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ABSTRACT. Let A’ be the Auslander algebra of a finite dimensional basic connected Nakayama
algebra A with radical cube zero and n simple modules. Then the cardinality #tilt A’ of the set
consisting of isomorphism classes of basic tilting A’-modules is

(1 + \/5)27172 _ (1 _ \/5)27172
#tilt A’ = 2v2
\/[(1 +1/2)2n — (1 —/2)27]2 4 4, if A is self-injective with n > 2.

, if A is non-self-injective with n > 4;

1. INTRODUCTION

Tilting theory is important in representation theory of artin algebras and homological algebra.
There are many related works which made the theory fruitful, see [3, 5, 10] and references therein. In
this theory, tilting modules play a central role. So it is fundamental and important to classify tilting
modules for a given algebra. An effective method to construct tilting modules is given by mutation
[18, 20]. However, the mutation of tilting modules is not always possible. To improve the behavior
of mutation of tilting modules, Adachi, Iyama and Reiten [4] introduced support 7-tilting modules
as a generalization of tilting modules. They showed that the mutation of support 7-tilting modules
is always possible; in particular, 7-tilting modules share many nice properties of tilting modules.

It is showed by Auslander that there is a bijection between classes of representation-finite algebras
and Auslander algebras [6]. There are many works on Auslander algebras. Briistle, Hille, Ringel
and Rohrle [8] classified tilting modules over the Auslander algebra of K[x]/(z™) and showed that
the number of tilting modules is n!. Iyama and Zhang [17] classified 7-tilting modules over the
Auslander algebra of K[z]/(x™). Recently, Zhang [21] gave a classification of tilting modules over
Auslander algebras of Nakayama algebras with radical square zero. On the other hand, algebras
with radical cube zero have gained a lot of attention. Hoshino [15] proved the Tachikawa version
of the Nakayama conjecture for algebras with radical cube zero. Erdmann and Solberg [9] classified
all the possible quivers of finite dimensional self-injective algebras with radical cube zero and finite
complexity. Adachi and Aoki [2] calculated the number of two-term tilting complexes over symmetric
algebras with radical cube zero.

In the literature, especially in mathematics and physics, there are a lot of integer numbers, which
are used in almost every field of modern sciences. Admittedly, Pell numbers (sequence A000129 in
OEIS) and Pell-Lucas numbers (sequence A002203 in OEIS) are very essential in the fields of combi-
natorics and number theory. The Pell sequence {P,} are defined by recurrence P, = 2P,,_1 + P,,_»
for any n > 2 with Py =0 and P; = 1, and the Pell-Lucas sequence {Q,} by the same recurrence
but with initial conditions Qo = Q1 = 2. Explicit Binet forms for {P,} and {Q,} are P, = a;:gn
and Q, = o™ + A", where a and /3 are the roots of the characteristic equation 22 — 22 — 1 = 0. Then
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one gets 8P2 = Q2 — 4(—1)". Further details about Pell and Pell-Lucas sequences can be found in
[7, 11, 12, 13, 14].

In this paper, by virtual of Pell and Pell-Lucas sequences, we will determine the number of iso-
morphism classes of basic tilting modules over Auslander algebras of Nakayama algebras with radical
cube zero. Let A be a finite dimensional algebra over an algebraically closed field. We use tilt A to
denote the set consisting of isomorphism classes of basic tilting modules. For a set X, and use #X

to denote the cardinality of X. The following is our main result.

Theorem 1.1. (Theorem 3.8) Let A be a Nakayama algebra with radical cube zero and n simple
modules, and let A’ be the Auslander algebra of A.

(1) If A is non-self-injective with n > 4, then #tilt A’ = (1“/5)%_;:/(517\5)2”_2.

(2) If A is self-injective with n > 2, then #tilt A’ = \/[(1 +1/2)20 — (1 —V/2)27)2 - 4.

We also give two examples to illustrate this result.

2. PRELIMINARIES

Throughout this paper, A is a finite dimensional algebra over an algebraically closed field K and
7 the Auslander-Reiten translation. We use mod A to denote the category of finitely generated left
A-modules and use gl.dim A to denote the global dimension of A. For a module T" € mod A, we use
addT to denote the subcategory of mod A consisting of direct summands of finite direct sums of T'.

Recall that a module T' € mod A is called (classical) tilting if the projective dimension of T is at
most one, Ext (7, T) = 0 and there is an exact sequence 0 — A — Ty — T} — 0 in mod A with T
and T} in addT'. Also recall that A is called a Nakayama algebra if it is both right and left serial, that
is, every indecomposable projective module and every indecomposable injective module in mod A are
uniserial.

Proposition 2.1. ([5, Chapter V, Theorem 3.2]) A basic and connected algebra A is a Nakayama
algebra if and only if its ordinary quiver Q4 is one of the following two quivers:
1H1-2—-3—=--—>n—-1-—n;

AR
| i
o

5——=6

(with n > 1 vertices).

We use |T'| to denote the number of pairwise non-isomorphic indecomposable direct summands of
T.

Definition 2.2. ([4, 19]) Let T be in mod A.

(1) T is called 7-rigid if Hom (T, 7T) = 0, and T is called 7-tilting if T is 7-rigid and |T'| = |A|.

(2) T is called support T-tilting if there exists an idempotent e of A such that T is a 7-tilting A/({e)-
module.
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We use proj A to denote the full subcategory of mod A consisting of projective modules. Sometimes,

it is convenient to view support 7-tilting modules and 7-rigid modules as certain pairs of modules in
mod A.

Definition 2.3. Let (T, P) be a pair with 7' € modA and P € proj A.
(1) (T, P) is called a 7-rigid pair if T is 7-rigid and Hom 4 (P,T) = 0.
(2) (T, P) is called a support T-tilting pair if (T, P) is 7-rigid and |T'| + |P| = |A].

We use s7-tiltA to denote the set of isomorphism classes of basic support 7-tilting modules in
mod A. For a module M € mod A, we use FacM to denote the full subcategory of mod A consisting
of modules isomorphic to factor modules of finite direct sums of copies of M.

Definition 2.4. ([4]) Let T,U € s7-tiltA. We call T a mutation of U if they have the same inde-
composable direct summands except one. Precisely speaking, there are three cases:

(1) T=VeXand U=V @Y with X 2Y indecomposable;

(2) T =U & X with X indecomposable;

(3) U =T X with X indecomposable.

Moreover, we call T' a left mutation (resp. right) mutation of U if FacT C FacU (resp. FacT 2 FacU),
and write T' = py (U) (resp. T = u%(U)).

The following result [4, Theorem 2.30] gives a method for computing left mutations. For the
convenience, we recall the definition of the Bongartz completion. For a 7-rigid A-module U, we have
that T := P(+(7U)) is a 7-tilting A-module which is called a Bongartz completion of U satisfying U €
addT and +(77T) = FacT, where P(+(7U)) is the direct sum of one copy of each of the indecomposable
Ext-projective objects in +(7U) up to isomorphism.

Lemma 2.5. Let T = X @ U be a basic T-tilting module which is the Bongartz completion of U with
X indecomposable. Let
xLu sy o
be an exact sequence with f the minimal left addU -approximation. Then we have
(1) If U is not sincere, then Y = 0. In this case, U = u(T) holds and it is a basic support T-tilting
A-module that is not T-tilting.
(2) If U is sincere, then'Y is a direct sum of finite copies of an indecomposable A-module Y1 and is
not in addT. In this case, Y1 ® U = pu(T) holds and it is a basic T-tilting A-module.

We use K®(proj A) to denote the bounded homotopy category of proj A.

Definition 2.6. ([4]) Let P be a complex in K°(proj A).

(1) P is called presilting if Hom go (05 4) (P, P[n]) = 0 for any n > 1.

(2) P is called silting if it is presilting and generates K°(projA) by taking direct sums, direc-
t summands, shifts and mapping cones. In addition, it is called tilting if it is also satisfies
Hom gb (proj 4y (P, P[n]) = 0 for all non-zero integers n.

(3) P is called two-term silting if it isomorphic to a complex concentrated in degree 0 and —1 in
K*(proj A).

We use 2-silt A to denote the set of isomorphism classes of basic two-term silting complexes in
K*(proj A).
Lemma 2.7. ([4, Theorem 3.2]) There exists a bijection
2-silt A <> sT-tiltA
(f 0

given by 2-siltA > P — HO(P) € s7-tiltA and sT-tiltA > (T, P) — (P, & P — P,) € 2-siltA,
where f: Py — Py is a minimal projective presentation of T .
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3. MAIN RESULT
We begin with the following definition.

Definition 3.1. ([1, Definition 3.2]) Let = (£2,>) be a poset and N a subposet of (.
(1) We define a new poset QN = (QN, >) as follows, where N* := {n* | n € N} is a copy of N, and
wi,ws € Q\ N and ny,ny € N are arbitrary elements:
oN:=QJ[NT,
W1 2N We 1 W1 2> Wa, N1 2N N2 1< N1 = Na,
W] 2N N1 S w1 >Ny, N 2N WL S Ny > Wi,
nf >nwi e ny > wi, nf >N ng & ng > ng,
w1 >N nf & wp > Ny, nf >N n; &Ny > Na.

In particular, nq >n ng' never holds. It is easily to check that (QN, >y) forms a poset.
(2) Let H(Q?) := (Q,H,) be the Hasse quiver of ). We define a new quiver H(Q)N := (QN, HY) as
follows, where wy,ws are arbitrary elements in Q \ N and n,ny are arbitrary elements in N:

HY = {w1 = wa | w1 = w2 in Ha}H{n2—>W2 | ng — wo in Hy}
H{m — ng, n = ng | ny — ngin Hy}

H{wl —nf | w = ngin Hy} H{ni" —ny | n € Q}.
It is easy to check that H(QN) = H(2)N holds.

Assume that A has an indecomposable projective-injective summand L as an A-module. Moreover,
let S :=socL and A := A/S. Consider the functor

E:: —®4 A:modA — modA.

Then L = L/S. Note that, for every indecomposable A-module M % L, so we have an isomorphism
M ~ M as A-modules.

Now let N := {N € sr-tiltA | L € addN and Homy (N, L) = 0}. Applying Definition 3.1, we
have a poset (s7-tiltA)Y. For any A-module M, we denote by a(M) a basic A-module satisfying
adda(M) = add M.

Lemma 3.2. ([1, Theorem 3.3(1)]) Let L be an indecomposable projective-injective summand of A
as an A-module. Then there is an isomorphism of posets

sT-tilt A — (s7-tilt A)N
given by M — «(M). In particular, we have an isomorphism of Hasse quivers
H(A) ~ H(AV.
By the definition of (s7-tilt A}, we have
H#(sT-tilb AN = #sr-tilt A + #N.
It follows from Lemma 3.2 that
#sT-tilt A = #sT-tilt A + #N.

This equality will be crucial in proving our main result.
For an algebra A, assume that

0A—=T1%A) =T A) = - = TH(A) — ---

is the minimal injective resolution of 4 A.
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Lemma 3.3. ([16, Theorem 4.5]) Let I°(A) be projective and e an idempotent of A such that addeA =
addIY(A). Then the tensor functor — @4 A/{e) induces a bijection from tilt A to sT-tilt A/{e).

Recall that A is called an Auslander algebra if gl.dim A < 2 and both I°(A) and I'(A) are
projective. Let A be representation-finite with M an additive generator for mod A. Then A’ :=
End4 (M) is an Auslander algebra [6]. In this case, A’ is called the Auslander algebra of A.

In the rest of this section, A is a basic connected Nakayama algebra with radical cube zero and
n simple modules, A’ is the Auslander algebra of A and A’ := A’/(e) where addeA’ = addI°(4’)
with e an idempotent of A’. The following result gives the structure of A’, which is induced from
Proposition 2.1 directly.

Proposition 3.4.
(1) If A is non-self-injective with n > 4, then A’ is given by the following quiver Q' :

3 6 3n—6
1 —a1> 2 5 8 o 3n—=T7 3n—4 —Xn—6> 3n—3
\4\ /0(5/ \lx /Ctg/ a4n< %n77
4 7 3n—>5

with relations
04204544 = 0434304515, Q4ir104543 = 0
forany 0 <i<n—3 and
Qyn 7045 ¢ = 0.

(2) If A is self-injective with n > 2, then A’ is given by the following quiver Q':

2 3n—1 2
?ng a4n§ O}n—/l a4n—\3 /a?/ \V\

4 1 3n—2 - 4 1
N 7N A N 7
n+4 Q4ni2 4 Qyn—2 [0'5]

g N NS
3 3n 3

with relations
O +3004i4+1 = O4i+404i42, Vdi450454+3 = 0
for any i > 0.
The following proposition is quite essential for the main result.

Proposition 3.5.
(1) If A is non-self-injective with n > 4, then A’ is given by the following quiver Q" :

1-2—23—=---—22n—4—-2n—-3

with rad> KQ" = 0.
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(2) If A is self-injective with n > 2, then A’ is given by the following quiver Q" :

2<—1

| f

with rad* KQ" = 0.

The following proposition gives some properties of indecomposable direct summands of tilting
A’-modules.

Proposition 3.6. Let T be a tilting module in mod A’. Then we have

(1) The number of indecomposable projective-injective direct summands of T is n.

(2) The simple direct summand of T is either projective or a simple socle of an indecomposable
projective A’-module.

(3) For any indecomposable non-projective-injective direct summand M of T, the Loewy length of M’
which is the mutation of T on M is at most three.

Proof. (1) By Proposition 3.4, we can easily get the number of indecomposable projective-injective di-
rect summands of T'. Since T is faithful, we have an epimorphism 7" — DA’, where D = Hom g (—, K)
is the ordinary dual. If P is an indecomposable projective-injective module, then P is a direct sum-
mand of T'.

If A is non-self-injective with n(> 4) simple modules, then A" has 3n — 3 simple modules and the

indecomposable projective-injective modules are P(1), P(2), P(3), P(6), ---, P(3n—6). If A is
self-injective with n(> 2) simple modules, then A’ has 3n simple modules and the indecomposable
projective-injective modules are P(3), P(6), ---, P(3n).

(2) If A is non-self-injective with n(> 4) simple modules, then for any indecomposable projective
module P € mod A, soc P is either S(3n —4) or S(3¢ — 3) with 2 < i < n. Then by Lemma 2.5, we
can verify directly that the simple direct summand of T is either projective or a simple socle of an
indecomposable projective A’-module.

If A is self-injective with n(> 2) simple modules, then for any indecomposable projective module
P € mod A’, soc P = S(3i) with 1 < ¢ < n. Then by Lemma 2.5, we can verify directly that the
simple direct summand of T is a simple socle of an indecomposable projective A’-module.

(3) If A is non-self-injective, then the quiver Q' of A’ is as in Proposition 3.4(1). The indecompos-
able projective modules in mod A’ are as follows:

2 3 5 6
P(1)= 3, P(2) = SRR 6.7, P(4) =3, P(5) = "7, P(O) = 0 "0, P(T) = §,
9 12

3n—7 3n—6
P(Bn—T)=38n-6__ 305, P(3n—6)= 34, P(3n—5)= {77,

n—

P(3n—4)= "2 P(3n—3) = 3n-3.
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By Proposition 3.5(1), the quiver Q" of A’ is as follows:
5 8 - 3n-7 3n—4 —— > 3n—3
NS
4 7 \SnS/
with the relation rad®> KQ” = 0. The indecomposable projective modules in mod A’ are as follows:
Pl4)=4, P'(5)=3% P(N)=] -, PBn-7)= 525, P'(3n—5)= 5375,
P'(3n—4) = 5""3, P'(3n —3) = 3n-3.
The maximal tilting A’-module is
T=P1l)oP2)®PB)® ---®P(3n—3).
By (1), the indecomposable projective-injective direct summands of T" are
P(1),P(2),P(3),P(6),---,P(3n —6).

The maximal support 7-tilting A’-module is

T'=P4)oPB)®P(7)®- @& P'(3n—3).

For any i € {3j —2,3j—1,3n—3 ]2 < j <n—1}, we have a correspondence between P(i) and P’ ()
by Lemma 3.3. Let L be an indecomposable direct summand of 77. Then there exists a module L’
which is the mutation of 77 on L by Lemma 2.5. We have that the Lowey length of L is at most two
and the Lowey length of L’ is at most one. Thus, if M is an indecomposable non-projective-injective
direct summand of T. Then there exists a module M’ which is the mutation of T' on M. We have
that the Lowey length of M is at most four and the Lowey length of M’ is at most three.

If A is self-injective, then the quiver @’ of A’ is as in Proposition 3.4(2). The indecomposable
projective modules in mod A’ are as follows:

1 3 4 6
P() =1y, 5% P@) = T PE) =1 sn P(A) =2, 3, P(5) =1, P(6) =2 3,
3n—3 3n 3n— 3n 3 1
3n—3 3n
s 3n—2 3n—1 3l
P(3n—3) = 3n-7 3n—6, P(3n—2) = 3""*, 373 P(3p—1) = 3n-2, P(3n) = 3n—4 3n—3.
3n—38 3n—6 3n—3 3n—>5
3n—9 3n—6
By Proposition 3.5(2), the quiver Q" of A’ is as follows:

l=———2

N,
| |

3n — 2 5

n—4——3n— 5
with the relation rad® KQ” = 0. The indecomposable projective modules in mod A’ are as follows:
P)=gly, P =3 P@)=4, -, P02 =57 PBn—1)= 5},
The maximal tilting A’-module is

T=P1l)®P2)®PB)® - - P(3n).
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By (1), the indecomposable projective-injective direct summands of T are as follows:
P(3), P(6), ---, P(3n).
The maximal support 7-tilting A’-module is
T'=P1)eP2aeP4)®d &POBn-1).

For any i € {3j—2,3j—1]1 < j <n}, we have a correspondence between P (i) and P’(i) by Lemma
3.3. Let L be an indecomposable direct summand of T”. Then there exists a module L’ which is the
mutation of 7" on L by Lemma 2.5. We have that the Lowey length of L is two and the Lowey length
of L’ is at most one. Thus, if M is an indecomposable non-projective-injective direct summand of T'
and M’ is the module which is the mutation of T"on M, then the Lowey length of M is at most four
and the Lowey length of M’ is at most three. O

The following proposition calculates the number of support 7-tilting modules in mod A’.

Proposition 3.7.
J— 2n—2 2n—2
(1) If A is non-self-injective with n > 4, then #st-tilt A’ = (1+v2) 2}(217‘/5) .

(2) If A is self-injective with n > 2, then #sT-tilt A’ = \/[(1 +v/2)2n — (1 —/2)27]2 4+ 4,

Proof. We only need to prove the case of radical square zero Nakayama algebra A by Lemma 3.3 and
Proposition 3.5. Set P,, := #s7-tilt A.
(1) If A is non-self-injective, then the quiver @ of A is

1-+2=3—=---—=>m-1—=m

with the relation rad® KQ = 0. Let L = 3 be an indecomposable projective-injective summand of A.
Then socL =2,L =1 and A = A/soc L is given by the following quiver:

,2=23—=---—=m—-1—=m.

Thus #s7-tiltA = 2P, _1.

By calculating N := {N € s7-tiltA | L € addN and Homu (N, L) = 0}, we get that the set N/
contains the module 1 but does not contain modules 2, 1 and 2. So we have #N = Pp,_o, and
hence Py, = 2P;,—1 + Pr—2 by Lemma 3.2. It is a Pell-sequence (sequence A000129 in OEIS) and
P, = (1+‘/§)m+;\_/(§1_\/§)m+1. By letting m = 2n — 3, we get the desired assertion.

(2) If A is self-injective, then the quiver @ of A is

AN
| |
AN
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with the relation rad® KQ = 0. Let L =  be an indecomposable projective-injective summand of A.
Then soc L =2, L =1 and A = A/socL is given by the following quiver:

2 1

Thus #s7-tilt A = P,,,.
Similar to (1), we have #N = Py,,_2, and hence Q,,, = Py, + Pyy_2. Applying Py, = 2P, 1 + Py
from (1), we get Qm = 2Qm—1 + Qm—2. It is a Pell-Lucas sequence (sequence A002203 in OEIS) and
Qu = 11+ VD™ — (1= V22 + 41,

By letting m = 2n, we get the desired assertion. O

We now are in a position to give the main result.

Theorem 3.8.

(1) If A is non-self-injective with n > 4, then #tilt A’ = (Hﬁ)%i;\f/él*ﬂ)%%.

(2) If A is self-injective with n > 2, then #tilt A’ = \/[(1 +4/2)20 — (1 —/2)27)2 + 4.

Proof. Using the correspondence in Lemma 3.3, we can see that the number of tilting modules in
mod A’ is equal to the number of support 7-tilting modules in mod A’ which we have proved in
Proposition 3.7. (I

As a consequence, we have the following corollary.

Corollary 3.9.

(1) If A is non-self-injective with n > 4, then #2-siltA’ = (1+‘/§)2n_;\7/(§17\/§)2n_2,

(2) If A is self-injective with n > 2, then #2-siltA’ = \/[(1 +4/2)20 — (1 —V/2)27)2 4 4.

Proof. This follows from Lemma 2.7 and Proposition 3.7. O

4. EXAMPLES
In this section, we give two examples to illustrate the theorem in Section 3.

Example 4.1. Let A be an algebra given by the quiver Q: 1 — 2 — 3 — 4 with rad® KQ = 0. The
corresponding Auslander algebra A’ is given by the quiver Q'

3 6

A A
o e e e

1 —o1> 2 5 8 —x10> 9
\y as/ \1 ag/
NS N S
7

4

with relations

Q42004544 = Qgi43004545, O4i4+1004i43 = 0
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0,1, and

for ¢

0.

Q910

4 in Theorem 3.8(1), we get #tilt A’ = 70. The basic tilting A’-modules are presented

by the following quiver Q"

Putting n

7o 8
s D99,

6
7TD8D
9

5
8

374 5 2
5 69687@3@6

6

1
2@
3

®97T2:

8
9

6 7
eSOl

5
8

4
5@ 6
6

3
8

2

2@324@657@

1
3

where
T =

2

3

2
3 4.4 5
5 ©°7®

5 8
6DoDI,

6
7TD8D
9

5
8

4
5@ 6
6

3 4.4 5
5 EB687EB

6

1
20
3

@97T4:

8
9

6 7
G L

3 4
5@ 5
6

4
6

8

6

1
20
3

Ty =
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Ts =

T7 =

15

T3

Tos

T

T

131

T33

T3y

2 2

4 5 6 1
3 4 5 7 6 7 — 3
2% 102,000 TOIOIO0 70 Th= 107,

3 3

4 5 4 5 6 78
B0, DsD6 TREDIDEDs,
2 2 s 6 8 9

3 3

2 6 1 2 5 6
2@324@6:7@93@3@3@;@3@9,%:3@324@627@3@687@3692@3@9,

3

2 2 3
1 5 6 1 5 6
— 3 4 5 2 7 6 7 — 3 4 5 2 7 8
0%, 10,0300 TOFO[O0, ®9,Tho =20 '@ 0500 TOSOIOOe,

6

2 3 2 3
1 3 4 6 1 4
§@324@GZ7@3® 5 @g@g@g@g,m:3@354@627@2@ : DEO505D,

[=2]
=)
[}

132y 2 4.3, 4.6 7.6 7 132y 2 4.3, 4.6 7.8
%@ 5 @6 7@2@ g @g@S@ 8 @9’T14:§@ 5 @6 7@2@ g @8@8@9@87
8 6 8

6
2 3 2 3
1 4 3 6 1 4 5 6
3 4 5 5 8 _ 3 4 5 5
20 5 @687@2@2693@6@9@9,T16_§® 5 @687@2@687@8696@6@9,
2 3 2 3
1 4 5 6 1 4 5 6
4 — 4 5 6 7
%@32 @627@2@687@8@2@8@8,1—'18—%@32 @687@2@687@8@6@ g '@,

1324§4567676T_1324§45676
20°:00 0300 TOIOI0% 05 =200, 0100 T050]00s,

2 3 2 3
1 6 3 1 6
3@324@627@3@3@3@2@3@9,T22:3@32469627@3@3@5@;@687@97

2 3 2 3
1 6 1 3 6

374 5 2 7 8 _ 374 5 2 5.0 8
2® 5 @687@3693@8@8@9@87124—%@ : @687693@2@8@6@9@97

2 3 2 3
1 5 6 1 5 6

3 4 5 2 5 — 3 4 5 2 5m 8
g@ ; @687693@687@8@5@6@9,ng g@ 5 69687@3@687@8@6@9@8,

2 3 2 3

1 5 6 1 5 6

20°:106° ;9506 708060 T®9,Tis=260°;"19,°,03606 _1050{0°;70f,
6 8 6 8

3 3

2 2

1 5 6 1 3 4

203, 104°, 0206 TDsDlDiDs, T3 =203,104%, 030 5 ®8D505D0,
3 8 8 8 9 3 8 8 6

Nelo o]
Utw

132, 3 3.4,.6 7.6 7 T—1324§ 3.4 .6 7.8
20°: 1@ 020 5 BIO[0° 700, Tn=20%"0,,0:0 1 050[0]6s,

1.2, 3 3 4 _6 3 1 g%, 03 4 3 4 6 3
%@ g @6 7@5@ (53 @3@2@6@9’T34—§@ g @687@269 (53 @8@2@9698,
3 3 46
§®354@6 D50 5 D8D6®C TP, Ty=203,@s°, 05D 5 @3@5@687@3,

6 6
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Ty

T3

Tys

Tyr

Ts;

T53

Ts7 =

Ts9

T61

T3

Te7

T
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1 2 3
203, 4@ %, @
3 6 8

2 3
1 4 5 6
@2@5@8,T40=3@354@657@2@687@3@2@6@3,
6 8

D5D

U
(o219 1eN)
Nelo o)

1 3%y g 4 5 6 6 7.p6 1 3%y g 4 5 6 556
2@ 5 @6 7@5@6 7@8@6@ 8 @87T42:2@ 5 @6 7@5@6 7698@6@8698’
3702 g’ 67 8 79 3702 g’ 6 8 79

2 3 2 3
1 6 3 1 6 3
— 4 2 8
%@324@62769%@3@8@2@6@9,@;4—%@32 @627693@3@8@2@9@8,

2 3 2 3
1 6 1 6

— 2
%69324@627@§®3@8®6@687@9714G—3@324@627@3693@8@5@687@2’

2 3 2 3
1 6 1 3 6

3 4 5 2 7 a6 - 3 4 5 2 5
%69 : @687®3@3€B8®8@8®8,T48 %@ ; 69687693692693@6@6@9,

2 3 3 6
@324@627@3@3@3@2@3@8,%:

W=

2 3
5 6
D31 D5, DI D6 THDI8D2D6DE,
g 687 3 8 9 6 8

W=

2 3 2 3
5 6 .5 .37 5 2 5 6 6 7Tm6
2@354@627@3@687@3@3@2@8,%2:gea 5 @687@3@687@3@6@ s @S,

1 2 3

324 3 3 4 _6 3 1oa2%, 3 3 4 6 3 g
QEB 5 @6 7@3@ 5 @8@5@6@97T54:2@ 5 @6 7@3@ 5 @8@5@9@8,
3 8 3 6 9 6 3 3 3 6 9 6

2 3 2 3
1 3 4 6 1 3 4 6

4 6 7 — 3 4 5 7 6 7 6
§@35 D5, D30 5 D@6 3 @9, Ths= 20104930 3 030[0°7 @Y,

6 8 6 8

2 3 2 3
1 3 4 6 1 4 3 4 6 3
20°:104°, 930 3 030008, Tis=20":"9",;030 5 ®305068¢,

6 8 6 8

2 3 2 3
1 4 3 4 6 3 1 4 3 4 6
203,105, B50 5 B3P Pe, Teo=203:;1B4%, D50 5 ®8B6DC;"PBE,
3 6 S 6 6 9 6 3 6 S 6 6 9

2 3 2 3
1 4 3 6 1 4 3 6

— 4 5 6
20°%:19:°,050:0800060,T5=20%:;"0,",0:008050§0s,

6 8 6 8
137 g 2 6 .3 6 137 g 2 6 .36
%@ 5 @6 7@3@3@8@2@6@8,T64:%@ 5 @6 7@3@3@8@2@8@8,

6 8 6 8
132y 2 2 6 6 7.p6 132y 2 2m 38 s 6
%@ 5 @6 7@3@3@3696@ 8 @87T66:§@ 5 @6 7693@2@8@6@6@8’

6 8 6 8

2 3 2 3
1 3 6 1 3 4 6 3
203,41 @4%, 03050802 ®8,Tes=2D3,1D4%, 030 5 DeDs5P6dE,
3 3 3 6 9 3 8 s 6 9 76

132, 2 3. .4,.6.3 6 132y 2 3. 4.6 6 Tm6
2@ &) P3Pd 5 BsPs5PIBs,Tp=268 &) S3D 5 D8BeD g Dy
FA 6 9 6 8 37 2 6.7 6 9
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Example 4.2. Let A be an algebra given by the quiver : 1 ——=2 with rad> KQ = 0. The
corresponding Auslander algebra A’ is given by the quiver Q'

2 5 2
0411/ \1 a/ \xr (x-/ \1
J N NS N
4 1 4 1
xl 0610/ \( Ot(,'/ \é 042/
NS N S NS
3 6 3

with relations

0443041 = Olgi4aQaiy2, 4450443 = 0
for any ¢ > 0. Putting n = 2 in Theorem 3.8(2), we get #tilt A’ = 34. The basic tilting A’-modules
are presented by the following quiver Q":

Ty T3 Ty Ts
Ts ' T13 T4
4 ‘,'(’
T Ts ) ’w T12 T1s
Tie Ti7 T1s To2 Tss Tos T2
AN ’«
l \
To1 T24
Tog T31
\ Y
Tag T30 ED) T3
T34
where
i 4 5 g 2 3 2 1 g
Ti=5,°@1&s5 602,°0102 3,Th="1 6165, 682,30 1d2 3,
3 4 6 3 1 6 6 4 6 1
3 6 3 6
1 i 4 5 g 1 2 1 5 6 5 g
Ir=5°@i®s 60 °0id2 3H=",001®5 ¢@ 4 @id2 3,
s SO T SRR EFEE I A



14 ZONGZHEN XIE, HANPENG GAO, AND ZHAOYONG HUANG

H 4 g 2 3 H 4 5 g
=515 ¢602,%0l@2 3,Ts="1" @305 602,304@2 3,
3 6 4 8 1 6 4 8 3 1
3 6 3 6
3 6 3 4 6
2 3 2 1 5 6 5 4 2 3 2 1 9%g 3 4
T7="1 ©1®5 6@ 4 @4P2 3,Jg= 1 &1D5 6L~ ,°D1D2 3,
6 4 3 3 1 6 6 4 8 6 1
3 6 3 6
H 5 g 1 7 6 g
ng3€B§@546@213@4@213,Tm:54669%69546@%@4@213,
3 6 6 3 3 6
3 6 1 3 6
5 64 ! 2 341 4 5 6 ! 653 4
Ty = ©3ds5 6@ @ id2 3,Ti2= Pids5 6D 4 H4D2 3
4 4 1 6 177 4 4 3 177
3 6 6 3 3 6
T 56 § i 4 g
Tis=°,®1®5 60 4 ded2 3,TIu=10105 602,30t d2 3,
3 4 3 1 4 & 1
3 6 3 6
1 3 6 3 6
ste 2 1 1 4 1 6 5 4
Tis5=","®1®5 6D6DsgDd2 3,Tig= 1 ®3dB5 6D 4 D4D2 3,
3 6 4 1 4 3 3 1
3 6 3 6
3 6 3 6
2 3 1 0ty 4 3 2 1 6 4
Tiz= 1 ®3d5 6@ ®1d2 3,Tis="1 P1D>5 6H 4 De6d2 3,
6 4 8 1 6 4 1
3 6 3 6
3 6 3 6
2 1 4 4 1 5 4
Tiy="1 @185 6060102 3,T5=38;85 601D41D2 3,
3 6 3 6
i g i g
Tn=30305602,°0102 3,Tn=",0505 60102 3,
3 6 6 3 3 6
3 4 6 3 6
4 1 2ts 4 6 1 5 6 4
Tos=1d5B5 6D b2 3,Joy=3H4D5 6P 4 H4D2 3
23 3 1 6 y 42 )
4 8 1 3 4 3 1
3 6 3 6
3 6 3 6
5 6 1 6 4 3 2 1 1 4
Tos = ° 4 @4@546@ 4 @6@213,T26=é@é@546@6@6@213,
3 3 6 3 6
3 6 3 6
5 1 1 4 3 1 4
Tor =72, @4@546@6@6®213,T28: 1 @3@546@ 4 @6@9213,
3 3 6 3 6
3 6 3 6
2 3 1 3 4 4 1 6 3 4
Tog="1 ®3®s5 6P6D1D2 3,T30=3D5D5 6P4D1D2 3,
6 4 6 1 4 376 1
3 6 3 6
3 6 3 6
3 4 1 6 4 4 6 1 5 6 4
I31= 10505 6 D4 sD2 3,I35=3P4D5 60 4 D6D2 3,
6 4 3 1 3 4 3 1
3 6 3 6
3 6 3 6
3 1 1 4 6 1 3 4
Tss=1@04D5 606D gP2 3,T34=4P3D5 6P6D1D2 3.
S S
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