УДК 512.6

I. V. PROTASOV

PALINDROMIAL EQUIVALENCE: ONE THEOREM AND TWO PROBLEMS

Let A be an alphabet, A^* be a set of all words in A. A word ν is called a *subword* of a word w if ν can be obtained by striking out some letters from w. For a word $w = a_1 a_2 \dots a_{n-1} a_n$, put $\tilde{w} = a_n a_{n_1} \dots a_2 a_1$. A word w is called a *palindrome* if $\tilde{w} = w$.

Given a word $w \in A^*$, denote by Pal (w) the set of all subwords of w that are palindromes. The words ν , w are called *palindromially equivalent* if Pal $(\nu) = Pal (w)$.

Theorem. Let |A| = 2, $\nu, w \in A^*$. Then ν, w are palindromially equivalent if and only if $\nu = w$ or $\nu = \tilde{w}$.

Problem 1. Describe the classes of palindromial equivalence on A^* for |A| = 3.

Let $A = \{a, b\}, w \in A^*, w = a_1 a_2 \dots a_n$. Put $\bar{a} = b, \bar{b} = a, \bar{w} = \bar{a}_1 \bar{a}_2 \dots \bar{a}_n$. A word w is called an *antipalindrome* if $\tilde{w} = \bar{w}$.

Problem 2. Describe the classes of antipalindromial equivalence on A^* .

Kyiv National University

Received 3.04.2000

²⁰⁰⁰ Mathematics Subject Classification: 20M05.