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1. Introduction. Let V(x) denote the number of distinct values of Euler’s
p-function not exceeding x. The subject of estimating V' (x} has a long history
dating back to 1929 when S. S. Pillai [5] showed that

X

V(x) < (log x)(logl),’e'

In 1935, Erdés [1] improved this resuit, getting ¥ (x) = xf{logx)* **Y). Subse-
quent papers have dealt with the nature of the factor (logx)** in this
formula. In Erd0s and Hall [2], [3] it was shown that

X X

(1.1 logxexp {c;{logloglog x)*} < V(x) <

1/2
ogx %P {ca (log log x)'/?}

for certain posiﬁve constants ¢;, c,. Recently, in [6], the second author
showed that the lower bound in (1.1} is close to the truth about V(x).
Namely, there is a positive constant c¢; such that
(1.2) V(x) éi—)—c—— exp {cy(logloglog x)*}  for all large x.
ogx

In fact, it was shown in [6] that (1.2) holds for all

e3> (2—2log(e—1)) " = 1.090096128...
and the first inequality in (1.1) holds for all

¢, <(2log2~2log(2+log2—./4log2+log22))” " = 0.617122930...
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In this paper we eliminate the gap between ¢; and ¢,, showing that there
is a constant C such that the first inequality in (1.1) is true for all ¢; < C and
(1.2) is true for all ¢3 > C. To properly state this resull, we must define the

number C.
Let

(1.3) F(x)= Y a,x", a,=(n+1)log(n+1)—nlogn—1.
n=1

Since a, ~ logn, a, > 0, we have that F(x) is defined and strictly increasing
on [0, 1), F(0) =0 and F(x)— oo as x — 17, Thus there is & unique number
coe(0, 1) defined by the equation

(1.4} Fleg) = 1.

Thus ¢o = 0.54259859... (Thanks are due to J. P. Massias for this calcula-
tion.) Let

= 0.81781465...

(1.5) €= Slogey

In this paper we shall prove the following result.
Turorem. Wich C given by (1.5) we -have

V{(x) = i(-)—'g;exp {(C+o(1))(logloglog x)*1.

The proof is divided into two parts, one for the lower bound and one
for the upper bound. As with [2] and [6], the key tool employed is the result
from [1] that the shifted prime p—1 normally has loglog p prime factors.
However, here we use the somewhat finer result that the normal number of
primes dividing p—1 that lie between exp{(logx)*! and exp {(logx)] is
{b~a)loglogx. A more precise description of the result we use on shifted
primes is given in the next section.

With this finer tool on the normal number of prime factors of a shified
prime at out disposal, the upper bound in the theorem follows by the same
argument as in [6]. The lower bound argument is basically new, but has
some of the same flavor as the argument in [3] and its improvement in [6].

We shall use the notation P{n) to denote the largest prime factor of n
for n > 1 and we shall let P(1} = 1. Throughout, the letters p, ¢ will always
denote prires. The constants ¢, c,, ... will always be absolute, that is, they
will not depend on any parameters.

2. Normal primes. I T, < T let Q(n, T, T) denote the total number of
prime factors of #, counted with multiplicity, that lie in the interval (T;, TJ.
If 6>0, 8§>1, we say an integer n is §S-normal if £(n, 1,5)
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< 2loglog(10S) and for each pair T,, T with S < Ty <« T<n we have

(2.1) [Q(n, T, T)—(loglog T—loglog T;)l < dloglog T,

Then from standard arguments one can get the following resul.

ProposiTiON 2.1. Given § > 0 arbitrary, there are constants ¢ = ¢ {d) =0,
£ =2¢(8) > 0 such rhar the number af n< x which are not 8,S-normal is at
most cxflog SY uniformly for all 1 <8 < x.

We shall say a prime p is §,S-normal if p—1 is 4,8-normal, Then using
Proposition 2.1 together with Brun's method one can prove a similar result
for primes which are not normal. We suppress the details, but they are
similar to the arguments in [1].

Prorosimon 2.2, Given & > O arbitrary, there are constants ¢ = ¢ (&) >0,
¢ =&(0} > 0 (not necessarily the same constants as in Proposition 2.1) such
that the number of primes p < x which are not 8,S-normal is at most

¢x
(log 8§)*log x
uniformly for all 1 < § <x.

In the definition of normal prime it should be noted that there is no
special reason to use p— 1. In fact the same result would hold for p+a where

a is any fixed non-zero integer. For the Euler ¢-function though, the case
a= —1 is the one of interest.

3. The lower bound. Let « be an arbitrary, but fixed number with 1/2
<& <y where ¢ is given by (1.4). Let 5 be an arbitrary, but fixed number
with 0 <6 < (1 —a)/2. Later, we shall let § be sufficiently small depending on
the choice of «. Let x be large, where “large” may depend on the choice of «,
d. Most of the following functions will depend on x. For k =0, 1, 2, ... let

k sk
2= exp{flogx)*},  w, = exp {(log 1 -,

and let P, denote the set of 4, log x — normal primes in the interval (W, 2]
Let

L = [ng—g;% loglog log x]+ 1
and let
A={n: x2<n<x, n=pyp, ... pp where cach meP).
Then V(x) = # B where
B={¢(n: ned}.

The main outline of the argument is to first estimate #A4 and then show
#B ~ # A, that is, ¢ is usually one-to-one when restricted to A. The latter



266 H. Maier and C. Pomerance

step will only hold if J is sufficiently small depending on the choice of a. In
our first lemma we obtain the estimate for #A4.

Lemma 3.1, There is a positive constant ¢, such that
1-6°
2|log ¢

#A >1 ul exp{ (log log log x)* + ¢4 (log 6) log log logx}.
og x
Proof. If m=p, ... p, where each p,eP,, then m<zi, so that the
number of pye P, with x/2m < py < x/m is »x/(mlogx), gs.ing Proposxtlo'n
2.2. Thus it remains to estimate Y 1/m. Again using Proposition 2.2, }’1/m is
at least (for large x)

L .
[ (loglogz,—log log w—1)

k=1

L
= [] (6e*loglog x—1) > (loglog )L (§/2)L ot
k=1

_s2
> exp t-0 (logloglogx)3+c4(log5)10gloglogx},
2|log ]

from which our result follows. _
If we now show #B ~ #A4, then the lower bound in the theorem will
immediately follow from Lemma 3.1 since we may let J be arbitranly close
to 0 and « arbitrarily close to ¢q. To show #B ~ #A we shall use a kind of
second-moment argument. Indeed, let
By = {(ny, n)e Ax A: @(ny) = @(ny), n # naj.
Then evidently
(3.1) #B3= #{ned: if ¢o(n) = ¢(x) for some n'ed, then n=n"}
= #A— #{neA: (n, #')e B, for some n’}
> #A~ #B,,

so that it will suffice to show that #B, = o(#4). To do this we shall first
consider the smaller set

Bf = {(m, n5)e By: god(ny, ng) = 1

and then show how the argument for B} can be extended to all of B,.

Note that if (n,, n,)e B%, then there are primes p, g, & Py, pi # gy, for

k=0,..., Lwith
n=py...Pr, MNz2=4qg..-qg.

Thus the number m = @(n;) = @(n,;) has the two factorizations

(Po—1 ... (pr—1) ={go—1) ... (qu—1).
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Moreover, because of the way n,, n, are formed, m has a predictable (and
abnormal) number of primes in the various intervals (z,, z,_,]. Also note
that if we discard all the primes in m above z,, then the resulting divisor of m
has two induced factorizations obtained from discarding all primes above z,
in the various p;—1, ¢;—1. We shall estimate Bf by counting the number of
pairs of factorizations of a truncated » and how this number grows when we
move from k to k-1,

Before this procedure is made precise, we record a fact about the prime
factors of members of B.

Lemma 3.2. If meB, then for each k=1, ..., L we have

1Q(m, 2,z () — k(o P~ loglog x| < 6(k+1)a* ! log log x.
Proof. This follows immediately from the definition of the sets of primes
Py
Note that Q(m, z;, z,_,) is about k times the expected amount for a
random integer m.

We now begin the description of the details needed for considering dual
factorizations of truncated members of B. Let

o
IT »
Plim
Y1 <pSya

Po, .

f(m: Y1 yl) =

and let f(m, y)=f(m, 1,y). For each pair {n,, n,)eB¥ we consider the
214 3-tuple

o(nysn) = (@) po—1, ..., =15 go—1,.... qr—1)
where ny = po ... Pr. B2 = 4o ... g and p,, g€ P, for each k. Let
ax(ny, ma) = (f (@ (m), 2); F(po—1, 2, -, fae—1, z)),

T (ny, ny) = (.f'(fp(nl), Zks Zk—1)§ Flpo—1, 2y Ze1)s - Flar—1, 2, Zk—l))-
If 6 =(by,....0), t=(dy,...,dy), let ar =(bydy,..., byd,). Thus for

k=1,..., L we have

3.2) a—1 (1, ) =0y, (ny, M) Tk, ).

Let S, denote the set of a,(ny, ny) for (n;, ny)e B3 and let T, denote the
corresponding set of 7, (n;, ny). Clearly there is a one-to-one correspondence
between BY and Sg, so #BY = #8,. But then from (3.2),

(33) #Bf= #5= Y ¥ L
aeSy 1ely’
=)

We now estimate the inner sum in (3.3). We shall use the following notation:
if ¢ is a t-tuple, then ¢ is the jth coordinate of 4.
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Lemma 33. For each 68§,

1 € 5313
rele 0_(1) (Iog x)2+a: 3
[t

for all large x depending only on the choice of «, 9.

Proof. Say o™ =m, ¢¥ =u, 6" =p Il 7€ T, is such that oreS,,
then o'V = ¢ has the following properties:

X

i}y tm < X,
(i) every prime in ¢ is in (z(, z¢],
(iii) tu+1, tv+1 are unequal primes.
By Brun’s method (see Halberstam-Richert [4]) the number of ¢ satislying (i),
(i), (iii) is at most '
cs5x/m

—_——(log ] 2
log z, log? (x/m)( oglog x)

(3.4)
for some absolute constant c5. From Lemma 3.2 and a simple calculation,
we have

m < exp i(log xy*4),

so that log(x/m) ~ logx. Also note that logz, = (logx)*. Thus the lemma
now follows from (3.4) and the observation that for each ¢ satisfying (i), (ii),
{iii), there is at most one teT; with oreS, and 'V =1.

We now see that from (3.3) and Lemma 3.3, an estimate for #B* may
be obtained by estimating Y 1/¢*"" where ¢ runs over S,. This is done in L
steps where each step is similar to Lemma 3.3. The general step is treated in
the following result.

LEMMA 34 If 2< k<L and oSy, then

1 -
¥ . < (log x)¢ (k™ 1~ aF)(k logh+ k) — 2ak ~ 1 tcgbakk tog k
el T
aESp—

for some absolute constant cq.
Proof. Note that any te T, is of the form

t={ e s hen Lo g s Gimns 1 ey 1)

where ecach string of I's is of length L+1—k Thus f,_, =<**Y ¢,_,

=1L"** 3 The entries f;,_y, gy~ are of particular interest since if ore S,
then

(3.9 Se-10¥ 041, gm0 T*TD 41 are unequal primes.
In addition the entries of  satisfy
(3.6) f=Jo. fim1 =80 Gi
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We partition T, into 2 classes T,;, 7., where in T, we have
P(fi-1)# Plye-1) and in T, we have P(fi_i} = Plgi—,). In either case,
however, since the primes in n,, n, are §, log x-normal, it follows that
(37 Plh-1h Plgr- ) >exp l(logw,_)' ™% > exp {(103x)“_26)1kw1}-

We consider now the contribution to the sum in the lemma from the
members of 7, ;. If te %, and oreS,_,, write

™ =200,0,
where Q, = P(f,—1), @, = Plgx-,). We now fix all information about t
except the choice of Q,, 0,. If a, = o**Vf_ /0, by =" "5 *Dg,_ /0,,
then a,, by, are thus assumed fixed. From (3.5), (3.7), the primes Q,, Q, satisfy
() & Q:+1, b, 0> +1 are primes,
(i) Q1. @z > exp i(logx) 727 1.

Thus by Brun's method we have

‘ 2
(3.8) R 1_< cZ (log log x)

{in (i) Ql Q2 Ql QZ (].Og X 2“ B Zélak_ v
It thus remains to estimate ) 1/74" for te T, | with o1 §,-;. We do this
by first counting the number of such t with t§’ = ¢, and then estimating
Y 1/to. From Lemma 3.2, if j = Q(z{"") for some te T, ;, then
(39 [~k (o™~ o) loglog x| < 8{k+ 1)a*~'loglog x+2.

From (3.6), the number of t corresponding to a given ty is at most the
number of dual factorizations of r, into k factors each. This is at most

(3.10) Ao,

We are now ready to estimate Y 1/7,. Since every prime in each t,
exceeds z;, the contribution to ) 1/2, for those 1, divisible by the square of a
prime is at most (log x)/z,. The contribution to Zl/ro from the remaining
(square-free) t, is at most

Z,I ( > l)f < .8
i jt zp<pSzy— P i Jt
where Z' denotes a sum over j satisfying (3.9) and where

k—1

5 = (of " '—aMloglog x+1.

Therefore, with (3.10) we have

1 .St logx
)3 T)szkb(?’!” )

Zx
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The expression k% sj/j! reaches its maximal value when j= k? sy, but from
(3.9) we are considering much smaller values of j, namely j = ks,. Thus the
sum is dominated by its largest term which is given by the largest j satisfying
(3.9). A calculation then gives

1 k-
Z o < (log x)t e ki logk -+ k) + e Sk log ke
16Ty 1 Tg
oteSy— 1

for some absolute constant ¢,. From ihis estimate and {3.8) we have

(3 11) Z _1__ < (log x)[mk“l—ak)(klogk+k)_21k - 1+05§akklugk

for some absolute constant cg.
The estimate for T; ; goes exactly the same way except now we let 73"
=t/0 where Q = P{f;—,) = P(¢-,). The prime @ satisfies

(i) @ Q+1, b @+ 1 are unequal primes,
(i) Q > exp {(logx)* 2=

in analogy to (i), (i). As in (3.8), the sieve gives

2

1 < G (loglog x)

N T T T T T -
oyt 0 (log x)2 — 28k 17,

Thus an estimate of the same form as (3.11) also holds for T, ,. We thus have
the lemma. :

Using (3.3), Lemma 3.3, and then sequentially Lemma 34 for k
=2,...., L, we get

: -~2-atét f by, 1
(3.12) #B% < x{logx) k=2

1
5,0

where by, = (@' —oFy(klogk+k) —2* "1+ o do klog k. Tt remains 1o estima-
te the two sums in {3.12).

Note that
L L-1
—2—a+ Y, (=) (klogh+ k) — 2" < =2+ Y @t < 2+ F(a)
k=2 k=1

where the o,’s and F are given by (1.3). Thus there is some absolute constant
Cg WIth

L
(3.13) —2—a+8+ ) by < —2+F(@)+eo 6.

k=2
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Since F(a) <1, we may choose § sufficiently small so that
(3.14) —2+F(g)+cgd < —1.
For ¥ 1/o'" in (3.12) note that if ceS;, then
P(a'V) £ z; < expexp {(loglog x)'},
so that if s runs over integers of the form &' for some ceS;, then
2 1fs < exp {(loglog x)°}.
Also note that from Proposition 2.2, if aeS;, then

Qo' < (L+ 1){1 +28){loglog x)°.

Thus the number of ¢S, with o' =5, a fixed integer, is at most
(L+1)2% < exp ic, o (log log x)’log log log x log log log log x}
for some absolute constant ¢;y. Thus
1
(3.15) ¥ — < exp {(loglog x)**}

(1]
aesy,

for large x,
Thus from (3.12)-(3.15), there is some & > 0 such that

(3.16) #BE < ——

14"

(log x

This estimate easily gives #B% = o(#4) and we are now nearly done with
our proof of the lower bound in the theorem. It remains to show how the
argument for B¥ can be extended to all of B;.
If mjn for some ned, let
B (m) = {(ny, n)e By; ged(ny, ny) =mj.
Thus B, (1) = B%. If (n,, ny)e B, {m), then

Ry = Digs cea Pip M M2 = s o Qg
where 0 < jo < ... <jr < L and p;, 4, 6P, P, # Q5 for each k. Tracing
through the above estimate of Bf we arrive at
\ X T
—2aa'0—aJ;+é+k§ b, 1

X =]
#By{m) < ;(103 X) 2 M

seSy(m o
in analogy to (3.12), where

b = (o™~ —a™) (klog k-+ k)~ 22" 1+ ¢ 0™k log k
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and where S, {m) is defined in analogy to S,;. Since b, < b, we quickly arrive
at

X
(3.17)

nt‘m(l +g)

#B,(m) < -

m(log x)
for some fixed ¢ > 0, all possible values of m, and all x = xy(x, ). Notice
that j, is a function of m — it is the least number in {0, ..., L} such that m
has no prime factor in P; . Suppose (n;, n;)€ B,{m). Then P(n;/mje P;, and

in fact n;fm <z}, so that

xfm < 2nyfm < 2z,

Taking logs, we get
ozjo

log(x/m) < (logx)* *,
so that from (3.17), we get

(3.18) #B, () < ———

(log (x/m)) **
uniformly.

We now sum (3.18) over all m which have at most one prime in each P,
and no other primes. As in Lemma 3.1, the number of such m < z is at most

gz exp {C(logloglog z)*}.
Also note that m < x/wy and that wy > expexp {(1—6)(loglogx)*}. With
these observations and using partial summation (cf. the proof of Lemma 2 in
[6]), we get

s . 2y
4B, =Y #B.z(m)éxloglogx_ exp {C (log log log x)*} _, ( x

logx  exp{e(1—8)(loglog x)"! - logx)=0(#:4)-
This estimate then completes our proof of the lower bound.

4. The upper bound. In this section we indicate how the upper bound in
the theorem can be proved. We follow the argument in [6], but with a few
changes.

As in [6], define w(x) by the equation

X
V(x) = ——
(x) IOgXW(x)
and let
Wix)= sup w(y).
2Kyp&Ex

Let § be an arbitrary, but fixed number with ¢, < B <1 where ¢ is given by
(1.4) above. Let k=3 denote a fixed large integer. Let & > 0 be fixed and
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small. How large k must be and how small § must be shall be described
later, but this shall depend on the choice of §f.

The following lemmas are in analogy to Lemmas 1-3 in [6].

Lemma 4.1. The number Vi (x) of distinct values of ¢(n) < x such that
either () Q(n) <k-+1, (i) n< x/logx, (iii) d¥n for some d = logx, or (iv)
d*e(n) for some d = logx is o(V(x)).

The proof is the same as for Lemma 1 in [6].

Lemma 4.2, The number V,(x) of distinet values of @(n) < x such that n is
divisible by « prime p > exp {(log x)ﬁk} which is nor élog x-normal is

0 (L W(x)).
log x

The proof follows from the same method as in [6], but now we use
Proposition 2.2 above.

For i = 1, let P;{n) denote the i-th largest prime factor of n if Q(n) =1i.
Otherwise, let P;(m)=1.

Lemma 4.3. The number Vi (xX) of distinet values of @{n) < x such that

(4.1) Pi(n) > exp {(logx)'“l._lllog logx! for i=1, ...k

is 0( x W(x)).
log x

Proof. Forj=0, 1,...,k let y; = exp {(log x)"j}- From Lemma_tt.f'l, we
may assume that the primes Py (n), ..., Py(n) are all &, log x-normal primes.
Thus if » satisfes (4.1) and [; = Q(@ (1), y;, ¥;~1), we have

{4.2) [t;—Ji(F~ 1 —pFYoglog x| < (j+ Hép~tiog logx

for j=1;..., k and all large x. From Lemma 4.1, we may assume that all
prime factors of ¢@(n) above y, appear to exactly the first power. Let L;
denote the set of | which satisfy (4.2) for a given j. Let M denote the set of
m such that m is square-free, m is only divisible by primes in (y,, y;] and
Q(m, y;, yj-1)el; for j=12,..., k. Thus if me M we have

(4.3) m g y?(luglog x) = xo(“_

If o(n) < x for some n satisfying (4.1), then but for o(lOZxW(x))

exceptions, we may assume @ (n) = mt where me M and t is not divisible by any
prime in (¥, y;]. From (4.3) and the fundamental lemma of the combinatorial
sieve {[4], Th. 2.5), the number of such t < x/m is uniformly at most

2£-!3g_y_k = zi(log x)ﬂk_ﬂ
m logy, m
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large x,

ﬂ" f il -
(4.4) ¥ (x) € 2x(logx) m:;Mm (logx Wix ))
Now

ll
.55
Y'<F‘~<~J’j—1p

J

k , . :
< T (logx)~®#'~ b phitagi- iy ey 689 Lloati + 1

s
]
%]

-{ zsz L ghiogs—ite, 8
< (ogx) = ,

where ¢;;, ¢, are absolute constants. Thus

" —(kilujﬂf)+ﬁk(klugk—k+1)-|-c125

(4.5) (log x)"~* Z <(logx) ! ;
mEM
where the as are given by (1.3).
The result (4.5) instructs us how to choose k, 6. We choose k so large and

¢ >0 so small that

k-1

=1

This can be done since-
o

Fip =Y ap>1.

=1
Thus the lemma follows from (4.4) and (4.5).

The remainder of the proof follows exactly the same way as in {6]. We thus
obtain

x (loglog log x)*
Vix) <
(x) X { 2oz f +0(logloglog x) ;.

Since the value of § chosen above can be arbitrarily close to ¢y, We obtain
the upper bound in the theorem, concluding our proof.

5. Further questions. Almost surely ¥ (x) is a smooth function. For

example, Erdds and Hall have asked if ¥ (2x)/¥(x) — 2 holds. Our proof does
show

V) —V(x) = "x exp {(C+0(1)) (log log log %2,
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but this is too weak to establish V (2x)/¥ (x}) — 2. Perhaps there is some other
attack on expressions such as V(2x)/V(x).

Concerning our proof of the lower bound, we assumed every member of
A exceeds x/2. Thus if A' = {2n: ne A}, then every member of A’ is between
x and 2x and ¢@(2n) = @(n) < x for 2neA’. It thus follows that if V'(x)
denotes the cardinality of {e(n) < x: n> x}, then

V' (x) = é‘—; exp [(C+o(1))(log log log x)*}

A harder question is to estimate V,{x), the cardinality of
fpmy<x n>xi—{em: n<x).

Our methods do not give a good lower bound for ¥, (x).

Our proof works equally well for values of the sum of the divisors
function a(n) and for many similar arithmetic functions. In fact the same
estimate can be obtained for the number of distinct integers which are
products of the members of {p+a: pis prime, ae S}, where § is any finite set
of non-zero integers.
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