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In honor of Prof. M. B. Nathanson on the occasion of his 65th birthday.

MIXED SUMS OF PRIMES AND OTHER TERMS

ZHI-WEI SUN

Abstract. In this paper we study mixed sums of primes and linear recurrences. We
show that if m ≡ 2 (mod 4) and m+1 is a prime then (m2

n

−1−1)/(m−1) 6= mn +pa for
any n = 3, 4, . . . and prime power pa. We also prove that if a > 1 is an integer, u0 = 0,
u1 = 1 and ui+1 = aui + ui−1 for i = 1, 2, 3, . . ., then all the sums um + aun (m, n =
1, 2, 3, . . .) are distinct. One of our conjectures states that any integer n > 4 can be
written as the sum of an odd prime and two positive Fibonacci numbers.

1. Introduction

Let us first recall the famous Goldbach conjecture in additive number theory.

Conjecture 1.1 (Goldbach’s Conjecture). Any even integer n > 4 can be written as the
sum of two primes.

The number of primes not exceeding n > 2 is approximately n/ log n by the prime
number theorem. Hardy and Littlewood conjectured that the number of ways to write an
even integer n > 4 as the sum of two primes is given asymptotically by

cn

log2 n

∏

p|n

(

1 +
1

p − 2

)

,

where c = 2
∏

p(1− (p−1)−2) = 1.3203 · · · is a constant and p runs over odd primes. (Cf.

[7, pp. 159-164].)
Goldbach’s conjecture remains open, and the best result in this direction is Chen’s

theorem (cf. [1]): Each large even integer can be written as the sum of a prime and a
product of at most two primes.

Those integers Tx = x(x+1)/2 with x ∈ N = {0, 1, 2, . . .} are called triangular numbers.
There are less than

√
2n positive triangular numbers below an integer n > 2, so triangular

numbers are more sparse than prime numbers. In 2008 the author made the following
conjecture.

Conjecture 1.2 (Sun [22]). (i) Each natural number n 6= 216 can be written in the form
p + Tx with x ∈ N, where p is zero or a prime.

(ii) Any odd integer greater than 3 can be written in the form p + x(x + 1), where p is
a prime and x is positive integer.
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Douglas McNeil (University of London) (cf. [12]) has verified parts (i) and (ii) up to
1010 and 1012 respectively. The author [23] would like to offer 1000 US dollars for the first
positive solutions to both (i) and (ii), and $200 for the first explicit counterexample to (i)
or (ii).

Powers of two are even much more sparse than triangular numbers. In a letter to
Goldbach, Euler posed the problem whether any odd integer n > 1 can be expressed in
the form p+2a, where p is a prime and a ∈ N. This question was reformulated by Polignac
in 1849. By introducing covers of the integers by residue classes, Erdős [4] showed that
there exists an infinite arithmetic progression of positive odd integers no term of which is
of the form p + 2a. (See also Nathanson [14, pp. 204-208].) On the basis of the work of
Cohen and Selfridge [2], the author [17] proved that if

x ≡ 47867742232066880047611079 (mod M)

with
M =2 × 3 × 5 × 7 × 11 × 13 × 17 × 19 × 31 × 37

× 41 × 61 × 73 × 97 × 109 × 151 × 241 × 257 × 331

=66483084961588510124010691590,

then x is not of the form ±pa ± qb where p, q are primes and a, b ∈ N.
In 1971 Crocker [3] proved that there are infinitely many positive odd integers not of

the form p + 2a + 2b where p is a prime and a, b ∈ Z+ = {1, 2, 3, . . .}. Here are the first
few such numbers greater than 5 recently found by Charles Greathouse (USA):

6495105, 848629545, 1117175145, 2544265305, 3147056235, 3366991695.

Note that 1117175145 even cannot be written in the form p + 2a + 2b with p a prime and
a, b ∈ N.

Erdős (cf. [5]) asked whether there is a positive integer k such that any odd number
greater than 3 can be written the sum of an odd prime and at most k positive powers of
two. Gallagher [6] proved that for any ε > 0 there is a positive integer k = k(ε) such that
those positive odd integers not representable as the sum of a prime and k powers of two
form a subset of {1, 3, 5, . . .} with lower asymptotic density at least 1− ε. In 1951 Linnik
[10] showed that there exists a positive integer k such that each large even number can be
written as the sum of two primes and k positive powers of two; Heath-Brown and Puchta
[8] proved that we can take k = 13. (See also Pintz and Ruzsa [15].)

In March 2005 Georges Zeller-Meier [26] asked whether 22n−1 − 2n − 1 is composite for
every n = 3, 4, . . .. Clearly an affirmative answer follows from part (i) of our following
theorem in the case m = 2.

Theorem 1.3. (i) Let m ≡ 2 (mod 4) be an integer with m + 1 a prime. Then, for each
n = 3, 4, . . ., we have

m2n−1 − 1

m − 1
6= mn + pa,

where p is any prime and a is any nonnegative integer.
(ii) Let m and n be integers greater than one. Then

m2n − 1

m − 1
6= p + ma + mb,
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where p is any prime, a, b ∈ N and a 6= b.

Remark 1.4. In the case m = 2, part (ii) of Theorem 1.3 was observed by A. Schinzel
and Crocker independently in the 1960s, and this plays an important role in Crocker’s
result about p + 2a + 2b. In 2001 the author and Le [24] proved that for n = 4, 5, . . . we
cannot write 22n−1 − 1 in the form pα + 2a + 2b, where p is a prime, a, b, α ∈ N and a 6= b.

For any integer m > 1, the sequence {mn}n>0 is a first-order linear recurrence with
earlier terms dividing all later terms. To seek for good representations of integers, we’d
better turn resort to second-order linear recurrences whose general term usually does not
divide all later terms.

The famous Fibonacci sequence {Fn}n>0 is defined as follows:

F0 = 0, F1 = 1, and Fn+1 = Fn + Fn−1 for n = 1, 2, 3, . . . .

Here are few initial Fibonacci numbers:

F0 = 0 < F1 = F2 = 1 < F3 = 2 < F4 = 3 < F5 = 5 < F6 = 8 < F7 = 13 < F8 = 21 < · · · .

It is well known that

Fn =
1√
5

((

1 +
√

5

2

)n

−
(

1 −
√

5

2

)n)

for all n ∈ N.

Clearly Fn < 2n−1 for n = 2, 3, . . ., and

Fn ∼ ϕn

√
5

(n → +∞),

where

ϕ =
1 +

√
5

2
= 1.618 · · · .

Note that 2 | Fn if and only if 3 | n.
It is not known whether the positive integers not of the form p+Fn with p a prime and

n ∈ N form a subset of Z+ with positive lower asymptotic density. However, Wu and Sun
[25] were able to construct a residue class containing no integers of the form pa + F3n/2
with p a prime and a, n ∈ N. Note that un = F3n/2 is just half of an even Fibonacci
number; also u0 = 0, u1 = 1, and un+1 = 4un + un−1 for n = 1, 2, 3, . . ..

On December 23, 2008 the author [19] formulated the following conjecture.

Conjecture 1.5 (Conjecture on Sums of Primes and Fibonacci Numbers). Any integer
n > 4 can be written as the sum of an odd prime and two positive Fibonacci numbers. We
can require further that one of the two Fibonacci numbers is odd.

Remark 1.6. For a large integer n, there are about log n/ log ϕ Fibonacci numbers below
n but there are about n/ log n primes below n. So, Fibonacci numbers are much more
sparse than prime numbers and hence the above conjecture looks more difficult than the
Goldbach conjecture. D. McNeil (cf. [12, 13]) has verified Conjecture 1.5 up to 1014. The
author (cf. [23]) would like to offer 5000 US dollars for the first positive solution published
in a well-known mathematical journal and $250 for the first explicit counterexample which
can be rechecked by the author via computer. Note that Conjecture 1.5 implies that for
any odd prime p we can find an odd prime q < p such that p − q can be written as the
sum of two odd Fibonacci numbers.
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Recall that the Pell sequence {Pn}n>0 is defined as follows.

P0 = 0, P1 = 1, and Pn+1 = 2Pn + Pn−1 for n = 1, 2, 3, . . . .

It is well known that

Pn =
1

2
√

2

(

(1 +
√

2)n − (1 −
√

2)n
)

for all n ∈ N.

Clearly Pn > 2n for n = 6, 7, . . ., and

Pn ∼ (1 +
√

2)n

2
√

2
(n → +∞).

On Jan. 10, 2009, the author [20] posed the following conjecture which is an analogue
of Conjecture 1.5.

Conjecture 1.7 (Conjecture on Sums of Primes and Pell Numbers). Any integer n > 5
can be written as the sum of an odd prime, a Pell number and twice a Pell number. We
can require further that the two Pell numbers are positive.

Remark 1.8. D. McNeil (cf. [23]) has verified Conjecture 1.7 up to 5 × 1013 and found
no counterexample. The author (cf. [23]) would like to offer 1000 US dollars for the first
positive solution published in a well-known mathematical journal and $100 for the first
explicit counterexample which can be rechecked by the author via computer.

Soon after he learned Conjecture 1.7 from the author, Qing-Hu Hou (Nankai University)
observed (without proof) that all the sums Ps+2Pt (s, t = 1, 2, 3, . . .) are distinct. Clearly
Hou’s observation follows from our following theorem.

Theorem 1.9. Let a > 1 be an integer, and set

u0 = 0, u1 = 1, and ui+1 = aui + ui−1 for i = 1, 2, 3, . . . .

Then no integer x can be written as um + aun (with m ∈ N and n ∈ Z+) in at least two
ways, except in the case a = 2 and x = u0 + au2 = u2 + au1 = 4.

Remark 1.10. Note that if n ∈ Z+ then un+1 + au0 = aun + un−1.

Corollary 1.11. Let k, l, m, n ∈ Z+. Then Pk + 2Pl = Pm + 2Pn if and only if k = m
and l = n.

Remark 1.12. In view of Corollary 1.11, we can assign an ordered pair 〈m, n〉 ∈ Z+×Z+

the code Pm + 2Pn. Recall that a sequence a1 < a2 < a3 < · · · of positive integers is
called a Sidon sequence if all the sums of pairs, ai + aj , are all distinct. An unsolved
problem of Erdős (cf. [7, p. 403]) asks for a polynomial P (x) ∈ Z[x] such that all the
sums P (m) + P (n) (0 6 m < n) are distinct.

Motivated by Conjecture 1.5 and its variants, Qing-Hu Hou and Jiang Zeng (University
of Lyon-I) formulated the following conjecture during their visit to the author in Jan. 2009.

Conjecture 1.13 (Hou and Zeng [9]). Any integer n > 4 can be written as the sum of
an odd prime, a positive Fibonacci number and a Catalan number.
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Remark 1.14. Catalan numbers are integers of the form

Cn =
1

n + 1

(

2n

n

)

=

(

2n

n

)

−
(

2n

n + 1

)

(n ∈ N),

which play important roles in combinatorics (see, e.g., Stanley [16, Chapter 6]). They are
also determined by C0 = 1 and the recurrence

Cn+1 =

n
∑

k=0

CkCn−k (n = 0, 1, 2, . . .).

By Stirling’s formula, Cn ∼ 4n/(n
√

nπ) as n → +∞. D. McNeil [13] has verified Conjec-
ture 1.13 up to 3 × 1013 and found no counterexample. Hou and Zeng would like to offer
1000 US dollars for the first positive solution published in a well-known mathematical
journal and $200 for the first explicit counterexample which can be rechecked by them
via computer. Note that 3627586 cannot be written in the form p + 2Fs + Ct with p a
prime and s, t ∈ N.

The Lucas sequence {Ln}n>0 is defined as follows.

L0 = 2, L1 = 1, and Ln+1 = Ln + Ln−1 (n = 1, 2, 3, . . .).

It is known that

Ln = 2Fn+1 − Fn =

(

1 +
√

5

2

)n

+

(

1 −
√

5

2

)n

for every n = 0, 1, 2, 3, . . ..
On Jan. 16, 2009 the author (cf. [20]) made the following conjecture which is similar

to Conjecture 1.13.

Conjecture 1.15. Each integer n > 4 can be written as the sum of an odd prime, a
Lucas number and a Catalan number.

Remark 1.16. D. McNeil [13] has verified Conjecture 1.15 up to 1013 and found no
counterexample. Note that 1389082 cannot be written in the form p + 2Ls + Ct with p a
prime and s, t ∈ N.

Recall that there are infinitely many positive odd integers not of the form p + 2a + 2b

with p a prime and a, b ∈ Z+. However, Crocker’s trick in his proof of this result does not
work for the form p + 2a + k2b with p a prime and a, b ∈ Z+, where k is an odd integer
greater than one. On Jan. 21, 2009 the author (cf. [20]) made the following conjecture.

Conjecture 1.17 (Conjecture on Sums of Primes and Powers of Two). Any odd integer
greater than 8 can be written as the sum of an odd prime and three positive powers of two.
Moreover, we can write any odd integer n > 10 in the form p+2a+3×2b = p+2a+2b+2b+1

with p a prime and a, b ∈ Z+.

Remark 1.18. The author verified Conjecture 1.17 for odd integers below 107. Later, on
the request of the author, Qing-Hu Hou and Charles Greathouse continued the verification
for odd integers below 2×108 and 1010 respectively. Note that if k > 61 is odd then 2k+127
cannot be written in the form p + 2a + k2b with p an odd prime and a, b ∈ Z+ since
3 +2+ k22 > 2k +127 and 127 is not of the form p +2a. For k ∈ {3, 5, . . . , 61} \ {47, 51},
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the author (cf. [19]) checked odd integers below 108 and found no odd integer n > 2k + 3
not of the form p + 2a + k2b with p an odd prime and a, b ∈ Z+.

We are going to prove Theorems 1.3 and 1.9 in the next section. Section 3 is devoted
to our discussion of Conjecture 1.5 and its variants.

2. Proofs of Theorems 1.3 and 1.9

Proof of Theorem 1.3. For n = 2, 3, . . . we clearly have

(m − 1)

n−1
∏

k=0

(

m2k

+ 1
)

=
(

m20 − 1
)(

m20

+ 1
)(

m21

+ 1
)

· · ·
(

m2n−1

+ 1
)

=
(

m21 − 1
)(

m21

+ 1
)

· · ·
(

m2n−1

+ 1
)

= · · · =
(

m2n−1 − 1
)(

m2n−1

+ 1
)

= m2n − 1.

(i) Fix an integer n > 3. Write n + 1 = 2kq with k ∈ N, q ∈ Z+ and 2 ∤ q. Since

2n = (1 + 1)n > 1 + n +
n(n − 1)

2
> n + 1,

we must have 0 6 k 6 n − 1. Thus m2k

+ 1 divides both (m2n − 1)/(m − 1) and

mn+1 + 1 = (m2k

)q + 1. Set

dn =
m2n−1 − 1

m − 1
− mn.

Then

mdn =
m2n − m

m − 1
− mn+1 =

m2n − 1

m − 1
− (mn+1 + 1)

and hence m2k

+ 1 divides dn.
Suppose that dn is a prime power. By the above, we can write dn = pa, where a ∈ N

and p is a prime divisor of m2k

+ 1. As m is even, p is an odd prime. Since

mp−1 ≡ 1 (mod p) and m2k+1 ≡ (−1)2 = 1 (mod p),

we have
mgcd(p−1,2k+1) ≡ 1 (mod p).

But
m2k ≡ −1 6≡ 1 (mod p),

so p ≡ 1 (mod 2k+1). Note that

pa =
m2n−1 − 1

m − 1
− mn =

2n−2
∑

k=0

mk − mn ≡ 1 + m + m2 (mod m3).

If k > 0, then p ≡ 1 (mod 22) and hence

pa ≡ 1 6≡ 1 + m (mod 22),

which contradicts the congruence pa ≡ 1 + m (mod m2). So k = 0, p | m20

+ 1 and hence
p = m + 1. (Recall that m + 1 is a prime.) It follows that pa is congruent to 1 or m + 1
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modulo 8. Since 1+m+m2 6≡ 1, m+1 (mod 8), we get a contradiction. This proves part
(i).

(ii) Let a > b > 0 be integers with ma + mb < (m2n − 1)/(m − 1). Clearly 2n > a > b.

Write a − b = 2kq with k ∈ N, q ∈ Z+ and 2 ∤ q. Then 0 6 k < n and hence d = m2k

+ 1

divides both (m2n − 1)/(m − 1) and ma−b + 1 = (m2k

)q + 1. Thus

m2n − 1

m − 1
− ma − mb

is a multiple of d. Observe that

m2n − 1

m − 1
=

m2n−2 − 1

m − 1

(

m2n−2 + 1
) (

m2n−1 + 1
)

>
(

m2n−2 + 1
) (

m2n−1 + 1
)

> (mb + 1)(ma−b + 1) > ma + mb + d.

So d is a proper divisor of D = (m2n − 1)/(m− 1)−ma −mb. This shows that D cannot
be a prime. We are done. �

Proof of Theorem 1.9. Observe that

u0 = 0 < u1 = 1 < u2 = a < u3 < u4 < · · · .

By induction,

u2i ≡ u0 = 0 (mod a) and u2i+1 ≡ u1 = 1 (mod a) for i = 0, 1, 2, . . . .

We will make use of these simple properties.
Let k, m ∈ N and l, n ∈ Z+ with k 6 m. Below we discuss the equation uk + aul =

um + aun.
Case 1. k = m.
In this case,

uk + aul = um + aun ⇒ ul = un ⇒ l = n.

Case 2. k = l < m.
If k = l < m − 1 then

uk + aul < um−2 + aum−1 = um < um + aun.

When k = l = m − 1, as um 6≡ um−1 (mod a) we have

uk + aul = (a + 1)um−1 6= um + aun.

Case 3. l < k < m.
In this case,

uk + aul 6 uk + auk−1 < auk + uk−1 = uk+1 6 um < um + aun.

Case 4. k < l < m.
In this case,

uk + aul 6 aul + ul−1 = ul+1 6 um < um + aun.

Case 5. k < m 6 l.
Suppose that uk + aul = um + aun. Then

ul >
uk + aul − um

a
= un > ul −

um

a
>

a − 1

a
ul > (a − 1)ul−1 > ul−1.
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It follows that

k = 0, m = l = 2, and un = ul−1 = u1 = 1.

Thus au2 = u2 + au1, i.e., a2 = a + a and hence a = 2.
Combining the above we have completed the proof. �

Remark 2.1. By modifying the proof of Theorem 1.9, we can determine all the solutions
of the equation Fk + Fl = Fm + Fn with k, l, m, n ∈ N.

3. Discussion of Conjecture 1.5 and its variants

Concerning Conjecture 1.5, we mention that there are very few natural numbers not
representable as the sum of a prime p ≡ 5 (mod 6) and two Fibonacci numbers. Bjorn
Poonen (MIT) informed the author that by a heuristic argument there should be infinitely
many positive integers not in the form p + Fs + Ft if we require that the prime p lies in
a fixed residue classe with modulus greater than one. McNeil [11, 13] made a computer
search to find natural numbers not representable as the sum of a prime p ≡ 5 (mod 6), an
odd Fibonacci number and a positive Fibonacci number; he found that there are totally
729 such numbers in the interval [0, 1014], 277 of which (such as 857530546) even cannot
be written as the sum of a prime p ≡ 5 (mod 6) and two Fibonacci numbers.

In 2008 the author (cf. [19, 20]) also made the following conjecture which is similar to
Conjecture 1.5.

Conjecture 3.1. (i) Any integer n > 4 can be written as the sum of an odd prime, a
positive Fibonacci number and the square of a positive Fibonacci number. We can require
further that one of the two Fibonacci numbers is odd.

(ii) Each integer n > 4 can be written as the sum of an odd prime, a positive Fibonacci
number and the cube of a positive Fibonacci number. We can require further that one of
the two Fibonacci numbers is odd.

Remark 3.2. Note that 900068 cannot be written as the sum of a prime, a Fibonacci
number and the fourth power of a Fibonacci number. Also,

F 3
n ∼ ϕ3n

(
√

5)3
=

(4.236 · · · )n

5
√

5
(n → +∞).

Let k ∈ {1, 2, 3}. For n ∈ Z+ let rk(n) denote the number of ways to write n as the sum
of an odd prime, a positive Fibonacci number and the kth power of a positive Fibonacci
number with one of the two Fibonacci numbers odd. That is,

rk(n) = |{〈p, s, t〉 : p + Fs + F k
t = n, p is an odd prime, s, t ≥ 2, and 2 ∤ Fs or 2 ∤ Ft}|.

The author has investigated values of the quotient

sk(n) =
rk(n)

log n

via computer, and conjectured that

ck = lim inf
n→+∞

sk(n) > 0.
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Numerical data suggest that 2 < c1 < 3. In fact, the author computed all values of s1(n)
with 1050 6 n 6 1050 + 4 × 104, and here are the two smallest values:

s1(1050 + 39030) = 2.22359 · · · and s1(1050 + 5864) = 2.29037 · · · .

Here is another variant of Conjecture 1.5 made by the author (cf. [19, 21]).

Conjecture 3.3. (i) Any integer n > 4 can be written as the sum of an odd prime, an
odd Lucas number and a positive Lucas number. For k = 2, 3 we can write any integer
n > 4 in the form p + Ls + Lk

t , where p is an odd prime, s, t > 0, and Ls or Lt is odd.
(ii) Each integer n > 4 can be written as the sum of an odd prime, a positive Fibonacci

number and twice a positive Fibonacci number (or half of a positive Fibonacci number).
We can also represent any integer n > 4 as the sum of an odd prime, twice a positive
Fibonacci number, and the square of a positive Fibonacci number.

(iii) Any integer n > 4 can be written in the form p + Fs + Lt with p an odd prime,
s > 0, and Fs or Lt odd.

Remark 3.4. The author verified Conjectures 3.1 and 3.3 for n 6 3× 107. Qing-Hu Hou
found that 17540144 cannot be written as the sum of a prime, a Lucas number and the
fourth power of a Lucas number. McNeil (cf. [12]) has verified the first assertions in parts
(i) and (ii) of Conjectures 3.1 and 3.3 up to 1012. He (cf. [13]) has also verified part (iii)
of Conjecture 3.3 up to 1013, and found that 36930553345551 cannot be written as the
sum of a prime, a Fibonacci number and an even Lucas number.

What about the representations n = p+Ps+kPt with k ∈ {1, 3, 4} related to Conjecture
1.7? Note that 2176 cannot be written as the sum of a prime and two Pell numbers. McNeil
[13] found that 393185153350 cannot be written as the sum of a prime, a Pell number
and three times a Pell number, and the smallest integer greater than 7 not representable
as the sum of a prime, a Pell number and four times a Pell number is

872377759846 ≈ 8.7 × 1011.

The companion Pell sequence {Qn}n>0 is defined by

Q0 = Q1 = 2 and Qn+1 = 2Qn + Qn−1 (n = 1, 2, 3, . . .).

McNeil [13] found that the smallest integer greater than 5 not representable as the sum
of a prime, a Pell number and a companion Pell number is 169421772576.

McNeil’s counterexamples seem to suggest that Conjecture 1.7 might also have large
counterexamples. However, in the author’s opinion, the large counterexamples to the
representations n = p+Ps +3Pt and n = p+Ps +4Pt hint that they are very close to the
“truth” (Conjecture 1.7). Corollary 1.11 is also a good evidence to support Conjecture
1.7. To expel suspicion, the author has investigated the behavior of the representation
function

r(n) = |{〈p, s, t〉 : p + Ps + 2Pt = n with p a prime and s, t > 0}|.
For n ∈ [1050, 1050 +10081] most values of s(n) = r(n)/ log n lies in the interval (1, 2), the
smallest value of s(n) with n in the range is

s(1050 + 10045) =
76

log(1050 + 10045)
≈ 0.66.
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The author also computed the values of s(n) with n ∈ [10200, 10200 + 100], the smallest
value and the largest value are

s(10200 + 33) =
443

log(10200 + 33)
≈ 0.96

and

s(10200 + 18) =
824

log(10200 + 18)
≈ 1.79

respectively. The author conjectured that

c = lim inf
n→+∞

s(n) ∈ (0.6, 1.2).

Acknowledgment. The author wishes to thank Dr. Douglas McNeil who has checked
almost all conjectures mentioned in this paper (on the author’s request) via his quite
efficient and powerful computation.

References

[1] Jing-run Chen, On the representation of a large even integer as the sum of a prime and the product

of at most two primes, Sci. Sinica 16 (1973), 157–176.
[2] F. Cohen and J. L. Selfridge, Not every number is the sum or difference of two prime powers, Math.

Comp. 29 (1975), 79–81.
[3] R. Crocker, On a sum of a prime and two powers of two, Pacific J. Math. 36 (1971), 103–107.
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