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Abstract. Let A′ be the Auslander algebra of a finite dimensional basic connected Nakayama
algebra A with radical cube zero and n simple modules. Then the cardinality #tiltA′ of the set
consisting of isomorphism classes of basic tilting A′-modules is

#tiltA′ =


(1 +

√
2)2n−2 − (1−

√
2)2n−2

2
√
2

, if A is non-self-injective with n ≥ 4;√
[(1 +

√
2)2n − (1−

√
2)2n]2 + 4, if A is self-injective with n ≥ 2.

1. Introduction

Tilting theory is important in representation theory of artin algebras and homological algebra.

There are many related works which made the theory fruitful, see [3, 5, 10] and references therein. In

this theory, tilting modules play a central role. So it is fundamental and important to classify tilting

modules for a given algebra. An effective method to construct tilting modules is given by mutation

[18, 20]. However, the mutation of tilting modules is not always possible. To improve the behavior

of mutation of tilting modules, Adachi, Iyama and Reiten [4] introduced support τ -tilting modules

as a generalization of tilting modules. They showed that the mutation of support τ -tilting modules

is always possible; in particular, τ -tilting modules share many nice properties of tilting modules.

It is showed by Auslander that there is a bijection between classes of representation-finite algebras

and Auslander algebras [6]. There are many works on Auslander algebras. Brüstle, Hille, Ringel

and Röhrle [8] classified tilting modules over the Auslander algebra of K[x]/⟨xn⟩ and showed that

the number of tilting modules is n!. Iyama and Zhang [17] classified τ -tilting modules over the

Auslander algebra of K[x]/⟨xn⟩. Recently, Zhang [21] gave a classification of tilting modules over

Auslander algebras of Nakayama algebras with radical square zero. On the other hand, algebras

with radical cube zero have gained a lot of attention. Hoshino [15] proved the Tachikawa version

of the Nakayama conjecture for algebras with radical cube zero. Erdmann and Solberg [9] classified

all the possible quivers of finite dimensional self-injective algebras with radical cube zero and finite

complexity. Adachi and Aoki [2] calculated the number of two-term tilting complexes over symmetric

algebras with radical cube zero.

In the literature, especially in mathematics and physics, there are a lot of integer numbers, which

are used in almost every field of modern sciences. Admittedly, Pell numbers (sequence A000129 in

OEIS) and Pell-Lucas numbers (sequence A002203 in OEIS) are very essential in the fields of combi-

natorics and number theory. The Pell sequence {Pn} are defined by recurrence Pn = 2Pn−1 + Pn−2

for any n ≥ 2 with P0 = 0 and P1 = 1, and the Pell-Lucas sequence {Qn} by the same recurrence

but with initial conditions Q0 = Q1 = 2. Explicit Binet forms for {Pn} and {Qn} are Pn = αn−βn

α−β

and Qn = αn + βn, where α and β are the roots of the characteristic equation x2 − 2x− 1 = 0. Then
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one gets 8P2
n = Q2

n − 4(−1)n. Further details about Pell and Pell-Lucas sequences can be found in

[7, 11, 12, 13, 14].

In this paper, by virtual of Pell and Pell-Lucas sequences, we will determine the number of iso-

morphism classes of basic tilting modules over Auslander algebras of Nakayama algebras with radical

cube zero. Let A be a finite dimensional algebra over an algebraically closed field. We use tiltA to

denote the set consisting of isomorphism classes of basic tilting modules. For a set X, and use #X

to denote the cardinality of X. The following is our main result.

Theorem 1.1. (Theorem 3.8) Let A be a Nakayama algebra with radical cube zero and n simple

modules, and let A′ be the Auslander algebra of A.

(1) If A is non-self-injective with n ≥ 4, then #tiltA′ = (1+
√
2)2n−2−(1−

√
2)2n−2

2
√
2

.

(2) If A is self-injective with n ≥ 2, then #tiltA′ =
√
[(1 +

√
2)2n − (1−

√
2)2n]2 + 4.

We also give two examples to illustrate this result.

2. Preliminaries

Throughout this paper, A is a finite dimensional algebra over an algebraically closed field K and

τ the Auslander-Reiten translation. We use modA to denote the category of finitely generated left

A-modules and use gl.dim A to denote the global dimension of A. For a module T ∈ modA, we use

addT to denote the subcategory of modA consisting of direct summands of finite direct sums of T .

Recall that a module T ∈ modA is called (classical) tilting if the projective dimension of T is at

most one, Ext1A(T, T ) = 0 and there is an exact sequence 0 → A → T0 → T1 → 0 in modA with T0

and T1 in addT . Also recall that A is called a Nakayama algebra if it is both right and left serial, that

is, every indecomposable projective module and every indecomposable injective module in modA are

uniserial.

Proposition 2.1. ([5, Chapter V, Theorem 3.2]) A basic and connected algebra A is a Nakayama

algebra if and only if its ordinary quiver QA is one of the following two quivers:

(1) 1 → 2 → 3 → · · · → n− 1 → n;

(2)

2
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��

n
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��=
==

==
==

= n− 1

OO

5 // 6

(with n ≥ 1 vertices).

We use |T | to denote the number of pairwise non-isomorphic indecomposable direct summands of

T .

Definition 2.2. ([4, 19]) Let T be in modA.

(1) T is called τ -rigid if HomA(T, τT ) = 0, and T is called τ -tilting if T is τ -rigid and |T | = |A|.
(2) T is called support τ -tilting if there exists an idempotent e of A such that T is a τ -tilting A/⟨e⟩-

module.



TILTING MODULES OVER AUSLANDER ALGEBRAS OF NAKAYAMA ALGEBRAS WITH RADICAL CUBE ZERO3

We use projA to denote the full subcategory of modA consisting of projective modules. Sometimes,

it is convenient to view support τ -tilting modules and τ -rigid modules as certain pairs of modules in

modA.

Definition 2.3. Let (T, P ) be a pair with T ∈ modA and P ∈ projA.

(1) (T, P ) is called a τ -rigid pair if T is τ -rigid and HomA(P, T ) = 0.

(2) (T, P ) is called a support τ -tilting pair if (T, P ) is τ -rigid and |T |+ |P | = |A|.

We use sτ -tiltA to denote the set of isomorphism classes of basic support τ -tilting modules in

modA. For a module M ∈ modA, we use FacM to denote the full subcategory of modA consisting

of modules isomorphic to factor modules of finite direct sums of copies of M .

Definition 2.4. ([4]) Let T,U ∈ sτ -tiltA. We call T a mutation of U if they have the same inde-

composable direct summands except one. Precisely speaking, there are three cases:

(1) T = V ⊕X and U = V ⊕ Y with X � Y indecomposable;

(2) T = U ⊕X with X indecomposable;

(3) U = T ⊕X with X indecomposable.

Moreover, we call T a left mutation (resp. right) mutation of U if FacT ( FacU (resp. FacT ) FacU),

and write T = µ−
X(U) (resp. T = µ+

X(U)).

The following result [4, Theorem 2.30] gives a method for computing left mutations. For the

convenience, we recall the definition of the Bongartz completion. For a τ -rigid A-module U , we have

that T := P(⊥(τU)) is a τ -tilting A-module which is called a Bongartz completion of U satisfying U ∈
addT and ⊥(τT ) = FacT , where P(⊥(τU)) is the direct sum of one copy of each of the indecomposable

Ext-projective objects in ⊥(τU) up to isomorphism.

Lemma 2.5. Let T = X ⊕U be a basic τ -tilting module which is the Bongartz completion of U with

X indecomposable. Let

X
f−→ U ′ g−→ Y → 0

be an exact sequence with f the minimal left addU -approximation. Then we have

(1) If U is not sincere, then Y = 0. In this case, U = µ−
X(T ) holds and it is a basic support τ -tilting

A-module that is not τ -tilting.

(2) If U is sincere, then Y is a direct sum of finite copies of an indecomposable A-module Y1 and is

not in addT . In this case, Y1 ⊕ U = µ−
X(T ) holds and it is a basic τ -tilting A-module.

We use Kb(projA) to denote the bounded homotopy category of projA.

Definition 2.6. ([4]) Let P be a complex in Kb(projA).

(1) P is called presilting if HomKb(projA)(P, P [n]) = 0 for any n ≥ 1.

(2) P is called silting if it is presilting and generates Kb(projA) by taking direct sums, direc-

t summands, shifts and mapping cones. In addition, it is called tilting if it is also satisfies

HomKb(projA)(P, P [n]) = 0 for all non-zero integers n.

(3) P is called two-term silting if it isomorphic to a complex concentrated in degree 0 and −1 in

Kb(projA).

We use 2-siltA to denote the set of isomorphism classes of basic two-term silting complexes in

Kb(projA).

Lemma 2.7. ([4, Theorem 3.2]) There exists a bijection

2-siltA ↔ sτ -tiltA

given by 2-siltA ∋ P 7→ H0(P ) ∈ sτ -tiltA and sτ -tiltA ∋ (T, P ) 7→ (P1 ⊕ P
(f 0)−−−→ P0) ∈ 2-siltA,

where f : P1 → P0 is a minimal projective presentation of T .
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3. Main result

We begin with the following definition.

Definition 3.1. ([1, Definition 3.2]) Let Ω = (Ω,≥) be a poset and N a subposet of Ω.

(1) We define a new poset ΩN = (ΩN,≥N) as follows, where N+ := {n+ | n ∈ N} is a copy of N, and

ω1, ω2 ∈ Ω \N and n1, n2 ∈ N are arbitrary elements:

ΩN := Ω
⨿

N+,

ω1 ≥N ω2 :⇔ ω1 ≥ ω2, n1 ≥N n2 :⇔ n1 ≥ n2,

ω1 ≥N n1 :⇔ ω1 ≥ n1, n1 ≥N ω1 :⇔ n1 ≥ ω1,

n+
1 ≥N ω1 :⇔ n1 ≥ ω1, n+

1 ≥N n2 :⇔ n1 ≥ n2,

ω1 ≥N n+
1 :⇔ ω1 ≥ n1, n+

1 ≥N n+
2 :⇔ n1 ≥ n2.

In particular, n1 ≥N n+
2 never holds. It is easily to check that (ΩN,≥N) forms a poset.

(2) Let H(Ω) := (Ω,Ha) be the Hasse quiver of Ω. We define a new quiver H(Ω)N := (ΩN,HN
a ) as

follows, where ω1, ω2 are arbitrary elements in Ω \ N and n1, n2 are arbitrary elements in N:

HN
a = {ω1 → ω2 | ω1 → ω2 in Ha}

⨿
{n2 → ω2 | n2 → ω2 in Ha}⨿

{n1 → n2, n+
1 → n+

2 | n1 → n2 in Ha}⨿
{ω1 → n+

1 | ω1 → n1 in Ha}
⨿

{n+
1 → n1 | n1 ∈ Ω}.

It is easy to check that H(ΩN) = H(Ω)N holds.

Assume that A has an indecomposable projective-injective summand L as an A-module. Moreover,

let S := socL and A := A/S. Consider the functor

(−) := −⊗A A : modA → modA.

Then L = L/S. Note that, for every indecomposable A-module M ̸≃ L, so we have an isomorphism

M ≃ M as A-modules.

Now let N := {N ∈ sτ -tiltA | L ∈ addN and HomA(N,L) = 0}. Applying Definition 3.1, we

have a poset (sτ -tiltA)N . For any A-module M , we denote by α(M) a basic A-module satisfying

addα(M) = addM .

Lemma 3.2. ([1, Theorem 3.3(1)]) Let L be an indecomposable projective-injective summand of A

as an A-module. Then there is an isomorphism of posets

sτ -tiltA → (sτ -tiltA)N

given by M 7→ α(M). In particular, we have an isomorphism of Hasse quivers

H(A) ≃ H(A)N .

By the definition of (sτ -tiltA)N , we have

#(sτ -tiltA)N = #sτ -tiltA+#N .

It follows from Lemma 3.2 that

#sτ -tiltA = #sτ -tiltA+#N .

This equality will be crucial in proving our main result.

For an algebra A, assume that

0 → A → I0(A) → I1(A) → · · · → Ii(A) → · · ·

is the minimal injective resolution of AA.
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Lemma 3.3. ([16, Theorem 4.5]) Let I0(A) be projective and e an idempotent of A such that addeA =

addI0(A). Then the tensor functor −⊗A A/⟨e⟩ induces a bijection from tiltA to sτ -tiltA/⟨e⟩.

Recall that A is called an Auslander algebra if gl.dim A ≤ 2 and both I0(A) and I1(A) are

projective. Let A be representation-finite with M an additive generator for modA. Then A′ :=

EndA(M) is an Auslander algebra [6]. In this case, A′ is called the Auslander algebra of A.

In the rest of this section, A is a basic connected Nakayama algebra with radical cube zero and

n simple modules, A′ is the Auslander algebra of A and A′ := A′/⟨e⟩ where addeA′ = addI0(A′)

with e an idempotent of A′. The following result gives the structure of A′, which is induced from

Proposition 2.1 directly.

Proposition 3.4.

(1) If A is non-self-injective with n ≥ 4, then A′ is given by the following quiver Q′:

1 2

3

4

5

6

7

8 ··· 3n−7

3n−6

3n−5

3n−4 3n−3α1 //
α2zzz

<<zzz

α3

DDD

""DD
D

α4

DDD

""DD
D

α5zzz

<<zzz

α6zzz

<<zzz

α7

DDD

""DD
D

α8

DDD

""DD
D

α9zzz

<<zzz

α4n−10zz

<<zz

α4n−9

DD

""D
D

α4n−8

DD

""D
D

α4n−7zz

<<zz
α4n−6 //

with relations

α4i+2α4i+4 = α4i+3α4i+5, α4i+1α4i+3 = 0

for any 0 ≤ i ≤ n− 3 and

α4n−7α4n−6 = 0.

(2) If A is self-injective with n ≥ 2, then A′ is given by the following quiver Q′:

··· 4

2

3

1

3n−1

3n

3n−2 ··· 4

2

3

1 ···

α4n+3zzz

<<zzz

α4n+4

DDD

""DD
D

α4n+1

DDD

""DD
D

α4n+2zzz

<<zzz

α4n−1zzz

<<zz

α4n

DDD

""DD
D

α4n−3

DD

""D
D

α4n−2zzz

<<zz

α3zzz

<<zzz

α4

DDD

""DD
D

α1

DDD

""DD
D

α2zzz

<<zzz

with relations

α4i+3α4i+1 = α4i+4α4i+2, α4i+5α4i+3 = 0

for any i ≥ 0.

The following proposition is quite essential for the main result.

Proposition 3.5.

(1) If A is non-self-injective with n ≥ 4, then A′ is given by the following quiver Q′′:

1 → 2 → 3 → · · · → 2n− 4 → 2n− 3

with rad2 KQ′′ = 0.



6 ZONGZHEN XIE, HANPENG GAO, AND ZHAOYONG HUANG

(2) If A is self-injective with n ≥ 2, then A′ is given by the following quiver Q′′:

2

����
��
��
��

1oo

3

��

2n

bbFFFFFFFFF

4

��=
==

==
==

= 2n− 1

OO

5 // 6

with rad2 KQ′′ = 0.

The following proposition gives some properties of indecomposable direct summands of tilting

A′-modules.

Proposition 3.6. Let T be a tilting module in modA′. Then we have

(1) The number of indecomposable projective-injective direct summands of T is n.

(2) The simple direct summand of T is either projective or a simple socle of an indecomposable

projective A′-module.

(3) For any indecomposable non-projective-injective direct summand M of T , the Loewy length of M ′

which is the mutation of T on M is at most three.

Proof. (1) By Proposition 3.4, we can easily get the number of indecomposable projective-injective di-

rect summands of T . Since T is faithful, we have an epimorphism Tn � DA′, where D = HomK(−,K)

is the ordinary dual. If P is an indecomposable projective-injective module, then P is a direct sum-

mand of T .

If A is non-self-injective with n(≥ 4) simple modules, then A′ has 3n− 3 simple modules and the

indecomposable projective-injective modules are P (1), P (2), P (3), P (6), · · · , P (3n − 6). If A is

self-injective with n(≥ 2) simple modules, then A′ has 3n simple modules and the indecomposable

projective-injective modules are P (3), P (6), · · · , P (3n).

(2) If A is non-self-injective with n(≥ 4) simple modules, then for any indecomposable projective

module P ∈ modA′, socP is either S(3n− 4) or S(3i− 3) with 2 ≤ i ≤ n. Then by Lemma 2.5, we

can verify directly that the simple direct summand of T is either projective or a simple socle of an

indecomposable projective A′-module.

If A is self-injective with n(≥ 2) simple modules, then for any indecomposable projective module

P ∈ modA′, socP = S(3i) with 1 ≤ i ≤ n. Then by Lemma 2.5, we can verify directly that the

simple direct summand of T is a simple socle of an indecomposable projective A′-module.

(3) If A is non-self-injective, then the quiver Q′ of A′ is as in Proposition 3.4(1). The indecompos-

able projective modules in modA′ are as follows:

P (1) =
1
2
3
, P (2) =

2
3 4
5
6

, P (3) =
3
5

6 7
8
9

, P (4) =
4
5
6
, P (5) =

5
6 7
8
9

, P (6) =
6
8

9 10
11
12

, P (7) =
7
8
9
, · · ·

P (3n− 7) =
3n−7

3n−6 3n−5
3n−4

, P (3n− 6) =
3n−6
3n−4
3n−3

, P (3n− 5) = 3n−5
3n−4 ,

P (3n− 4) = 3n−4
3n−3 , P (3n− 3) = 3n−3.
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By Proposition 3.5(1), the quiver Q′′ of A′ is as follows:

4

5

7

8 ··· 3n−7

3n−5

3n−4 3n−3<<zzzzzz ""D
DD

DD
D <<zzzzzz ""D

DD
DD

D <<zzzzzz

//

with the relation rad2 KQ′′ = 0. The indecomposable projective modules in modA′ are as follows:

P ′(4) = 4
5 , P ′(5) = 5

7 , P ′(7) = 7
8 , · · · , P ′(3n− 7) = 3n−7

3n−5 , P ′(3n− 5) = 3n−5
3n−4 ,

P ′(3n− 4) = 3n−4
3n−3 , P ′(3n− 3) = 3n−3 .

The maximal tilting A′-module is

T = P (1)⊕ P (2)⊕ P (3)⊕ · · · ⊕ P (3n− 3).

By (1), the indecomposable projective-injective direct summands of T are

P (1), P (2), P (3), P (6), · · · , P (3n− 6).

The maximal support τ -tilting A′-module is

T ′ = P ′(4)⊕ P ′(5)⊕ P ′(7)⊕ · · · ⊕ P ′(3n− 3).

For any i ∈ {3j− 2, 3j− 1, 3n− 3 | 2 ≤ j ≤ n− 1}, we have a correspondence between P (i) and P ′(i)

by Lemma 3.3. Let L be an indecomposable direct summand of T ′. Then there exists a module L′

which is the mutation of T ′ on L by Lemma 2.5. We have that the Lowey length of L is at most two

and the Lowey length of L′ is at most one. Thus, if M is an indecomposable non-projective-injective

direct summand of T . Then there exists a module M ′ which is the mutation of T on M . We have

that the Lowey length of M is at most four and the Lowey length of M ′ is at most three.

If A is self-injective, then the quiver Q′ of A′ is as in Proposition 3.4(2). The indecomposable

projective modules in modA′ are as follows:

P (1) =
1

3n−1 3n
3n−2
3n−3

, P (2) =
2
1
3n

, P (3) =

3
1

3n−1 3n
3n−2
3n−3

, P (4) =
4

2 3
1
3n

, P (5) =
5
4
3
, P (6) =

6
4

2 3
1
3n

, · · ·

P (3n−3) =

3n−3
3n−5

3n−7 3n−6
3n−8
3n−9

, P (3n−2) =
3n−2

3n−4 3n−3
3n−5
3n−6

, P (3n−1) =
3n−1
3n−2
3n−3

, P (3n) =

3n
3n−2

3n−4 3n−3.
3n−5
3n−6

By Proposition 3.5(2), the quiver Q′′ of A′ is as follows:

1

yysss
ss
ss
ss
s 2oo

3n− 1

��

4

bbFFFFFFFFFF

3n− 2

%%KK
KK

KK
KK

K 5

OO

3n− 4 // 3n− 5

with the relation rad2 KQ′′ = 0. The indecomposable projective modules in modA′ are as follows:

P ′(1) = 1
3n−1 , P ′(2) = 2

1 , P ′(4) = 4
2 , · · · , P ′(3n− 2) = 3n−2

3n−4 , P ′(3n− 1) = 3n−1
3n−2 .

The maximal tilting A′-module is

T = P (1)⊕ P (2)⊕ P (3)⊕ · · · ⊕ P (3n).
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By (1), the indecomposable projective-injective direct summands of T are as follows:

P (3), P (6), · · · , P (3n).

The maximal support τ -tilting A′-module is

T ′ = P ′(1)⊕ P ′(2)⊕ P ′(4)⊕ · · · ⊕ P ′(3n− 1).

For any i ∈ {3j−2, 3j−1 | 1 ≤ j ≤ n}, we have a correspondence between P (i) and P ′(i) by Lemma

3.3. Let L be an indecomposable direct summand of T ′. Then there exists a module L′ which is the

mutation of T ′ on L by Lemma 2.5. We have that the Lowey length of L is two and the Lowey length

of L′ is at most one. Thus, if M is an indecomposable non-projective-injective direct summand of T

and M ′ is the module which is the mutation of T on M , then the Lowey length of M is at most four

and the Lowey length of M ′ is at most three. �

The following proposition calculates the number of support τ -tilting modules in modA′.

Proposition 3.7.

(1) If A is non-self-injective with n ≥ 4, then #sτ -tiltA′ = (1+
√
2)2n−2−(1−

√
2)2n−2

2
√
2

.

(2) If A is self-injective with n ≥ 2, then #sτ -tiltA′ =
√

[(1 +
√
2)2n − (1−

√
2)2n]2 + 4.

Proof. We only need to prove the case of radical square zero Nakayama algebra A by Lemma 3.3 and

Proposition 3.5. Set Pn := #sτ -tiltA.

(1) If A is non-self-injective, then the quiver Q of A is

1 → 2 → 3 → · · · → m− 1 → m

with the relation rad2 KQ = 0. Let L = 1
2 be an indecomposable projective-injective summand of A.

Then socL = 2, L = 1 and A = A/ socL is given by the following quiver:

1, 2 → 3 → · · · → m− 1 → m.

Thus #sτ -tiltA = 2Pm−1.

By calculating N := {N ∈ sτ -tiltA | L ∈ addN and HomA(N,L) = 0}, we get that the set N
contains the module 1 but does not contain modules 2, 1

2 and 2
3 . So we have #N = Pm−2, and

hence Pm = 2Pm−1 + Pm−2 by Lemma 3.2. It is a Pell-sequence (sequence A000129 in OEIS) and

Pm = (1+
√
2)m+1−(1−

√
2)m+1

2
√
2

. By letting m = 2n− 3, we get the desired assertion.

(2) If A is self-injective, then the quiver Q of A is

2

����
��
��
��

1oo

3

��

m

bbEEEEEEEEE

4

��=
==

==
==

= m− 1

OO

5 // 6
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with the relation rad2 KQ = 0. Let L = 1
2 be an indecomposable projective-injective summand of A.

Then socL = 2, L = 1 and A = A/socL is given by the following quiver:

2

����
��
��
��

1

3

��

m

bbEEEEEEEEE

4

��=
==

==
==

= m− 1

OO

5 // 6

Thus #sτ -tiltA = Pm.

Similar to (1), we have #N = Pm−2, and hence Qm = Pm + Pm−2. Applying Pm = 2Pm−1 + Pm−2

from (1), we get Qm = 2Qm−1 +Qm−2. It is a Pell-Lucas sequence (sequence A002203 in OEIS) and

Qm =

√
[(1 +

√
2)m − (1−

√
2)m]2 + 4(−1)m.

By letting m = 2n, we get the desired assertion. �

We now are in a position to give the main result.

Theorem 3.8.

(1) If A is non-self-injective with n ≥ 4, then #tiltA′ = (1+
√
2)2n−2−(1−

√
2)2n−2

2
√
2

.

(2) If A is self-injective with n ≥ 2, then #tiltA′ =
√

[(1 +
√
2)2n − (1−

√
2)2n]2 + 4.

Proof. Using the correspondence in Lemma 3.3, we can see that the number of tilting modules in

modA′ is equal to the number of support τ -tilting modules in modA′ which we have proved in

Proposition 3.7. �

As a consequence, we have the following corollary.

Corollary 3.9.

(1) If A is non-self-injective with n ≥ 4, then #2-siltA′ = (1+
√
2)2n−2−(1−

√
2)2n−2

2
√
2

.

(2) If A is self-injective with n ≥ 2, then #2-siltA′ =
√

[(1 +
√
2)2n − (1−

√
2)2n]2 + 4.

Proof. This follows from Lemma 2.7 and Proposition 3.7. �

4. Examples

In this section, we give two examples to illustrate the theorem in Section 3.

Example 4.1. Let A be an algebra given by the quiver Q: 1 → 2 → 3 → 4 with rad3 KQ = 0. The

corresponding Auslander algebra A′ is given by the quiver Q′:

1 2

3

4

5

6

7

8 9α1 //
α2zzz

<<zzz

α3

DDD

""DD
D

α4

DDD

""DD
D

α5zzz

<<zzz

α6zzz

<<zzz

α7

DDD

""DD
D

α8

DDD

""DD
D

α9zzz

<<zzz
α10 //

with relations

α4i+2α4i+4 = α4i+3α4i+5, α4i+1α4i+3 = 0
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for i = 0, 1, and

α9α10 = 0.

Putting n = 4 in Theorem 3.8(1), we get #tiltA′ = 70. The basic tilting A′-modules are presented

by the following quiver Q′′:

T1

T2 T3 T4 T5 T6

T7 T8 T9 T10

T11

T12 T13 T14

T15

T16 T17

T18

T19

T20

T21 T22 T23

T24

T25 T26

T27

T28

T29 T30 T31 T32

T33 T34

T35

T36

T37 T38 T39

T40

T42T41

T43

T44

T45

T46

T47 T48 T49

T50

T51 T52 T53 T54

T55

T56

T57

T58

T59 T60T61

T62

T63

T64 T65

T66 T67

T68

T69 T70

ssggggg
ggggg

ggggg
ggggg

wwooo
ooo

ooo

����
��
�

''OO
OOO

OOO
O

**VVV
VVVV

VVVV
VVVV

VV

||zz
zz
zz
zz
zz
zz
zz
zz
zz
z

����
��
��
��
��
��
��
��

		��
��
��
��
��
��
�

��

��
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where

T1 =
1
2
3
⊕

2
3 4
5
6

⊕
3
5

6 7
8

⊕ 4
5
6
⊕ 5

6 7
8

⊕ 6
8
9
⊕ 7

8 ⊕ 8
9 ⊕ 9 , T2 =

1
2
3
⊕

2
3 4
5
6

⊕
3
5

6 7
8

⊕ 2
3 ⊕

5
6 7
8

⊕ 6
8
9
⊕ 7

8 ⊕ 8
9 ⊕ 9 ,

T3 =
1
2
3
⊕

2
3 4
5
6

⊕
3
5

6 7
8

⊕ 4
5
6
⊕ 3 4

5
6

⊕ 6
8
9
⊕ 7

8 ⊕ 8
9 ⊕ 9 , T4 =

1
2
3
⊕

2
3 4
5
6

⊕
3
5

6 7
8

⊕ 4
5
6
⊕ 5

6 7
8

⊕ 6
8
9
⊕ 5

6 ⊕ 8
9 ⊕ 9 ,
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T5 =
1
2
3
⊕

2
3 4
5
6

⊕
3
5

6 7
8

⊕ 4
5
6
⊕ 5

6 7
8

⊕ 6
8
9
⊕ 7

8 ⊕ 6 7
8 ⊕ 9 , T6 =

1
2
3
⊕

2
3 4
5
6

⊕
3
5

6 7
8

⊕ 4
5
6
⊕ 5

6 7
8

⊕ 6
8
9
⊕ 7
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9 ⊕ 8 ,

T7 =
1
2
3
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3 4
5
6

⊕
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5

6 7
8
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8
9
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3 4
5
6

⊕
3
5
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8
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8
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9
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9 ⊕ 9 ,
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3
⊕
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5
6
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5
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8
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9
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5
6
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5
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8

⊕ 2
3 ⊕

5
6 7
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3 4
5
6
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3
5

6 7
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5
6
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8
9
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T13 =
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⊕
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8

⊕ 2
3⊕

5
6 7
8

⊕ 6
8
9
⊕ 7

8⊕ 6 7
8 ⊕ 6

8 ,

T29 =
1
2
3
⊕

2
3 4
5
6

⊕
3
5

6 7
8

⊕ 2
3 ⊕

5
6 7
8

⊕ 6
8
9
⊕ 7

8 ⊕ 6
8 ⊕ 8 , T30 =

1
2
3
⊕

2
3 4
5
6

⊕
3
5

6 7
8

⊕ 3 ⊕ 3 4
5
6

⊕ 6
8
9
⊕ 3

5
6
⊕ 8

9 ⊕ 9 ,

T31 =
1
2
3
⊕

2
3 4
5
6

⊕
3
5

6 7
8

⊕ 3 ⊕ 3 4
5
6

⊕ 6
8
9
⊕ 7

8 ⊕ 6 7
8 ⊕ 9 , T32 =

1
2
3
⊕

2
3 4
5
6

⊕
3
5

6 7
8

⊕ 3 ⊕ 3 4
5
6

⊕ 6
8
9
⊕ 7

8 ⊕ 8
9 ⊕ 8 ,

T33 =
1
2
3
⊕

2
3 4
5
6

⊕
3
5

6 7
8

⊕ 4
5
6
⊕ 3 4

5
6

⊕ 6
8
9
⊕ 3

5
6
⊕ 6 ⊕ 9 , T34 =

1
2
3
⊕

2
3 4
5
6

⊕
3
5

6 7
8

⊕ 4
5
6
⊕ 3 4

5
6

⊕ 6
8
9
⊕ 3

5
6
⊕ 8

9 ⊕ 8 ,

T35 =
1
2
3
⊕

2
3 4
5
6

⊕
3
5

6 7
8

⊕ 4
5
6
⊕ 3 4

5
6

⊕ 6
8
9
⊕ 6⊕ 6 7

8 ⊕ 9 , T36 =
1
2
3
⊕

2
3 4
5
6

⊕
3
5

6 7
8

⊕ 4
5
6
⊕ 3 4

5
6

⊕ 6
8
9
⊕ 7

8⊕ 6 7
8 ⊕ 6

8 ,

T37 =
1
2
3
⊕

2
3 4
5
6

⊕
3
5

6 7
8

⊕ 4
5
6
⊕ 3 4

5
6

⊕ 6
8
9
⊕ 7

8 ⊕ 6
8 ⊕ 8 , T38 =

1
2
3
⊕

2
3 4
5
6

⊕
3
5

6 7
8

⊕ 4
5
6
⊕ 3

5
6
⊕ 6

8
9
⊕ 5

6 ⊕ 6 ⊕ 9 ,
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T39 =
1
2
3
⊕

2
3 4
5
6

⊕
3
5

6 7
8

⊕ 4
5
6
⊕ 3

5
6
⊕ 6

8
9
⊕ 5

6 ⊕ 8
9 ⊕ 8 , T40 =

1
2
3
⊕

2
3 4
5
6

⊕
3
5

6 7
8

⊕ 4
5
6
⊕ 5

6 7
8

⊕ 6
8
9
⊕ 5

6 ⊕ 6 ⊕ 6
8 ,

T41 =
1
2
3
⊕

2
3 4
5
6

⊕
3
5

6 7
8

⊕ 4
5
6
⊕ 5

6 7
8

⊕ 6
8
9
⊕ 6 ⊕ 6 7

8 ⊕ 6
8 , T42 =

1
2
3
⊕

2
3 4
5
6

⊕
3
5

6 7
8

⊕ 4
5
6
⊕ 5

6 7
8

⊕ 6
8
9
⊕ 5

6 ⊕ 6
8 ⊕ 8 ,

T43 =
1
2
3
⊕

2
3 4
5
6

⊕
3
5

6 7
8

⊕ 2
3 ⊕ 3 ⊕ 6

8
9
⊕ 3

5
6
⊕ 6 ⊕ 9 , T44 =

1
2
3
⊕

2
3 4
5
6

⊕
3
5

6 7
8

⊕ 2
3 ⊕ 3 ⊕ 6

8
9
⊕ 3

5
6
⊕ 8

9 ⊕ 8 ,

T45 =
1
2
3
⊕

2
3 4
5
6

⊕
3
5

6 7
8

⊕ 2
3 ⊕ 3 ⊕ 6

8
9
⊕ 6 ⊕ 6 7

8 ⊕ 9 , T46 =
1
2
3
⊕

2
3 4
5
6

⊕
3
5

6 7
8

⊕ 2
3 ⊕ 3 ⊕ 6

8
9
⊕ 7

8 ⊕ 6 7
8 ⊕ 6

8 ,

T47 =
1
2
3
⊕

2
3 4
5
6

⊕
3
5

6 7
8

⊕ 2
3 ⊕ 3 ⊕ 6

8
9
⊕ 7

8 ⊕ 6
8 ⊕ 8 , T48 =

1
2
3
⊕

2
3 4
5
6

⊕
3
5

6 7
8

⊕ 2
3 ⊕ 3

5
6
⊕ 6

8
9
⊕ 5

6 ⊕ 6 ⊕ 9 ,

T49 =
1
2
3
⊕

2
3 4
5
6

⊕
3
5

6 7
8

⊕ 2
3 ⊕ 3

5
6
⊕ 6

8
9
⊕ 5

6 ⊕ 8
9 ⊕ 8 , T50 =

1
2
3
⊕

2
3 4
5
6

⊕
3
5

6 7
8

⊕ 2
3 ⊕ 5

6 7
8

⊕ 6
8
9
⊕ 5

6 ⊕ 6 ⊕ 6
8 ,

T51 =
1
2
3
⊕

2
3 4
5
6

⊕
3
5

6 7
8

⊕ 2
3 ⊕

5
6 7
8

⊕ 6
8
9
⊕ 5

6 ⊕ 6
8 ⊕ 8 , T52 =

1
2
3
⊕

2
3 4
5
6

⊕
3
5

6 7
8

⊕ 2
3 ⊕

5
6 7
8

⊕ 6
8
9
⊕ 6 ⊕ 6 7

8 ⊕ 6
8 ,

T53 =
1
2
3
⊕

2
3 4
5
6

⊕
3
5

6 7
8

⊕ 3 ⊕ 3 4
5
6

⊕ 6
8
9
⊕ 3

5
6
⊕ 6 ⊕ 9 , T54 =

1
2
3
⊕

2
3 4
5
6

⊕
3
5

6 7
8

⊕ 3 ⊕ 3 4
5
6

⊕ 6
8
9
⊕ 3

5
6
⊕ 8

9 ⊕ 8 ,

T55 =
1
2
3
⊕

2
3 4
5
6

⊕
3
5

6 7
8

⊕ 3⊕ 3 4
5
6

⊕ 6
8
9
⊕ 6⊕ 6 7

8 ⊕ 9 , T56 =
1
2
3
⊕

2
3 4
5
6

⊕
3
5

6 7
8

⊕ 3⊕ 3 4
5
6

⊕ 6
8
9
⊕ 7

8⊕ 6 7
8 ⊕ 6

8 ,

T57 =
1
2
3
⊕

2
3 4
5
6

⊕
3
5

6 7
8

⊕ 3 ⊕ 3 4
5
6

⊕ 6
8
9
⊕ 7

8 ⊕ 6
8 ⊕ 8 , T58 =

1
2
3
⊕

2
3 4
5
6

⊕
3
5

6 7
8

⊕ 4
5
6
⊕ 3 4

5
6

⊕ 6
8
9
⊕ 3

5
6
⊕ 6 ⊕ 6

8 ,

T59 =
1
2
3
⊕

2
3 4
5
6

⊕
3
5

6 7
8

⊕ 4
5
6
⊕ 3 4

5
6

⊕ 6
8
9
⊕ 3

5
6
⊕ 6

8 ⊕ 8 , T60 =
1
2
3
⊕

2
3 4
5
6

⊕
3
5

6 7
8

⊕ 4
5
6
⊕ 3 4

5
6

⊕ 6
8
9
⊕ 6 ⊕ 6 7

8 ⊕ 6
8 ,

T61 =
1
2
3
⊕

2
3 4
5
6

⊕
3
5

6 7
8

⊕ 4
5
6
⊕ 3

5
6
⊕ 6

8
9
⊕ 5

6 ⊕ 6 ⊕ 6
8 , T62 =

1
2
3
⊕

2
3 4
5
6

⊕
3
5

6 7
8

⊕ 4
5
6
⊕ 3

5
6
⊕ 6

8
9
⊕ 5

6 ⊕ 6
8 ⊕ 8 ,

T63 =
1
2
3
⊕

2
3 4
5
6

⊕
3
5

6 7
8

⊕ 2
3 ⊕ 3 ⊕ 6

8
9
⊕ 3

5
6
⊕ 6 ⊕ 6

8 , T64 =
1
2
3
⊕

2
3 4
5
6

⊕
3
5

6 7
8

⊕ 2
3 ⊕ 3 ⊕ 6

8
9
⊕ 3

5
6
⊕ 6

8 ⊕ 8 ,

T65 =
1
2
3
⊕

2
3 4
5
6

⊕
3
5

6 7
8

⊕ 2
3 ⊕ 3 ⊕ 6

8
9
⊕ 6 ⊕ 6 7

8 ⊕ 6
8 , T66 =

1
2
3
⊕

2
3 4
5
6

⊕
3
5

6 7
8

⊕ 2
3 ⊕ 3

5
6
⊕ 6

8
9
⊕ 5

6 ⊕ 6 ⊕ 6
8 ,

T67 =
1
2
3
⊕

2
3 4
5
6

⊕
3
5

6 7
8

⊕ 2
3 ⊕ 3

5
6
⊕ 6

8
9
⊕ 5

6 ⊕ 6
8 ⊕ 8 , T68 =

1
2
3
⊕

2
3 4
5
6

⊕
3
5

6 7
8

⊕ 3 ⊕ 3 4
5
6

⊕ 6
8
9
⊕ 3

5
6
⊕ 6 ⊕ 6

8 ,

T69 =
1
2
3
⊕

2
3 4
5
6

⊕
3
5

6 7
8

⊕ 3 ⊕ 3 4
5
6

⊕ 6
8
9
⊕ 3

5
6
⊕ 6

8 ⊕ 8 , T70 =
1
2
3
⊕

2
3 4
5
6

⊕
3
5

6 7
8

⊕ 3 ⊕ 3 4
5
6

⊕ 6
8
9
⊕ 6 ⊕ 6 7

8 ⊕ 6
8 .



TILTING MODULES OVER AUSLANDER ALGEBRAS OF NAKAYAMA ALGEBRAS WITH RADICAL CUBE ZERO13

Example 4.2. Let A be an algebra given by the quiver Q: 1 // 2oo with rad3 KQ = 0. The

corresponding Auslander algebra A′ is given by the quiver Q′:

··· 4

2

3

1

5

6

4

2

3

1 ···

α11zzz

<<zzz

α12

DDD
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D
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DDD
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α10zzz
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with relations

α4i+3α4i+1 = α4i+4α4i+2, α4i+5α4i+3 = 0

for any i ≥ 0. Putting n = 2 in Theorem 3.8(2), we get #tiltA′ = 34. The basic tilting A′-modules

are presented by the following quiver Q′′:

T1

T2 T3 T4 T5

T6

T7 T8 T9

T10

T11 T12

T13 T14

T15

T16 T17 T18

T19
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T25 T26
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where

T1 =
1

5 6
4
3

⊕ 2
1
6
⊕

3
1

5 6
4
3

⊕
4

2 3
1
6

⊕ 5
4
3
⊕

6
4

2 3
1
6

, T2 =
2 3
1
6

⊕ 2
1
6
⊕

3
1

5 6
4
3

⊕
4

2 3
1
6

⊕ 5
4
3
⊕

6
4

2 3
1
6

,

T3 =
1

5 6
4
3

⊕ 4
3 ⊕

3
1

5 6
4
3

⊕
4

2 3
1
6

⊕ 5
4
3
⊕

6
4

2 3
1
6

, T4 =
1

5 6
4
3

⊕ 2
1
6
⊕

3
1

5 6
4
3

⊕ 5 6
4
3

⊕ 5
4
3
⊕

6
4

2 3
1
6

,
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T5 =
1

5 6
4
3

⊕ 2
1
6
⊕

3
1

5 6
4
3

⊕
4

2 3
1
6

⊕ 1
6 ⊕

6
4

2 3
1
6

, T6 =
2 3
1
6

⊕ 3 ⊕
3
1

5 6
4
3

⊕
4

2 3
1
6

⊕ 5
4
3
⊕

6
4

2 3
1
6

,

T7 =
2 3
1
6

⊕ 2
1
6
⊕

3
1

5 6
4
3

⊕ 5 6
4
3

⊕ 5
4
3
⊕

6
4

2 3
1
6

, T8 =
2 3
1
6

⊕ 2
1
6
⊕

3
1

5 6
4
3

⊕
4

2 3
1
6

⊕ 3
1
6
⊕

6
4

2 3
1
6

,

T9 = 3 ⊕ 4
3 ⊕

3
1

5 6
4
3

⊕
4

2 3
1
6

⊕ 5
4
3
⊕

6
4

2 3
1
6

, T10 =
1

5 6
4
3

⊕ 4
3 ⊕

3
1

5 6
4
3

⊕ 6
4
3
⊕ 5

4
3
⊕

6
4

2 3
1
6

,

T11 =
1

5 6
4
3

⊕ 4
3 ⊕

3
1

5 6
4
3

⊕
4

2 3
1
6

⊕ 1
6 ⊕

6
4

2 3
1
6

, T12 =
1

5 6
4
3

⊕ 6
4
3
⊕

3
1

5 6
4
3

⊕ 5 6
4
3

⊕ 5
4
3
⊕

6
4

2 3
1
6

,

T13 =
1

5 6
4
3

⊕ 2
1
6
⊕

3
1

5 6
4
3

⊕ 5 6
4
3

⊕ 6 ⊕
6
4

2 3
1
6

, T14 =
3
1
6
⊕ 2

1
6
⊕

3
1

5 6
4
3

⊕
4

2 3
1
6

⊕ 1
6 ⊕

6
4

2 3
1
6

,

T15 =
1

5 6
4
3

⊕ 2
1
6
⊕

3
1

5 6
4
3

⊕ 6 ⊕ 1
6 ⊕

6
4

2 3
1
6

, T16 =
2 3
1
6

⊕ 3 ⊕
3
1

5 6
4
3

⊕ 5 6
4
3

⊕ 5
4
3
⊕

6
4

2 3
1
6

,

T17 =
2 3
1
6

⊕ 3 ⊕
3
1

5 6
4
3

⊕
4

2 3
1
6

⊕ 3
1
6
⊕

6
4

2 3
1
6

, T18 =
2 3
1
6

⊕ 2
1
6
⊕

3
1

5 6
4
3

⊕ 5 6
4
3

⊕ 6 ⊕
6
4

2 3
1
6

,

T19 =
2 3
1
6

⊕ 2
1
6
⊕

3
1

5 6
4
3

⊕ 6 ⊕ 3
1
6
⊕

6
4

2 3
1
6

, T20 = 3 ⊕ 4
3 ⊕

3
1

5 6
4
3

⊕ 6
4
3
⊕ 5

4
3
⊕

6
4

2 3
1
6

,

T21 = 3 ⊕ 4
3 ⊕

3
1

5 6
4
3

⊕
4

2 3
1
6

⊕ 3
1
6
⊕

6
4

2 3
1
6

, T22 =
1

5 6
4
3

⊕ 4
3 ⊕

3
1

5 6
4
3

⊕ 6
4
3
⊕ 1

6 ⊕
6
4

2 3
1
6

,

T23 =
3
1
6
⊕ 4

3 ⊕
3
1

5 6
4
3

⊕
4

2 3
1
6

⊕ 1
6 ⊕

6
4

2 3
1
6

, T24 = 3 ⊕ 6
4
3
⊕

3
1

5 6
4
3

⊕ 5 6
4
3

⊕ 5
4
3
⊕

6
4

2 3
1
6

,

T25 =
1

5 6
4
3

⊕ 6
4
3
⊕

3
1

5 6
4
3

⊕ 5 6
4
3

⊕ 6 ⊕
6
4

2 3
1
6

, T26 =
3
1
6
⊕ 2

1
6
⊕

3
1

5 6
4
3

⊕ 6 ⊕ 1
6 ⊕

6
4

2 3
1
6

,

T27 =
1

5 6
4
3

⊕ 6
4
3
⊕

3
1

5 6
4
3

⊕ 6 ⊕ 1
6 ⊕

6
4

2 3
1
6

, T28 =
2 3
1
6

⊕ 3 ⊕
3
1

5 6
4
3

⊕ 5 6
4
3

⊕ 6 ⊕
6
4

2 3
1
6

,

T29 =
2 3
1
6

⊕ 3 ⊕
3
1

5 6
4
3

⊕ 6 ⊕ 3
1
6
⊕

6
4

2 3
1
6

, T30 = 3 ⊕ 4
3 ⊕

3
1

5 6
4
3

⊕ 6
4
3
⊕ 3

1
6
⊕

6
4

2 3
1
6

,

T31 =
3
1
6
⊕ 4

3 ⊕
3
1

5 6
4
3

⊕ 6
4
3
⊕ 1

6 ⊕
6
4

2 3
1
6

, T32 = 3 ⊕ 6
4
3
⊕

3
1

5 6
4
3

⊕ 5 6
4
3

⊕ 6 ⊕
6
4

2 3
1
6

,

T33 =
3
1
6
⊕ 6

4
3
⊕

3
1

5 6
4
3

⊕ 6 ⊕ 1
6 ⊕

6
4

2 3
1
6

, T34 =
6
4
3
⊕ 3 ⊕

3
1

5 6
4
3

⊕ 6 ⊕ 3
1
6
⊕

6
4

2 3
1
6

.
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