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Introduction. It has often been noted (e.g., see [1], [4], [8])} that ib
is possible to arrange n consecutive integers info a sequence g0, ... 4,
which eontains no subsequence forming an increasing or decreasing 3-term
arithmetic progression {A.P.). In other words, if ¢; =¢, a4y =o+d, a;
= g--2d for some positive d, then either j = max{i, j, k} or j = min {Z, j, k}.
In this note we investigate several guestions related to this idea. For
example, we show that any doubly-infinite permutation ...a_sa_, 00,4, ..
of all the positive integers must contain sn inereasing or decreasing (i.e.,
monotone) 3-term A.P. as a subsequence. On the other hand, we con-
gtruet a doubly-infinite permutation of the positive infegers which con-
tains no monotnne 4-term AP

Permutanons of finite intervals. Let us denote by M (w,) the number
of permutations a4, ... a, of {1, 2,...,n} = [1, n] containing 20 mono-
tone 3-term A.P. To see that M (n) > 0 for alln s1mp1y noteif 4 =a,a, .
has no monotone 3 term A.P. then

. A= (24)(24-1) = (24)(25) ... (24,,) (20, 1) ... (20, —1)

also has no monotone 3-terra AP. (smee the first and lagt terms of a 3-term
A. P. must have the same parity!) Of course, if 4 is a permutation of
[1,m] then A’ is a permutation of [1,2m]. Finally, since no monctone
AP.Js are oreated by deleting entries of A4, the assertion M{n)>0 for
all n follows immediately. In fact, much more is true.

Fagr 1.

w C Hmzet for azl.

Proof. Az we have already noted, if A has no monotone 3-ferm
A.P., then neither do 24 and 24 —1. Thus, if 4 and A’ are 3-term AP.-

8 — Aefa Arithmetica XXXIV,1
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free permutasions of [1,m], then (24)(24"—1) and (24'—1){24) are
3-term A.P.-free permutations of [1, 2m]}. Hence,
M (20) > 2 ()",
Similarly, we have
M(2n+1) = M (n 1) M ().

Binee M (2) = 2, M(3) =4 then (1) follows. m
' H.E. Thomas [6] has independently proved (1) by a gomewhat
more complicated construction.
In Table 1, we give a list of values of M (n) for n < 20.

Tahble L
n M (n) 7 Mn) |
1 1 11 2460
2 2 12 65128
3 4 13 12840
4 10 14 20380
5 20 15 74904
6 48 16 212728
7 104 17 368016
8 282 18 659296
9 496 19 1371056
10 1066 20 2037136

By using the fact that M (16) = 212728, it follows ﬁ'om the preced-
. ing argument that
MY > 3(2.248)F, 4.

Tn the other direction, we have the following result:
BACT 2. _ .
(2) M2n-1) < (n)?,  M(29)< (n+1)(nl}™

Proof. Let .#(1) denote the set of permutations of {1, {] containing
no monotone 3-termm A.P.s. Any permutfation Xe.#{n-41) generates
a permutation X'e 4 (n) by just deleting n+1. Consider an element
A =0, ... t,e.4(n) to which n--1 ean be added somewhers to form
an A'e # (m+1). I a; satisfies

(3) | [“T‘Q’]@fsn,

2
then the three values

T +1 3 ari, 2:{6{‘“—?11—1
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form an arithmetic progression which is not allowed to ocenr monotonely

‘in A'. Hence, for each a, satisfying (3), n+1 is prohibited from being

placed just to the right (left) of o, if 2a,—n—1 oceurs to the left (right}

of a;. Algo, if n-+1 were prohibited f_rom going to the right of a; end

to the left of @, , then 4 could not be extended to an element of A (41},
w43

Hence, each of the Jn—[—::—] +1 values a, sa,txsfymg (3) rules ouf

af least one of the » 1 possible locations in A for 41, leaving at most

n-+-3
[ P ] places where n-+-1 might go. This implies

a1 <[22 |
which, in turn, implies (2). '

Permutations of the positive integers. Let 4 = alazds he a per-
mutation of the set Z* of positive integers. Denote by 52, the set of those
A which confain no monotone k-term A.P.

Faor 3.

o -,

Proof, Let 4 = 0y @aly . be a permufation of Z+ I i denotes
the least index for which «; > a, then for some j >4,

a; = 2a;—a,

and so we always have, in fact an increasing 3-fierm AP in A |
- Faor 4.
Fy F Qf.

Proof. For k> 0, define the intervals 4, and B, as follows:
Ay = (841, 4+10%], B, = [b-+1, b+10%]

where a4, = 0, b, = 1, and in genezral,

a =2 D) 10%, by = +10"

=0

Thus, Zt i partmoned mto d.lB]OIIL'[} intervals A,d s Bk, k> 0. Note that '

= {1} and
LAz = 1Byl = 10"
Let A* and B} denote arbitrary fixed permutations of 4, and Bk s respect-

ively, which contain no monotone 3-term A.P.’s, Finally, let P be the
permutation of Z* given by -

P =By Ay B ATB; Ay ... BL AL ...
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We claim that £ contains no monotone 5-term A.P. Suppose the
contrary, i.e., suppose X = {&;, @, o, @, 25} With @y —a, = d> 0 is
a 5-term AP. oceurring monotonely in P. There are several possibilities:

(iy X i3 a deereasing subsequence of P. Thus, for some &, X < 4,UB,.
But this implies that either #;, #,, ¥, is & decreasing AP. in B} or ,, @, @,
is » decreasing' A.P. in Aj. Since neither of these possibilities can ocour,
this case is impossible.

(ii) X is an increasing subsequence of P.

{a) Suppose | X (4, UB) <1 for all k. Let a,e4, OBy 1<E< 5.
Thus, 4, < g < 93 <C 4, < 4;. Since

g~y > @ — oy, == 2107
then
d = } (@5 —x,) > 10%.,
Thns, :
By = @y — A< g, 105 < 2(1+10 4., +10%) —10%+'< 0

which is impossible. Hence, in this case wo cannot even have a 4-term A P.
(b) Suppose for some k, |XN(4,UB)| > 2. Of course, since X is
increasing and B, precedes 4, in P, then X ceannot intersect both A4,
and B;. Therefore, by the construction of P (which uses A} and B}), we
must have |Xn(4,UB;)| = 2. There are two possibilities. '
(o) Suppose |XNB =2. If 2, %¢B, then d = x,—,< 10° and
8, =y —d > b, —10F = g,
ie., @, ¢4; which, as we have just noted, is .impossib'le. A similar argu-
ment applies if @, #;¢B, or x,,x;eB;. Thus,
' O = 3d < gy 43 10%
‘which nnphes Zedy,; and consequently, Ty, Wy edy ;a8 well, Whloh is
impessible.

(B) Suppose (X4, = 2. It @y, wye A, then d —m4—m3< 10% a.nd
@5 =w,+d < ak+10’“+10’” =y,

e, a;¢B, WhJ.Gh is impossible. The same argument applies if z,, @y e 4y,
© OF Ty 3¢ 4,. Thus, the only possibility remaining is «,, wse.4,.

Now, if @, B, _; then we also must have 2,¢B,,_ . and this is impossible
from Case (i). On the other hand, lf &y €d, ;then gyed, | and d = o, —,
< 10 which implies

, :_a:3+d<'m3—}—10’“ ,
ie, #,eB,_;, a confradiction. Thus, z, < a,_, and go,

d == ‘%(9&-9&) o> %(a]c._ak_l) = 10k_1.-
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"Therefore,

2 =y —d < ap 10" < 0

which is a contradistion.

~This completes the proof that I contains no monotone 5-term AP.
and Fact 4 is proved. m

One of the most fantalizing questions gtill open iz whether or not
&, is empty; i.e., whether every permutation of Z* must confain mon-
otone 4-term A.P.s. Current opinions are aboubt evenly divided.

Doubly-infinite permutations of the positive integers. If we are
allowed to arrange the positive integers into a doubly-infinite sequence
d = ...8_,0_,8,0,6, ... then, in principle, we have more epportunity
to prevent the oceurrence of monotone A.P.’s. Denote by £, the set
of those 4 which contain no monotone k-term A.P. Ag in the case of &,
9, is also empty. This time however, a little more work is required to
prove it.

Facr 5.

Proof #1 (J. H. Folkman [2]). Let 4 = ...0_,a_ 4,4 0,... be
a doubly-infinite permutation of Z*. For neZ™, let A(n) denote the
index of # in 4, i.e., A(n) is defined by
. aA(n) = ':"lz‘L
Suppose 4 containg no monotone 3-termn A.P. Thus, for all 6, d > 0,
Aay< Ala+d) i Al{a+d) > Ala+2d)

and .
A(a) > A{at-d) it Ale+d)< Aa--24).

Iteratmg these relations we obtam

A(a+2md) < A{a+d+2md) and

Ala+(2m+1)d) > Ala+-d+(2m+1)d),
m =0,1,2,...

(W) A@<A@id)

A(a+3md) > Ala+d-2md) and

A(a,‘—{—(2m—{—1)d) < A(f}+d+(2m+1)d):
m=0712...

(4)  Afa)>Afa+d) HE

" We may assume without loss of generahty that A( )< A{2) (Otherw_:ise,

reverse the sequence). By {4}, we have

o’ APm-1)< A@m), m=13,..
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We claim that for any odd a and d,
{6) Ala) < A{a+d).

For d = 1, this is just (3). Assume (6) holds for & fixed odd d>> 1. Let a
he odd and let b = g¢--2d4--4. By assumption

A(b)< A(B ).
(i) Suppose A(b--d) << A(b+d+2). Then 4 (b) << 4 (b +d+2) and so
Af@) = A(B—23(@+2) < AP +a+2—2(d+2)) = A(a+d+2)
by (4). '
(ii) Suppose A(b-+d)> A(b-+d--2). Then by (5)
Alotd) = Alb+d—(@+42)2) < A(b+d+2—(d+2)2) = Ad(a+d--2).

Since A (a)<< A{a-+d) then A(a)<< A{a--d+2).
Thus, in either case, we have A (a}<C A(a+d-+2). This completes
the induction step and (6} is proved. We are now finished, since by (6)

A{L)<< A(2m)y  for all m>> 0.

L e

Thus, as in the argument that %, = @, if 2r is the first even number
to the right of 1 and 2r4-2d iz the first even number to the right of 2r
which i larger than 2r, then 2r-}4d is to the right of 2r4-2d and 2,
2r4-2d, 2v+4d forms an increasing 3-term AP. in A. This completes
Proof #1 of Fact 5.

We sketeh another proof of Fac¢t 5 which is conceptually somewhat
simpler although it involves some computation.

Proof 2. We form a directed tree T ag follows. The vertices of T
will be certain permutations 4« .#(n) for variouy ». T will have 4 root
vertices 132, 213, 251 and 312. Suppose 4 is a vertex of 7 in which the
subbloek B = a;0,,, ....a;,, spanned by {1,2,3} contains some other
3-term A.D. (necess:mly non-monetone). We call such a vertex special.
I Ae#(n)is a non-special vertex .of T and 4 is a subsequence of
A'e #(n-+1) then 4" is also a vertex of T and (4, A") is a’ directed
edge of 7'. If no such A’ exists for 4 then 4 is ealled & terminal vertex
of T. We show a portion of 7 in Fig. 1. The basic fact econcerning 7' is
that it is fimde. In fact, straightforward computation. shows thab
T'-contains no vertices 4 e .#{n) with n > 17. _

To complete the proof, we make the following ohservafion, As we

‘adjoin. conseeutive integers, starting with 4*e 4#(3), to form & permu- -

tation P of ZF, we move in the obvious way along a directed path in the

tree. Suppose we reach a special vertex 4 =4, ...s,. By definition, -

the block of A spanned by {1, 2, 8} contains a subsequence g, O, G, Which
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132 213 231 312

o 44_ [13(@1/\@ 423{\. @/}4\3124

@ D \mmsws4

__/1\\ |

465213 . 312564

2

|7312564](3712564{[3172564/[3127564)

o % ki T
-~ \ -

P
~ . A .
- . - -
RETE L

/A terminal

"Fig. 1

is & permutation of {a, a+d, a42d} - {1, 2, 3}. If we restrict our atten-
tirn from now on to just those integers of the form a-md, m > 0, then
we can move back to the appropriate roof of T, ie., the permutation
of {1,2, 3} having the same relative order as a; 0, G;,. Since T is finite
then as we form P, we must pass through the roots of I an unhounded
number of tires. However, this implies that in P some pair of infegers
in {1,2,3} must have an unbounded number of integers separating
them. This, however, contradicts the definition of a permutation of Z7,
and the proof is completed. m

The additional freedom allowed by doubly-mfmlte permutations can

"be used. to prevent the oecurrence of monotone 4-term A.P.s,

Facr 6, 2, = 0. _

Proof. Define the blocks B i 2> 0, as follows:
By=1, By = (2By)(2By+1), By = (2Buy +1) 2By, 1290,
where B’ denotes the block B written in reverse order. Define the doubly-
infinite permutation P of Z+ by

P =...B,B, BOB B,.
. 28,20,24,16,7,5,6,4, 1,J, 3,8,12,10,14,9,13,11,5,...

We elaim that Ped,. '

We first note that for all i> 0, B, is a permutatxon of {2‘ 2+ 17

containing no monotone 3-term AP Suppose now that P contains
a monotone 4-term AP. X = {z, ¥, 2, w} with either 2>y >z2>w or
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@ <y < %< w, where we have chosen X 5o thab d = |z —y| is minimal.

There are several possibilities:

(i) The smallest two elements of X belong to the same block B;.
Then d < 2 so that the largest two elements of X are in B,,;. Conse-
quently, @, y, ¢ and w all have the same parity. If 2j-+1 and 2k+1 are

in B, then 2j and 2k are also in B; with the same relative order. Hence,

we may assume z, ¥, ¢, and w are all even. But then

iz & monotone 4-term A.P. in P gince the smallest two elements of §X
appear in B,., in reverse order of their appearance in B;, the largest
two appear in B; in reverse order of the appearance in B, and the
order of B; and JBz ,in P is the reverse of that of B, and B;. However,
this contradiets the minimality of d.

(ii) Suppose y and z occur in the same block B;. Then the largest
element of X ocenrs in B,,, and the smallest oceurs in B; for some j < i

icm

But this requires B; to appear between B;,, and B, in P which is im- -

possible.

(iii) Suppose the largest two elements of X ocewr in the same block
B,. The third largest element of X must be at least as large as 2+ since
-otherwise, we would have d<C 2¢1 gand consequently, the second Iargest
element of X would be less than 2° and therefore, not in B;. Thus, the
third largest element of X I8 in B, ;. Hence, by (i), the smallest element

of X is in B; for some j < i--1. Ag before, this requires BI_ 0 appear.

between B; a.nd B; in P which is impossible.

" (iv). Suppose each element of X belongs to a different block B of P.
Let B, denote the block containing the largest element of X. Then we
may argue as in (i) and (i) that the second largest clement of X is nob
contained in B;.,. Consequently &> 2°' go that the third largest el-
ement of X must be negative, a confradietion.

Rince the construction of the B, prohibits the occurrence of 3 el-

ements of X in o single block then we have proved that P has no mon-

otone 4-term AP =

Concluding remarks. There are a number of questions which we were
gither unable to resolve or did not have a chzmce to look at. We mention
a few of these.

1. The most natural question remaining is whether or not 5"4 =,
ie., ‘whether or not every singly-infinite permutation of Z* containg
9 monotone 4-term A.P. It is not clear at present in which direction the
truth lies.
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_2' The following modular analogue to the finite problem has been
studied by M. Nathanson [3]. A subsequence iy oney Oy of a permu-

. 3 9
tation aya, ... @, of [1, #] is called & monolone A. P modzt.zhl) x it for some
a and 4 0, ‘

@, = a+kd (mod n),
Nathanson has shown (see [37) that:

L bt

{i) If » 52" then any permutation of [1, %] corntains & monotons
3-term ALP. modulo 4.

(ii) I » =2 then there iy a permutation of [1,n] which contains

no monotone 3-term A.P.
. On the -other hand; it is easily seen that a permmtation of [1, n]
which containg no monotone 3-term A.P. also confaing no manotone
5-term A.P. modulo n. As in the preceding question, the situation for

A-term AL P.%s ‘modulo n i unelear.

3. It is possible to partition Z* into three sets, each of which can
be permuted so as to have no monotone 3-texrm A. P. For example, define
the partition of Z* into consecutive intervals 4, by:

4, = [1,100], IAI&+11 = [i 411, k=

. Now, rearrange ea.ch Ak into A,c coptaining no monotone 3-term A.P.
~and define

o = ATATATAY ...
G o= ATATATAT ..
@ — ATATATAT, ...

It is easily checked that «f, # and % form the desired partition. Whether

this can be done for some partition of Zt into two sefs is not known.

4. Tiet o denote the set of all infinite subsets A of Z* for which.
there exists a (singly- m:ﬁ]mte) permutation of A having no monotone
3-term. A. P. What is

Aesd n w
‘What is .
suplim sup jM ?
det  m w

5. The preceeding questions could also be asked for Z, the set of
all the integers, ag well. Only preliminary results are known for this case.
For example, using Fact 4, it is easy to coustruch permutatlons of Z
WhlGh have no monotone 7-term A. P.



90

(1]
(2]
3]

[4]
[5]
[6]

J. A. Davis, R. C. Entringer, B. L. Graham and . J. Simmons Im“

References

R.C. Entringer and D. E. Jackson, Blemeniary Problem 2446, Amer. M
Monthiy &0 (1973}, p. 1058.

J. H. Folkman (unpublished). :

M. B. Nathanson, Permuiations, periodicity and chaos, Journ. Comb.
(A) 22 (1977), pp. 61-68. ‘

Tom O dda, Solution fo Problem B 2440, Amer. Math. Monthly 82 (1975), p
G. J. Bimmons, Selution to Problem F 2440, ibid. 83 (1975}, pp. 76-77.

H. E. Thomasg Jr.,, Solulion fo Preblem H 2440, ibid. 82 (1975), pp. 75-T

Received on 29, 6. 1976 {

Les volumes IV Volumes from IV Die Bande IV wnd
ofi suivants sont

Y

4 obtenir chez at

Les volumes I-IIT
gont & obtenir chez

Touu I'V w cuesny-
INEE MOKHO To-
AYUUTH Yepss

Ars Polona, Krakowskie Przedmiescie 7, 00-068 Warszawa

on are available folgende sind =zn

bezichen durch

Volumes I-III
are gvailable at

Die Bénde I-III sind  Tomm I-HI momsio
zu beziehen dureh . momyysvr  uepes

Johnson Reprint Corporation, 111 Fifth Ave, New York, N. Y.

BOOKS PUBLISHED BY THE POLISH ACADEMY OF SCIENCES

B.
8.
W

~

41.

43,
44,
45,
47.

50.
51.
52.
53,
b4.

57.

- 58,

58.
0.

Yol.
Vol.
Vol
Vol
Vol.

INSTITUTE OF MATHEMATICS

Banaech, Qeuvres, vol. I, 1967, 381 pp.
Mazurkiewicz, Travanx de topologie e ses applications, 1989, 380 pp.

. Sierpinski, Oenvres choisies, vol. I, 1874, 360 pp.; vel. II, 1975, 780 pp.; vol.

II1, 1976, 688 pp.
Banach, Osuvres, vol. II, in print.
P. Schauder, Oeuvres, in print.

MONOGRAFIE MATEMATYCZNE

H. Rasiowa and R. Bikorski, The mathematies of metamathematics, 3rd ed.,
reviged, 1970, 520 pp.

J. Szarski, Differential inequalities, 2nd ed.,
K. Borsuk, Theory of retracts, 1967, 251 pp.
K. Maurip, Methods of Hilhert spaces, 2nd ed., 1972, 552 pp.

D. Przeworska-Roelewicz and 8. Rolewicsz, Equations in linear spa.ces,
1968, 380 pp.

K. Borsuk, Multidimensional analytic geometry, 1960, 443 pp.

R. Bikorski, Advanced ealeulus. Functions of several variables, 1369, 460 pp.
W. Siebodzidski, Exterior forms and their applieations, 1970, 427 pp.

M. Krzyzaiski, Partial differential equations of second order I, 1971, 562 pp.
M. Erzyzaiski, Partial differential equations of second order IT, 1971, 407 pp. -
W. Narkiewicz, Elementary and analytic theory of slgebraic numbers, 1974,
630 pp.

. B easaga. and A. Pelezyniski, Selected topics in mflmte dimensional topology,
1875, 353 pp.

K. Boresuk, Theory of shape, 1975, 279 pp.
R. Engelking, General topology, 1877, 626 pp.

1967, 256 pp.

BANACH CENTER PUBLICATIONS

1. Mathematical contrel theory, 1978, 166 pp.

2. Mathematical foundations of computer science, 1977,
3. Mathematical models and numerical methods, in print.
4. Approximation theory, in print.

5. Probability theory, in print.

260 pp.



