that K̃(S1) = 0 and K̃O(S1) = Z/2.

That was easy. Now we need to define the pushforward. Grothendieck’s method didn’t work in this case
(it used facts about analytic varieties that have no obvious analogs for arbitrary smooth manifolds.) So
Atiyah and Hirzebruch had to do something different. The pushforward in cohomology we defined above
uses Poincaré duality, which also doesn’t seem to have an analog for this K-theory (for example: what would
replace homology in that formulation?) So, to motivate what Atiyah and Hirzebruch did, let me tell you
how to define the pushforward in ordinary cohomology without using Poincaré duality.

(2.9) We’re searching for a wrong-way map and we’ve already seen one in nature: the Pontryagin-Thom
collapse map. Given an embedding of compact manifolds X ↪→ Y we always get a collapse map going the
other way:

Y −→ Xν

where ν is the normal bundle and Xν denotes the Thom space. For example, we can take X to be arbitrary
and Y to be a high-dimensional sphere. Then the normal bundle represents the stable normal bundle, and
we get a map:

SN −→ Xν .
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This gives an element in πN (Xν). The Hurewicz map produces an element in HN (Xν) and a choice of
orientation of ν gives a Thom isomorphism and hence an element in Hn(X), where n = dim(X). What
element could this be? It’s the fundamental class! The same one that induces Poincaré duality.

So the Thom isomorphism knows about Poincaré duality. Maybe we can use it to build the pushforward.
Start with a map

f : X −→ S

between compact, oriented manifolds. Choose an embedding X ↪→ SN so we get a factorization:

X
i //

f
##

SN × S
p

��
S

Now let n denote the dimension of X, m denote the dimension of S, ν denote the normal bundle to i with
a chosen orientation, and Uν ∈ H̃N+m−n(Xν) the resulting Thom class.

Definition 9.14. In the above situation, the pushforward in cohomology is defined as the composite:

H∗(X)
·Uν // H̃∗+N+m−n(Xν)

collapse// H∗+N+m−n(SN × S) H∗(SN )⊗H∗+m−n(S)
∼=oo // H∗+m−n(S)

where the final map caps with the fundamental class of SN .

Proposition 9.15. This doesn’t depend on the choice of embedding and agrees with the other definition of
the pushforward using Poincaré duality.

This isn’t so hard to prove. You can consider the case of an embedding and the projection Sn×S −→ S
separately, and it’s just a matter of unwinding the definitions and using this fact about the relationship
between the Thom isomorphism and the fundamental class.

(2.10) What’s so great about this reinterpretation of the pushforward is that it makes sense for any functor
h : Spaces −→ Ab as soon as you have a notion of Thom class and a Künneth isomorphism. In fact, you
don’t need the general Künneth isomorphism, you just need to know that the natural map

h(Sn)⊗ h(X) −→ h(Sn ×X)

is an isomorphism. Atiyah and Hirzebruch figured out how to do the Thom isomorphism, but they still needed
a Künneth formula. Luckily, the missing ingredient had been supplied the same year that Grothendieck
announced his Riemann-Roch theorem.

(2.11) As the apocryphal story goes, Bott and Milnor were hanging out by a chalkboard computing the
first couple homotopy groups of U(n) for n� 0. Here’s what they got:

π0U(n) = 0, π1U(n) = Z, π2U(n) = 0, π3U(n) = Z, π4U(n) = 0, ...

and Bott was like “Hey, maybe it keeps going like that,” and Milnor was like “Yeah, I’m not into idle
speculation.”8

So then Bott proved one of the most surprising results in mathematics, that has no right being true:

8This is probably not the real story. Bott himself, in his paper, says the result was inspired by the calculations of Toda...
who actually made a mistake that contradicted the periodicity theorem. Bott noticed that Toda’s calculation conflicted with
recent work of Borel and Hirzebruch, guessed the mistake, and proved his theorem.
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Theorem 11.16 (Bott). Let U =
⋃
U(n). Then

πkU =

{
0 k even

Z k odd.

Even better, there is a canonical homotopy equivalence ΩU ∼= BU ×Z where BU =
⋃
BU(n) is the union of

the infinite complex Grassmanians.

What does this have to do with Atiyah and Hirzebruch’s problem? Well, it turns out that the equivalence

[X,BU(n)] ∼= VectC,n(X)

can be jazzed up to an equivalence:
[X,BU × Z]∗ ∼= K̃(X).

Now, a little basepoint and cofiber trickery together with the calculation K(S2) = Z ⊕ Z tells you that

K(X × S2) ∼= K(S2)⊗ K̃(X+ ∧ S2). So our Künneth formula follows from the calculation:

K̃(X+ ∧ S2) ∼= [X+ ∧ S2, BU × Z]∗
∼= [X+,Ω

2(BU × Z)]∗
∼= [X+, BU × Z]∗
∼= K(X).

(If you missed that, don’t worry- it will be covered in the next lecture.)
This generalizes to even dimensional spheres, and that was enough for Atiyah and Hirzebruch to prove

their differentiable Riemann-Roch formula. They got integrality theorems for the Todd genus, and even
extended their arguments to the case of manifolds that had some extra structure on their stable normal
bundle that was much weaker than a complex structure. This turned out to be a foreshadowing of Atiyah-
Bott-Shapiro’s work on Clifford algebras and spin structures and the Â-genus, which motivated the Atiyah-
Singer index theorem and eventually led to the creation of such modern gadgets as ‘topological modular
forms’ and the ‘Witten genus.’

Everyone lived happily ever after.
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12


	Hirzebruch and genera
	Grothendieck, Atiyah-Hirzebruch and K-theory

