CHAPTER IV

NUMBER OF DIVISORS AND THEIR SUM

§ 1. Number of divisors. The number of the divisors of a given
natural number # is denoted by d(n). In order to establish the table
of the function d(n) one may use the following method which is a modi-
fication of the sieve of Eratosthenes. In order to find the values d(n)
for n < @ we write down the natural numbers 1,2, ..., n and we mark
all of them. Next we mark those which are divisible by 2, then those which
are divisible by 3, and so on. Finally we mark only the number a. The num-
ber of the divisors of a number n is equal to the number of the marks
on it (ef. Harris [1]). In particular, for ¢ = 20 we have

,_1,345678,9101112 13, 14, 15,

16, 17, 18,19,

itk }5’

Hence we find d(1) =1,d(2) =2,d(3) = 2,d(4) =3 d(o) =2,d4(6) =4,
a(7) =2, d(8) =4, d(9) =3, d(10) =4, d(11) = 2, 4(12) =6, d(13)
=2, d(14 =4, d(15) =4, d(16 =3, d(l’i’) =2,d(18) =6 d(19) =2,
("O) =6.
Let # be a natural number greater than 1 and let

@ =g gt

be the factorization of » into prime numbers. Suppose that d is a divisor
of n. Since every divisor of d is a divisor of n, then in the factorization
of the number d into primes only the primes appearing in (1) can possibly
appear and, moreover, the exponents of them cannot be greater than those
on the corresponding primes in (1). Accordingly, every divisor d of the
number # can be written in the form

@) a4 = grgp...

where 1; (i=1,2,...

@,
k) are integers satisfying the inequalities

3) 0<k<eq for i=1,2,.., %
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On the other hand, it is obvious that every number that ean be written
in form (2), numbers A; satisfying inequalities (3), is a natural divisor of
the number ». This is because, in view of (3), n/d = g1t 2. . g
is an integer.

Finally, it iz obvious that different systems of integers

(4) Aryday ooy dp

satistying (3) define different numbers (2). We have thus proved the fol-
lowing

THEEOREM 1. If m 48 a natural number whose factorization into prime
numbers is writien as (1), then taking for the numbers in (4) all the different
systems of k integers which satisfy inequalities (3) we find that all the divi-
sors of the number n are given by (2). Moreover, to each sysiem corresponds
precisely one divisor.

Consequently, the number of divisors of a natural number » whose
factorization into prime numbers is written as (1) is equal to the number
of all the systems of integers (4) satisfying inequalities (3). It is a matter
of simple computation to calculate the number of the systems. In fact,
in order that an integer 1; should satisfy inequalities (3) it is necessary
and sufficient that 1; should belong to the sequence

0,1,2, ..., o

Thus for a given ¢ = 1,2, ..., k the number 1; can take o;-}1 different
values. This proves
THEOREM 2. The number d(n) of the divisors of a matural number

n whose factorization intfo primes is writlen as (1) is given by

(5) a(n) = (e, +1){az+1)... (g +1).
Let us caleulate the number d(60) for instance. We have 60 = 22-3-5, There-

fore, in view of (5), d(60) = (2-+1)(1+1)(1+1) = 12. Similarly, since 100 = 2%-52,
we gee that d(100) = (2+1)(2+1) =9.

It follows from (5) that for every natural number s > 1 there exist
infinitely many natural numbers which have precisely s divisors. In fact,
if m = p°', where p is a prime, then d(n) =d(p*") =s.

Clearly, the equality d(n) =1 implies # =1. Formula (5) shows
that d(n) = 2 whenever k¥ = 1 and e, = 1, that is, whenever » is a prime.
Accordingly, the solutions of the equation d(n) = 2 are prime numbers.
Consequently, for composite numbers # we have d(n) > 3.

If follows from (5) that d(») is an odd number if and only if all the
a’s (4=1,2,...,k) are even, that is, if and only if n is the square of
a natural number.
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EXERCISES. 1. Prove that for natural numbers 2 we have d(n)< 2Vn.

The proof follows from the fact that of two complementary divisors of a natu-
ral number n one is always not greater than Va.

2. Find all the natural numbers which have precisely 10 divisors.

Selution. If d(n) = 10, then, in view of (5), we have (¢;+ 1)(ay+1)...(ax+ 1)
= 10. We may, of course, assume that a; < @, < ... < ar. Since there are two ways
of presenting 10 as the product of natural numbers > 1 written in the order of their
magnitude, namely 10 = 2-5 and 10 = 10, ‘then either & = 2, =1, ay = 4, or
k=1,a =9. It follows that the natural numbers which have precisely 10 divisors
are either the numbers p-q*, where p, g 5 p are arbitrary primes, or the numbers
p° where p is an arbitrary prime.

3. Find the least natural number » for which d(n) = 10.

Solution. In view of exercise 2 and the fact that of the numbers 2°, 234,
and 3-2¢ the latter is least, it follows that the least natural number n for which
d(n) = 10 is the number » = 3.2% = 48.

Remark. In general it is easy to prove that for given prime numbers p, ¢ with
¢ > p the least natural number that has precisely pq divisors is the number 2¢-1.37-1,

4. Prove that, if » is a natural number > 1, then in the infinite sequence

n, d(n), d(d(n)), ddd(n),
all the terms starting from a certain place onwards are equal to 2. Prove that the place
can be arbitrarily given.

The proof follows immediately from the remark that if » is a natural num-
ber greater than 2, then d(n) < #, and from the equality d(2) = 2. To prove the second.
part of the exercise we use the equality d(2" 1) = n.

5. Prove that for any natural number m the set of the natural numbers » such
that the number of the divisors of n is divisible by m contains an infinite arithmeti-
cal progression.

Proof. We note that the numbers 2™¢--2™~1 (t = 0, 1, 2, ...) form an infinite
arithmetical progression and belong to the set defined above for the number m. In
fact, the exponent of the number 2 in the factorization of the number n = 27 2""‘“
is m— 1. Hence, by (1), we see that m|d(n).

Remark. As an immediate consequence of the theorem proved above we ob-
tain that for any natural number m the set of natural numbers n such that m|d(n)
has positive lower density. This means that there exists a positive number @ with the
property that the number Sm(z) of the natural numbers n <z for which m|d(n) is
greater than ez for all = large enough. E. Cohen [1] proved that for any natural

q
number m the limit lim ‘L(m)
Z—eo

exists and is positive.

In the year 1940 the tables of the function d(n) for # < 10000 were
published, ¢f. Glaisher [1]. As we check in the tables, the equalities
d(n) = d(n+1) = d(n+2) = d(n+3) = 8hold forn = 3655, 4503, 943,
6833, 7256, 8393, 9367.
As found by J. Mycielski, for n = 40311 -we have

a(n) = d(n+1) = dn+2) = d(n}3) = d(n+4j.
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" The proof follows immediately from the factorizations into primes
of the numbers 40311 = 32-1493, 40312 = 2°-5039, 40313 = 7-13-443,
40314 = 2-3-6719, 40315 = 5-11-733. A similar situation oecurs for
n = 99655.

A conjecture has been formulated that there are infinitely many
natural numbers # for which d(n) = d(n41) (cf. Erdos and Mirsky [17).
We have d(2)=4d(3), d(14)=d(15), d(33) = d(34) =d(35) =4,
d(242) = d(243) = d(244) = d(245) = 6. '

‘We do not know whether there exists an infinite sequence of incre-
asing natural numbers n;, (k= 1, 2, ...) such that l]‘_‘lm d(mg+1)fd(ng)=

Neither do we know whether the numbers d(n+1)/d(n) are dense in
the set of the positive real numbers. However, P. Erdos has proved that
they are dense in a non-trivial interval. (Cf. Erdos [18], footnote (*).)
For n < 10000 we have d(n) < 64 and the maximum value d(n)
= 64 is taken only for the numbers n = 7560 and 9240.
A. Schinzel [2] has proved that for all natural numbers % and m there
exists a natural number » > h such that

d(n))d(nti)>m for i=1,2,...,h.

§ 2. Sums d(1)+d(2)+...+d(n). For real numbers # > 1 we de-
note by T'(z) the sum
[z]
(6) T(@) = 3 d(k) = a(1)+d@)+...+d([e]).
k=1
In order to find this sum we prove first that for a given natural number %

the number d(k) is the number of the solutions of the equation
(7) mn =k

in natural numbers m and n.

In fact, if a natural number » is a divisor of a number %, then m =
= k/n is a natural number and the pair m,n is a solution of equation
(7) in natural numbers. Conversely, if a pair of natural numbers m, n
satisfies equation (7), then # is a divisor of the number k. Accordingly,
to each natural divisor of the number % corresponds precisely one solu-
tion of equation (7) and wice versa. It follows that the number d(k) is
equal to the number of the solutions of equation (7) in natural numbers,
and this is what was to be proved.

Consequently, in view of (6), T'(x) can be regarded as the number
of solutions of the inequality mn < [#] in natural numbers m, n, this
being clearly equivalent to the inequality

(8) ' mn < @
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All the solutions of the last inequality in natural numbers m, n we divide
into classes simply by saying that a solution m, % belongs to the nth class.
If %, denotes the number of the solutions belonging to the nth class,
then, clearly,

9 T(@) = bytEyt-kyt-...

We now calculate the number of the solutions of the nth class. For a given
n the number m can take only the natural values satisfying inequality
(8), ie. the inequality

m <

S8

This means that m can be any of the numbers 1, 2,..., [f], which are
n.

[ﬂ in number. Therefore %, =[§], which, by (9), gives

- B

The right-hand side of this equality is not an infinite series, in fact:
only the first [#] terms of it are different from zero. Thus formula (10)
can be rewritten in the form

(10)

[z]

T(2) = 2 [}%’]

k=1

(1)

The caleulation of the number 7 () from (11), though much more conve-
nient than by finding the consecutive values of the funetion d(k), is
somewhat tedious for larger values of 2. For instance, in order to find
T(100) by the use of (11) one has to add a hundred numbers. For thig
Teason it seems worth-while to find a more convenient formula for T (2).

In order to do this we divide the class of all the solutions of inequal-
ity (8) in natural numbers into two classes including in the first class
the solutions for which n <V and in the second the remaining solutions,
ie. those for which » > V. We calculate the number of the solutions
in each of these two clagses.

If » takes natural values < Va and if m, n is a solution of inequality
(8) in natural numbers, i.e. if m is & natural number such that m < x/n,
then m, n belongs to the first class. Then for every natural number

n< 7] the number of the solutions in the first class is [_a_;J Since
n,
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n takes the values 1,2,..., [1/ §], the number of the solutions in the first
clags is
vzl
hYH
Zilak
=1

We now calculate the number of the solutions belonging to the
second class. That is we find how many of the pairs of natural numbers
m, n satisfy the inequalities

mn <2 and 'n>l/5,

i.e. the inequalities

Vo<a<

Sls

(12)

It we had m > Va, then @fm< Vo and inequalities (12) would not
be satisfied for any n. Accordingly, let m denote a fixed natural number

< V. In order to find the number of possible values of # for which ine-
qualities (12) are satisfied, it is sufficient to subtract from the number
x
of all the natural numbers » < z (i.e. from the number [%]) the number
m

of the natural numbers » which do not satisty the inequality Vz < n,
i.e. the number of the »’s which satisfy the inequality n < Va (clearly, they

are [1/5] in number). Hence [_w_] —[l@] is the number of all the pairs m, n
m

which for m <Vz satisfy inequalities (12). But since m can take only
the values 1,2,..., v 5], the number of the pairs of natural numbers
m, n satisfying inequalities (12), i.e. the number of the solutions belong-
ing to the second class, is

The secbnd of the sums on the right-hand side of the last equality is equal
to the number [Va]* because it is the sum of [l/;:] summands, each being
equal to [Va]. Consequently, the number of the solutions in the second
class is equal to

vzl

2 [f] — VaP.

m
Me=1

Flementary theory of numbers n
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Thus, combining this with the number of the solutions belonging to the
first class previously obtained, we get
vzl vzl

MEENHEE,

a8 the number of all the solutions of inequalities (8) in natural numbers

val Wzl
: i o
m, n, i.e. the value of the function T'(z). We have "‘;L-ﬁ] = TEL]

z i
because both the sums are abbreviated forms of the sum [i] -+ [5] -+

x
+[I/_;]’ therefore we may write
vzl

T(z) = 2 Z[g] — VP

This formula has been found by Lejeune Dirichlet. Applying it we
calculate 7(100) as follows:

{13)

10
T(100) = 22 [}%9] —10° = 2(100 5033425420+
=1

+16+14-+124+114+10)—100 = 2-291—100 = 432.
Similarly, by an easy calculation, we find
T(200) = 1098, T'(500) = 3190, T(1000) = 7069.
Slightly longer calculations lead us to the values
T'(5000) = 43376, T'(10000) = 93668.

From formula (11) an approximate formula for the average value
of the function d(n) is easily obtainable. If on the right-hand side of for-

mula (11) we replace [%] simply by %, then the error in each of the

summands is less than 1, and consequently in the whole sum it is less

than the number of the summands, i.e. less than [#] < . Therefore,
[=]
ag an approximate value of T'(z) we have Z‘ﬁ, the error of the approx-
w
n=1
imation being less than z. For natural values of # = % we then have

4(1)+a@2)+...+d(k)
k

1 1 1
14 ~—
(14 12 TR
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the error of the approximation being less than 1. Since the right-hand side
of (14) inereases to infinity with %, the ratio of the left-hand side to the
right-hand side of (14) tends to 1 when % tends to infinity.

As is known from Analysis, for the approximate value of the sum
1 1 1
Tty Tty
than for k¥ > 1. Consequently, logk is an approximate value of the left-
hand side of (14).

we may take the number logk, the error being less

l 1
i‘ T
tends to a finite limit called FEuler’s constant C = 0.57721566... (we
do not know whether it is an irrational number). On the basis of this
and formula (13) the expression zlogz-- (20 —1) has been found, which
approximates T'(z) with an error less than a finite multiple of V.
G. Voronoi proved that the error is not greater than a finite multiple

1
As one proves in Analysis, the difference +...—§——Ié —logk

Lo |

of %logw. Later other authors found & more precise evaluation of this
error (cf. Yin Wen-Lin [2]).

§ 3. Numbers d(n) as coefficients of expansions. The function d(n)
appears in Analysis as the coefficient of expansion in infinite series. For
instance, consider the series (convergent for |z| << 1)

oo o
2 ¢ =z 2 L2
& 1-7 1—2 ' 1-@ " 1—a& "

known under the name of Lambert’s series. Expanding each of its terms
into the geometrical progression

12&’* = g+

oo o0
we obtain the double sum 3 3 4", in which for every natural number
o= s}

n the power 4™ appears as many times as there are solutions of the equa-
tion kl = n in natural numbers % and I, i.e. d(n) times. Hence (for || < 1)
we have

mk oo
1—o Zd(”)w"‘
N=1

‘We see that the function d(n) is the coefficient at ™ in the expansion
of Lambert’s series in a power series.

b6

b
[

1
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The function d(n) is also the coefficient in the expansion of the
square of the { function. For s >1 we congider an infinite series

10101 1
C(s)_g?:F+—f+?+"'

(one proves in Analysis that the series is convergent for s > 1). Now
we apply the so-called Dirichlet multiplication to the product (s){(s).

Dirichlet’s multiplication is as follows: given two series a,--a;-+...
and b;+8,4..., we multiply (a,-+a,4...) by (by+by-+...) and put
together those products a,b; for which the products of indices are equal,
ie. (g+a+t...) (by+by+...) = @b+ (a: by + a;b;) + (@ b+ as by) +- (a, b,
~+ a0 + 4, by) - (01 b5 + a5 by) 4 (@, b+ ax by + a5 by -+ agby) + (@yby+a,by) +...
As can easily be seen this multiplication applied to £(s) gives

(15) )= 32

w

n=1

§ 4. S.nm of divisors. The sum of the natural divisors of a natural
number n is denoted by o(n). It follows from theorem 1 that if (1) is the
factorization info primes of the number #, then

(16) o(n) = D' qbg ...q¥,

W]}ere ?:he summation extends all over the systems of % integers (4) satis-
.fymg inequalities (3). But, as one easily sees, each summand of (16)
is obtained in the expansion of the product

A+a+a+ @A+ o+ g+ g (A gt g - g)
precisely once.

pn the other hand, each of the terms of the expansion of this prod-
uct is one of the summands of the sum of (16). Hence

THEOREM 3. The sum o(n) of the natural divisors of a natural num-
ber n whose faciorization into primes is n = 01165, .. g is equal to

g1 gt gl g

17 o(n) =
¢—1 ¢—1 G—1
. 22—1 Bd—1
In particular, ¢(100) = ——.= "~ _ 7.3 —
» 0(100) = 2— s — 781 =211.

It 'follows immediately from theorem 3 that for natural numbers
a, b, with (a,b) =1 we have o(ab) = o(a)o(b). It is easy to see that
if (a,d)>1, then o(ab) < o(a)o(b). Using theorem 3, we can ea;sil);
caleulate o(1) =1, ¢(2) = 3, ¢(3) = 4, c(4) =17, o(58) = 6, o(6) =12
o(7) =8, o(8) =15, ¢(9) =13, ¢(10) = 18. 7 ’

21
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Tor n >1 we have o(n) > n. It follows that o(n) >5 for n > 4.
As one sees from the table presented above, o(n) takes for » <4 the
values 1,3, 4 and 7. Therefore there is no natural number n for which
g(n) =5.

THEOREM 4. There exist infinitely many natural numbers which are
not the values of the function o(x) for natural .

Proof. Let n be a natural number > 9 and let % be a natural num-
ber such that

n n

(18) 3 —1<k< 3"
The number of the %’s for which (18) holds is clearly greater than n/2—
—nf3 =n/6. In virtue of (18) we have

(19) ok <n and S8k+3>n,

and, since m > 9, we have 8% > 6, which in consequence gives % > 3.
Hence one sees that the number 2k has at least four different divisors:
1,2,k, 2k. Therefore o(2k) >14-2+k+ 2k, which, by (19), gives ¢(2k)
> n. Since the number of different natural numbers k for which (18) and
(19) and consequently the inequality ¢(2%) > n hold is greater than n/6,
then among the numbers ¢(1), ¢(2),..., o(n) there are more than n/6
numbers greater than n. Hence in the sequence 1, 2, ..., n there are more
than n/6 natural numbers which cannot be the values of the funetion
o(z) for # < n. These numbers cannot be the values of the function o(x)
for o >n either, because the numbers are <n and o(z) =21+a>n
for 2 > n. Therefore for every natural number #» > 9 there are more than
n/6 natural numbers in the sequence 1,2,...,n which cannot be the
values of the function o(x) for natural values of #. This proves theorem 4.

Thus, there exist infinitely many natural numbers m for which the
equation o(z) = m is insolvable in natural numbers #. It can be proved
that all numbers m = 3% (& > 1) have this property (cf. Sierpirski [26]).
There are 59 such numbers m < 100. These are 2, 5, 9, 10, 11, 17, 19,
21, 22, 23, 25, 26, 27, 29, 33, 34, 35, 37, 41, 43, 45, 46, 47,49, 50, 51, 52,
53, b5, b8, 59, 61, 64, 65, 66, 67, 69, 70, 71, 73, 75, 76, 77, 79, 81, 82, 83, 85,
86, 87, 88, 89, 92, 94, 95, 97, 99, 100. Among the remaining natural num-
bers m < 100 there are 25 for which the equation o(@) = m has precisely
one solution in natural numbers. These are m =1, 3, 4, 6, 7, 8, 13,14,
15, 20, 28, 30, 36, 38, 39, 40, 44, 57, 62, 63, 68, 74, 78, 91, 93. This suggests
the question whether there exist infinitely many natural numbers m for
which the equation o(z) = m has precisely one solution. The answer in
the affirmative follows from the more general theorem given below,
which, according to P. Erdos [18], p. 12, states that if for any given %
there exists a number m such that the equation o(#) = m has precisely %
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solutions, then there exist infinitely many such numbers m. It is much
easier to prove, however, that there are infinitely many natural numbers
m for which the eguation o(x) = m has more than one solution. To this
class belong, for instance, the numbers m = 3(5°—1), where & =1, 2,...
The reason is that, in virtue of ¢(6) = ¢(11) = 12 and (6-5°) = (11-55-1
=1, we have o(6-5*") = o(11-5*) = §(8¥—1).

It is easy to prove that there exist infinitely many natural numbers
m for which the equation o(z) = m has more than two solutions. This
property attaches, for instance, to the numbers 2(13" —1), where %k
=1,2,... In fact, we have o(14-18"") = ¢(15-18"") = ¢(23-13")
= 2(13%—1).

It is not known whether for every natural number % there exists
a natural number m, for which the equation ¢(2) = m; has precisely
k solutions in natural numbers x. This follows from the conjecture H
(of. Schinzel [15]). It can be proved that if m, denotes the least of
the numbers for which () = my has precisely % solutions, then m, = 1,
My =12, my = 24, my = 96, ms; = 72, ms = 168, m, = 240, m; = 432,
my = 360, myy = 504, myy = 576, my, = 1512, m,; = 1080, m,, = 1008,
M5 = T20, mye = 2304, my; = 3600, myy = 5376, my, = 2160, my, = 1440.

The equation o(z) =m has precisely three solutions in natural
numbers for the following six natural numbers m <100, namely 24,
42, 48, 60, 84, 90.

The equation o(z) = m has precisely four solutions only for one
natural number m <100, namely for m = 96. It has precisely five
solutions also for one natural number m < 100, namely for 72.

There is no natural number m < 100 for which the equation o(z) = m
has more than five solutions in natural numbers; however, H. J. Kanold
[2] has proved that for every natural number % there exists a natural
number 7 such that the equation o(z) = m has > & solutions in natu-
ral numbers @. The equation o(n) = o(n+4-1) has only 9 solutions for
7 <10000. These are n = 14, 206, 957, 1334, 1364, 1634, 2685, 2974,
4364 (cf. Makowski [3]). We do not know whether there exist infinitely
many natural numbers » for which o(n) = a(n-+1).

A. Makowski has asked whether for every integer % there exists
a natural number # such that o(n+1)—g(n) = k, and, more generally,
whether for every natural number m and every integer % there exists
& natural number n such that o(n-m)—o(n) = k.

If » and n-+2 are twin prime numbers then o(n+2) = o(n)+2.
This equation, however, is also satisfied by the number n = 434, though
the numbers 434 and 436 are not prime. A similar situation oceurs for
% == 8575 and n = 8825.

E. Catalan has conjectured (cf. Dickson [3]) that if f(n) = o(n)—mn,
then for natural numbers # > 1 the infinite sequence of consecutive
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iterations of the functions f

n, f(n), ff(n), fif(n); -..

either is periodic or terminates at the number 1. This is true for all n < 2753
(¢f. Poulet [4]). According to L. Alaoglu and P. Erdds [2] not only is
the proof of this conjecture unknown, bub also it is difficult to verify
the conjecture for particular natural values of n.

It is easy to see that for n = 12496 =2*.11-71 all the numbers
n, f(n), ff(n), fff(n), fiff(n) are different and that fffff(n) =n,
so the sequence is periodic. For # = 12, however, we have f(12) =16,
f(16) =15, f(18) =9, f(9) = 4, f(4) =3, f(8) =1, which shows that
the sequence terminates at the number 1, which, of course, is also the case
for a prime n, since then f(n) = 1. For » = 100 we have f(100) =117,
F(117) = 65, £(65) =19, f(19) =1. For n =6, however, we have f(n)
— 1, and the sequence is trivially periodie, the period consisting of one
term. For # = 95 we have f(95) = 25, f(25) = 6, f(6) = 6 and we see
that the sequence is periodic from the fourth term onwards the period
consisting of one term only. For # =220 we have 1(220) = 284,
f(284) = 220 = n, and so the sequence is periodic from the very begin-
ning onwards, the period consisting of two terms. In an unpublished type-
script P. Poulet [4] has announced that for n = 936 the sequence
936, 1794, 2238, 2250, ..., 74, 40, 50, 43, 1 is obtained, consisting
of 189 terms, the greatest of them being 33289162091526.

This suggests the question whether there exist arbitrarily long sequen-
ces n, f(n), ff(n), ... which terminate at 1 and whether there exist infi-
nitely many natural numbers » for which the above sequence is periodic.
The answer to this question is positive provided the conjecture that every
even number greater than 6 is the sum of two different prime numbers
is true.

In fact, suppose that this conjecture is true and let 2k—1 denote
an arbitrary odd number > 7. Then 2k—2 > 6 and, according %o the
conjecture, there exist two different prime numbers p and g, both odd
of course, such that 2k—2 = p-+¢q. Hence f(pg) = o(pg)—pq =1+p+¢
= 9%—1. Since p, ¢ are two different odd primes, we have, say, p > ¢,
and so p>g+2 and ¢ >3. Hence pg>3p =2p+p 22p+q¢+2>
> p-+g+1 = 2k—1. Consequently pg > 2k —1. Therefore for every
odd number » > 7 there exists an odd number m > » such that f(m) = n.
Let m = g(n). Then the infinite increasing sequence g(n), gg(n), ... i8
obtained. If for a natural number k we put n = §°(11) we get: the sequence
n = g*(11), f(n) = ¢“1(11), ..., f*(n) =11, f(11) =1. We have thus
formed a decreasing sequence n,f(n), ff(n),... of k+2 terms, the last
term being equal to 1.
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It for & natural number % we put n = g*(25), we obtain the periodic
sequence n = g*(25), f(n) = ¢*'(28),..., f*(n) =25, f(25)=6, £(6)
=6,6,... with k-1 decreasing terms preceding the period.

There is another question which one may ask in this connection.
’l‘hi‘s is whether there exist infinitely many different natural numbers for
whl.ch the sequence =, f(n), ff(n), ... is periodic and has no terms pre-
ceding the period.

We have just proved that the conjecture that every even natural
number > 6 is a sum of two different prime numbers implies that every
odd natural number >7 is a term of the sequence f(n) (n = 1,2,...).
Moreover, we have f(3) =1, f(4) =3, f(8) = 7. However, it is easy to
prove that the number 5 does not occur in the sequence fln)
(n=1,2,8,...). In fact, if for a natural number 7 the equality f(n) =
= o(n)—n =5 could hold, then 5 would of course be a composite num-
ber (because o(1)—1 = 0 and, for a prime n, o(n)—n =1). So % = ab
where 1 < ¢ < b < n. Then, since 1, b and » would be different divisors’.
of the number n, we would have ¢(n) > 1+b+mn, whence 5 = g(n)—
—n>1-+b>b, and 80 b < 5. Therefore we would have n — ab with
1<a<b<4. But, as can easily be verified, this is impossible, since
there are no natural numbers @, b having the above properties for’whieh
the equation o(n) = n--5 is satisfied.

‘Without the conjecture that every even natural number > 6 is a sum
of two different prime numbers we are unable to prove that every odd
number different from 5 is for a suitably chosen natural number 7 a term
of the sequence o(n)—n (n =1,2,...). P. BErdos has asked whether

there exist infinitely many natural numbers which do not belong to this
sequence.

It can be proved that the relation |
o(mn—1) holds for
all natural numbers n if and only if m =3, 4
Supte 0. y 4, 6, 8, 12 or 24 (cf.
We d<.> not know whether there exist infinitely many natural numbers
n for which .a(n) is .the square of a natural number. The positive
answer to this question can easily be derived from conjecture H
.(Chaptc.ar II1, §8?. In fact, let f(z) = 27*—1, the polynomial f(z) i
irreducible and, since f(0) = —1, it satisfies condition S formulated in
Chapter III. Therefore, according to conjecture H, there exist infinitely
many natural numbers » for which p = 232—1 ig a prime number > 7
] ~ N
‘Fotrhthose #'s we have ¢(7p) = 8(p+1) = (4z)2. This proves that a(Tp)
1s the square of 3 natural number. We know some solutions of the equa-
tion a(:’“‘)h= %* in natural numbers, e.g. & =7 y ¥ = 20. We also know
some of the solutions of the equation o(22) = 48 i ,
= y® in nat
@ =2-3-11-653, y = 7-13-19. )=y namal numbers, .
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EXERCISES. 1. Prove that the equality ¢{n) = n-+1 holds if and only if »
is a prime.

Proof. If p is a prime number, then it has precisely two divisors, namely p
and 1. Therefore o(p) = p-+1. On the other hand, if » is a composite number,
i.e. if n = ab, where a and b are natural numbers > 1, then 1 <a < ab = n and
consequently » has at least three different natural divisors: 1, @ and n. Hence a(n)
> 14+a+n>n+1. Finally, if n =1, then o(n) =1 <n+1.

2. Prove that for every natural number m there exist natural numbers =,y
such that s—y > m and o(@@?) = o(¥?).

Proof. Let » be an arbitrary natural number > m such that (n, 10) = 1. For
5=5n, y=4n we have z—y=n>m and o(@) = o(y’) = 3la(n?).

3. Find all the natural numbers whose divisors added up give odd sums.

Solution. Suppose that » is a natural number such that o(n) is odd. Let n
— 99k, where k is an odd number and a is a non-negative integer. We have o(n)
= (2%+1—1) o (k) and consequently ¢ (k) must be an odd number. Since k is odd, each
of its divisors must be odd and, since the sum of the divisors ¢ (k) is odd, the number
of the divisors d(k) must also be odd.

Hence, a8 we have learned in § 1, ¥ must be the square of a patural number,
ie. k = m?. Thus we see thatn = 2%m?. If a is even, that is if ¢ = 28, then n = (2m)’.
If @ is 0dd, then a = 2f+1 and so n = 2(2fm). Hence either u = I? or n = 2%,

where 1 is a natural number.
On the other hand, if » = I* or n = 2I%, where ! is a natural number, then

n= 22%17‘,_32..‘. gk is the factorization of = into primes, ¢;,¢,...-59; being
0dd prime numbers. We then have o(n)= (220t 1) o (g2™)...a(g3k) or o(n)
= (2Wa+2— l)o'(q'i"l)...cr(q?c"k). But since the number o(g3%) = 14¢,+¢;+-..+ @,
28 the sum of an odd number of summands, each of them odd, is odd, the number
o(n) is odd. Therefore the answer is that o(n) is odd if and only if n is either square
or a square multiplied by 2.

4. Prove that if # is a composite number, then o(n) > n—'rl/;.

Proof. Being composite, n has a divisor d such that 1 < d < n. Hence 1 <=/d
<n Ifd> Vo, then njd > Vn . But since n/d is also a divisor of # (not necessarily
different from d) and 1 <n/d <m, we see that o(n) > n-‘;—v';-l- 1, whence o(n)
> n+ Vn , which was to be proved.

Remark. As an easy consequence of the fact just proved, we note that
lim (6(pn+1)— 0 (pn)) = + oo and that lim (o(pn)— a(pn—1)) = —oo.

N0 n—>00
5. Prove that for every natural number k > 1 the equation o(n) = n-+k has
s finite > 0 number of solutions.

Proof. If o(n) = n+k, where k is a natural number > I, then n must be
a composite number and, according to exercise 4, o(n) > n+1/;, which proves that
n < k.

= In particular, the equation o(n) = n-2 has no solutions and the equation
o(n) = n+3 has precisely one solution, namely n = 4.
. o(nl)
6. Prove that lim —— = —o0.
noco M

Proof. It is easy to prove that o(m)/m is the sum of the reciprocals of the natu-
ral divisors of m. Since the divisors of the number n! comprise at least the natural
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numbers < n, we ses that

o (nl) Lt 1
al [ty Tty
But, since
. 1 1 1 1
lim (T +;~+...+—)= 400, we have o) = oo,
nsoo 2 n nseo M

7. L. Alaoglu and P. Erdés [1] call a natural number n superabundant if a(n)/n
> o(k)/k whenever k < n. Prove that there are infinitely many such numbers.

o .Proof. Let up = o(n)/n for n =1, 2, ... It follows from exercise 6 that the
infinite sequence uy, s, ... has no upper bound. Therefore, in order to prove the
theorem it is sufficient to prove the following more general theorem:
Every infinite sequence with real numbers as terms and with no upper bound
containg infinilely many terms, each being greater than any of the preceding ones.
In fact, suppose that a sequence u;, %, ... has no upper bound. Then we have

lim max (), Ug, ..., Up) = + oo and fo h natural number m there exists a
B T 8ac
s 5 Un) natural

number I > m such that
) = Max(ug, g, ..., %) > MAX (U1, Ug, ..., Um).

In the sequence u;, us, ..., u; there exist of course terms which are equal to az. Let
%y denote the first of them. We then have n > m, n <1 and Uy > up for % .< n
Thus we have shown that for every natural number > m there exists a natural num:
ber » > m such that un > uz whenever % < n. The theorem is thus proved.

8. A. K. Sriniva.a.san [1] calls a natural number # a practical number if every
natural number < =« is a sum of different divisors of the number n. Prove that for
natural numbers n > 1 the number 27—1(2%— 1) is practical.

Proof. If k is a natural number < 9%— 1, then, a i
—1, , a8 we know, k is a sum of dif-
ferelelt ;:mmbers of the sequence 1,2, 2%, ..., 2"1, On the other hand, if 2" 1 <lfk
- n > -
0<2 (22n— 11), then % = (2"—1)i+r, where ¢ is a natural number < 271 and
<7< 2%-1,580¢%and r are sums of different numbers of the se. 2
e 2
ey 8"1 The proof follows at once. ence 1.2, 2
For a necessary and sufficient condition fo
ATy 2 T a natural number n to be ti-
cal numb‘er, of. Sierpinski [16]. See also Stewart [2]. b e
10 is not a practical number, 100 and 1000 are.
9. Find a natural number m for which the i
equat =
& thovsand sopaoour quation o (x) m has more than

. dS olu_tion. We use the following method, due to 8. Mazur. Suppose that we have
oun s’tmples of prime numbers p;, gi, 7 (6= 1, 2,...,8), all of those 3s primes
being different and, moreover,

(20) @i+1)(g+1) =r+1, i=1,2,..,s.
Let
(21) i =pg, dP=r, i=1,2,..,s.
For eve isti
put Ty sequence ay, as, ..., ag consisting of s numbers equal to 0 or 1 we
(22) T altlaled) afes),
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Since the numbers p;, g, 7, % =1,2,...,8 are different primes, conditions (21)
and (22) give

(23) o,

a1,u2,...,as) = o'(a'(lﬂﬂ)Oﬂ(a:(’dﬂﬂ))'''a'(a(sus))'

In virtue of (21) we have
o(@® = @+ D(g+1), o@) =7+l i=12 .3

and consequently, by (20), o(a{”) = o(al) = o(r;), for i =1,2,...,5, and so o (aiod)
= o), i=1,2,...,5. Thus we see that formula (23) implies the equality

(Mg ag,..iag) = O(M)T(12)..0(re) = o(ri7e...70)

for each of 2°sequences aj, @2,...,Qs-
The numbers fay,a,,...,ag- Which are 2° in number, are all different because, in

-:0s

view of (22) and (21), their factorizations into prime numbers are different. Thus we
have obtained 2° different natural numbers, each having the same sum of divisors.

Thus, in order to find, say, 1024 natural numbers the sums of the divisors of
which are equal, it is sufficient to find 10 triples of prime numbers pi, gi, 7% @@=
=1,2,..., 10) such that all thirty are different and equalities (20) hold for them.
It is easy to check that the following triples satisfy these conditions.

2,8, 11; 5,7, 47; 13,17, 251; 19, 23, 479; 29, 41, 1259; 31, 83, 2687;
43, 71, 3167; 59, 61, 3719; 53, 101, 5507; 83, 97, 8231.
It follows that for
m = 12-48-252-480-1260-2688-3168-3720- 5508 8232

the equation o (%) = m has at least 1024 solutions in natural numbers .

§ 5. Perfect numbers. There exist infinitely many natural numbers
n such that the sum of the divisors of n excluding # is less than n. Such
are, for instance, all the prime numbers and their natural powers. There
exist also infinitely many natural numbers » such that the sum of the
divisors of » excluding n is greater than n. For instance such are the
numbers of the form n = 2¢-3, where k = 2, 3, ... However, we do nof
know whether there exist infinitely many natural numbers » such that
the sum of the divisors of n excluding » is equal to n itself. These are
called perfect numbers.

There are 23 known perfect numbers. All of them are even and we
do not know whether there exist any odd perfect numbers. It has been
proved that if such a perfect number exists it must be greater than 1020
(¢f. Kanold [3]) and must have at least six different prime factors (Grad-
stein [1], of. Kiihnel [1], Norton [1]). The greatest of the known perfect
numbers is the number 2422(21** 1) which has 6751 digits. The least
perfect number is the number 6 = 14243 and the next is 28 =1+
4924447414, The sum of the divisors of number n, each of them less
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jchan n, is of course the number ¢(n)—n. Accordingly, a natural number
is a perfect number if o(n)—n = n, ie. if it satisfies the equation

(24) o(n) = 2n.

TeBOREM 5. In order that an even number n be perfect it is necessary
and suffictent that it should be of the form 2°-*(2°—1), where s is @ natural
number and 2°—1 is a prime.

Proof. Let n be an even perfect number. Then # = 271, where
§>1 and 1 is an odd number. Hence o(n) = (2°—1)s(I) and in virtue
of (24), (2°—1)o(l) = 2°. Since (2°—1,2°) =1, we see that a(l) = 2%
where ¢ is a natural number. Hence (2°—1)¢ =1, which, in view of’
o(l) = 2°g, implies o(I) = I+ ¢. But, in virtue of (2°—~1)g =1, we have
gll al}d q <1 (because s > 1). Consequently, the number I has at leagt
two different natural divisors, ¢ and I, and the formula o(l) =14¢q
proves that it has no other divisors. Consequently, we see that ¢ =1
and that I is a prime number. But I = (2°—1)g = 2°—1. Therefore
n =27 = 2°"1(2° 1), and so 2°—1 is & prime number. Thus we have
proved the necessity of the condition.

In order to prove the sufficiency we suppose that 2°—1 is a prime
number (of course an odd one). Further, let n = 2°-1(2°—1). We have
o(n) = (2°—1)0(2°—1) = (2°—1)2° since 2°—1 is a prime number
So c.r('n) = 2n, which pToves that » is a perfect number; this proves the:
zg%ﬁ;eiﬁzogi nihe condition and, at the same time, completes the proof

It is easy to prove that, if 2°—1 is g prime number, then s must

8 P . y =
be al 0 & prime. In fact, if 8 ab where a and
- P b are natural numbers

P—1 = (2"—1)(1+2°+ 2% 4 ... 4 90-Dey,

which shows that, since ¢ > 1, ie. a > 2
.e. and thus 2°— 2—
the number 2°—1 is eomposit’e. o = 1EEmL=s

Thus theorem 5 implies the following

- ?)gROLLARY. ATl the even perfect numbers are given by the formula
(2P —1), where p and 2°—1 are prime numbers.
Perfect numbers were investi i i
¢ gated by Eueclid, wh
following method of finding them: v ) ho discovered the
' O“We calculate the consecutive sums of the series 1--2-+4416-+
+32+... If & sum turns out to be a prime, we multiply it by its last
summand and obtain a perfect number”.

Using theorem 5 we see that the m id i
ethod i
all even perfect numbers. o of Buelid Indeed. gives

’
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Now we are going to find some of the even perfect numbers. In order
to do this, we let p be consecutive prime numbers starting from number
2 and we look whether the number 2°—1 is prime or not. We see that
for p =2,3,5,7 the numbers 2°—1 = 3,7, 31,127 are prime. This
gives the first four perfect numbers, which were actually known in anti-
quity. They are 2(2*—1) = 6, 22(2°—1) = 28, 25(2°—1) = 496, 28(2"—1)
— 8128. For p = 11 the number 211 —1 = 23-89 is composite, and so we
do not obtain a perfect number.

Tt follows from theorem 5 that the task of finding even perfect num-
bers is the same as that of finding Mersenne’s numbers defined as being
prime numbers of the form 2°—1. We shall return to the latter problem
in Chapter X.

We denote by V(z), # being a real number, the number of perfect
numbers < x. B. Hornfeck and B. Wirsing [1] have proved that
Hmﬂ = ¢ and E. Wirsing [1] has proved that there exists a natu-
2o lOgH
ral number A such that V(z) < Aedlosmlosloss,

‘We do not know whether there exist infinitely many natural num-
bers n such that n | o(n), or whether there exist odd natural numbers
with this property. It has been proved that there are no such numbers
n with n < 1020 (Kanold [3]).

Natural numbers n such that o(n) = mn, where m is a natural
number >1, are called P, numbers or multiply perfect numbers.
These numbers were investigated by Wersenne, Fermat, Descartes,
Legendre, and others.

Accordingly, P, numbers are perfect numbers. P. Poulet [1],
(pp. 9-27) has found 334 P, numbers with m < 8.

In 1953 B. Franqui and M. Garcia [1] obtained 63 new P, numbers
(ef. also Franqui and Garcia [2], Brown [1] and [2]). The numbers
P, were investigated by R. Steuerwald [1].

P. Cattaneo [1] has called a number quasi-perfect if it is equal to the
sum of its own non-trivial natural divisors, i.e. the divisors different
from 1 and the number itself. Accordingly, quasi-perfect numbers are
those natural numbers # for which ¢(n) = 2n-+1. We do not know whe-
ther there are any such numbers. However, it is easy to prove that there
exist infinitely many natural numbers # such that o(n) = 2n—1. For
instance, such are all the numbers 9F with ¥ =0,1,2,... A. Makowski
[8] has investigated the solutions of the equation o(n) = 2n-+2 in natu-
ral numbers. He has noticed that, if 2—3 is a prime number, then n
= 9F-1(2% _3) is a solution of this equation. The numbers 2% 3 are prime
for the following values of k < 24:%k =2, 3, 4, 5, 6, 9, 10, 12, 14, 20,
99. The equation has also other solutions, e.g. n = 650.
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EXERCISES. 1. Prove that there exist infinitely many odd natural numbers
# such that o(n) > 2n.

Proof. Such are for instance the numbers n = 945m, where m is a natural
number which is not divisible by 2, 3, 5, 7. Since 945 = 3%.5.7, (m, 945) = 1 and
80 o(n) = 6(945)c(m) > o(945)m = 1920m > 2n. Since m is not divisible by 2, 2
is an odd number.

It can be proved that 945 is the least odd natural number for which o (n) > 22
holds.

2. Find all the natural numbers n such that « is equal to the produet of all
the natural divisors of n excluding n.

Solution. Let Qn denote the product of all the natural divisors of number n.
We are looking for natural numbers » such that @n/n=n, ie. for numbers n for which
Qn=mn2 If d,d,, ..., ds are all the natural divisors of numbers n (which are s =
= d(n) in number), then the numbers n/d;, n/dy, ..., n/ds are also natural divisors
of the number =#. It follows that Qn = dydy...ds = 2°/Qn, and so Q. = nS?
= nf(912, Since Qp = n%, we see that n2 = ndW/2, whence d(n) = 4, and, as can
easily be verified, the converse is also true: if d(n) = 4, then Qn = n2. Therefore,
in order that a natural number be equal to the product of the natural divisors of
n excluding =, it is necessary and sufficient that n have precisely four natural
divisors. It follows from the formula for the number of divisors given by (5) that,
provided (1) is the fa,ctoriza,_tion of n into primes, the equality

@+ (@+1).(ax+1) = 4

holds. Since the exponents a, gy, ..., a are natural numbers, the above formula is
valid only in the case where k < 2, i.e. for k= 1 or k — 2.If%k = 1, then a1 =4,
whenee o, = 3 and = turns out to be the cube of a prime number. If = 2, then
a; = 0 =1 and n turns out to be a product of two different primes. Thus we see
that every natural number n which is the product of its own divisors less than = is
either the cube of a prime numbers or the product of two different primes. The fol-
lowing are all the numbers of this kind that are less than 30: 6, 8, 10, 14, 15, 21,
22, 26, 27.

3. Prove the following theorem of Descartes (mentioned in a letter to Mersenne
of 15th November 1638):

1° If » is a P, number and is not divisible by 3, then 3» is a P, number.

2° If a number n is divisible by 3 but not divisible either by 5 or by 9 and,
moreover, if it isv a P; number, then 45n is Py.

3° If a number % is not divisible by 3 and if 8n is a Py number, then n is a Pay
number.

Proof. 1°Ifnis a Py number, then o(n) = 3n and if » is not divisible by 3,
then 6(3n) = ¢(3)o(n) = 4-3n and consequently 3n is a P, number.

2° If » i8 & P, number and n = 3k, where % is divisible neither by 3 nor by 5,
then o(45n) = 0(3":51:) =o()a(5)olk) = 40-6-0(k). But, in virtue of n = 3k
and k not being divisible by 3, we have o(n) = 0(3)o (k) = 40(k). Consequently,
o(45n) = 60-40(k) = 600 (n). Hence, in view of = being a P, number o(n) = 3n,
Wwe see that o(45n) = 180n = 4-45n, which proves that 45n is a P, number.

3° If » is not divisible by 3 and if 3n is a Py number, then ¢(3n) = 4k-3x,

which implies that o(3n) = 9(3)a(n) = 4o(n), whence o(n) = 8kn, which proves
that » is a Py namber.
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4. Prove that 120 and 672 are P, numbers, the number 25-33-5-7 is a P4 num-
ber, and 27-8%-5-7-112.17-19 is a P; number.

The proof follows at once if we look at the factorizations into primes of the
numbers 120 = 28-3-5 and 672 = 25-3-7. It can be proved that 120 is the least P,
number.

5. Prove that, if o(n) = 5n, then n has more than 5 different prime factors.

Proof. Suppose that (1) is the factorization of n into primes. Then, by (17),
one has

gitlggrtt. L gEtt 6 @ s
o{n) < = . 11 n.
(g — 1Mge— 1)---(q—1) a—1 - [
If & < 5, then we would have
2 3 5 7 11 77
it = — 1 < B
< ITEE " e

which contradicts the equality o(n) = b6n.

6. Prove the following theorem of Mersenne. If n is not divisible by 5 and it
is a Ps number, then 5n is a Ps number.

The proof is straightforward.

§ 6. Amicahle numbers. Two natural numbers are called amicable
numbers if each of them is equal fo the sum of all the natural divisors
of the other except the number itself. It is easy to see that in order that
two natural numbers n,m be amicable it is necessary and sufficient
that o(m) = o(n) = m-4n.

The first pair of amicable numbers, 220 and 284, was found by
Pythagoras. The pair 2¢-23-47 and 2¢-1151 was discovered by Fermaft,
the pair 27-191-383 and 27-73727 by Descartes. As many as 59 pairs
of amicable numbers were found by Euler, among them the pair 23-17-79
and 2%-23-39 and the pair 23-19-41 and 2°-199. A longer paper devoted
to the amicable numbers has been written by B. B. Escott [2]: he has
presented a list of 390 pairs of amicable numbers found in the last 25
centuries. A considerable number of new pairs of amicable numbers,
among them the pair 2°-239 and 24-43-197 and the pair 2-53-13-89-113
and 2-5-13-379-701, have been found by P. Poulet [3].

‘We know pairs of amicable numbers which are all odd, e.g. the pair
33.5-7-11, 3-5-7-139. But we do not know any pair with one of the
numbers odd and the other even. Neither do we know whether there
exist infinitely many pairs of amicable numbers.

The notion of a pair of amicable numbers has been generalized to
the notion of a k-tuplet of amicable numbers. The notion is due to
L. E. Dickson, who calls a k-tuplet of natural numbers %y, 7a, ..., %%
a k-tuplet of amicable numbers if

o(fy) = o(Rg) = ... = o () = N+ ngt+...+m

(Dickson [2], ef. also Mason [1]).
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A. Makowski [3] has found the following triples of amicable num-
bers: 22-32.5-11, 2°-32.7, 22-32.71 and 23-3-5-13, 22-3-5-29, 22-3-5-29
(in the second triple two of the numbers are equal). There exist triples
for which all three numbers are equal, e.g. n, = n, = 1y = 120.

A different definition of a k-tuplet of amicable numbers has been
given by B. F. Yanney [1]. The definition is as follows: a k-tuplet

of natural numbers u,, %y, ..., 7 is called a k-tuplet of amicable num-
bers if
MRttt o(m) = o(n) o) F...+olng), i=1,2,..., k,
this being clearly equivalent to the condition
Ayt Ryt g = (k—1)o(ny) for +=1,2,...,k.

For k = 2 both definitions reduce to the ordinary definition of a pair
of amicable numbers.

For k > 2, however, the definitions no longer coincide and a k-tuplet,
which is a k-tuplet of amicable numbers according to one definifion is
not a k-tuplet of amicable numbers according to the other. An example
of a triple which is a triple of amicable numbers according to the defini-
tion of Yanney is the triple 308, 455, 581.

We have 308 =22-7-11, 455 =5-7-13, 581 =7-83, so a(ny)
= g(ng) = o(ng) =672 and n,+n,+n, = 1344 = 2-672.

It is not known whether there are pairs of relatively prime amicable
numbers. H. J. Kanold [1] has proved that if in a pair m,, m, of amie-
able numbers the numbers m,, m, are relatively prime, then each of
them must be greater than 10 and the number m,m, must have more
than 20 prime factors.

P. Erdds [16] has proved that, if A(z) is the number of the pairs
of amicable numbers < @, then lim A4 (w)/z = 0.

T—>0

§ 7. The sum o(1)+o(2)+...+o(n). In this section we are going
to find the formula for the sum

(25) 8(@) = o(1)+0(2)+... 4 o([z]),

where # i3 a real number >1. .
Let n be a natural number. The number # is a term of the sum o (%)
if and only if » is a divisor of the number . Therefore, in order to caleu-
late the number of the summands o(k) in the sum 8§ (z) in which » appears
as a summand, it is sufficient to find the number of the %'s < o which are
divisible by n. But those are the numbers % for which & — nl < x, where
lis a natural number satisfying of course the inequality I < @/n. Clearly,
the number of I's is [z/n]. Accordingly, a natural number » is a summand
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of the sum of o(k) for [#[n] different natural numbers % < . From thig
we infer that

[z] @
26 S(z) = [—]
(26) (0) = Y|

=1

There is another methods of finding sum (25). In faet, the number a(k)
can be thought of as the sum of natural numbers n satisfying the equation

mn =k,
where m is a natural number. Therefore sum (25) can be regarded as

the sum of the numbers n for which there exist natural numbers m such
that mn < #. Then for a fixed number m number % can be any of the

numbers
z
1, 2,3, ..., [ﬁ]’

the sum of those being equal to
] A
2im 2 tml

Consequently, if we let m to take all the possible values for which the
inequality ma < « can be satisfied, the sum of all n’s, i.e. the sum § (@),

&
m

124 [ 2] <

is equal to

1 & s 1 [mﬁ] @
27 8z) == M2 += V2]
1) @ Ag[m]+27?>4[m]

Comparing (26) and (27) we find the identity
[z] [z}
1 2] 1 [m]
I EEEIYE
m=1 M=1
whieh is of some interest in itself. Clearly, it can also be written in the

form
I o
g[ﬁ] =g(2n—1)[-n-].

Neither of the formulas (26), (27 ) is of any practical use for finding the
numerical values of the sum § (z) for a given number 2. A formula more

Elementary theory of numbers

[z]

2=

n=1

12
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suitable for this purpose is to be found in a similar way as formula (13)
was found and is as follows:

(28)  S(z) =%(S[§] + [ii] (2n+1) [%] 41@]3—[1/3:]2).

For instance, with the use of this formula we can easily calculate §(100)
= 8249.

vz]
Dljn2
n=1

by the sum of the infinite series )’ 1/n? = x2 /6, each time calculating the
n=1

Now, if in (28) we drop the symhol [ ] and replace the sum

error it involves, then we obtain the value =22%12 as an approximation

of the sum S8(z), the error being not greater than Aml/;, where A4 is
a positive constant independent of .

§ 8. The numbers o(n) as coefficients of various expansions. The
function ¢(n) (similarly to the function d (m); ef. § 3) appears ag the coef-
ficient in various expansions in infinite series.

As is known from Analysis, the iterated series

[

Z 2 kmkl

k=1 1=1
is absolutely convergent for {#] < 1. Reducing it to an ordinary series,
for a fixed value of #» we put together the summands in which z® ap-
* pears. Then the cocfficients of the kth summands are the factors of the

(29)

numsber # = kI. Consequently, the sum (29) turns into the sum § a(n)az™.
n=1
On the other hand, since 12 ko' = ket [(1—a%), we see that sum
(29) is equal to the sum kg ka*(1—4"). Thus we arrive at the formula,
Zw'ﬂ _y
1—aF

k=1 =1

o(n)a”, |@| < 1.

Since (29) is absolutely convergent for || < 1, we may interchange the
elements of the series in such a way that, applying the identity i’ ko™
k=1

= a'/(1—a)2, where || <1, we obtain the formula

Z(ﬁ%ﬁ—ﬁ = Za(n)m" for {2z} < 1.
I=1 n=1

21
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In §3 we have introduced Dirichlet’s multiplication of two infinite
serics @;+ay+-... and by;4b,... We apply it here to the case where
ap =1/, by =1/I', % and 1 being natural numbers and s being
a real number > 2. We then have

11 k

b = = G

Now, putting together the products ab; for which %I is equal to
a given natural number #, we see that their numerators are equal to the
natural divisors & of the number #; the sum of those being, clearly,

o(n)/n®. Hence
o

to-1em = YT g

N=1

§>2.

§ 9. Sums of summands depending on the natural divisors of a natu-
ral number n. Let f(n) be an arbitrary function defined for every natural
number n. If dy, ds, ..., d, are all the divisors of a natural number n,
then the sum

Fd)+F (@) +...+F(d,)

D f(d)

amn

is denoted simply by

and called the sum of the summands f(d) with & ranging over the natural
divisors of the number . In particular, we have

K
glzd(n), %’d-a(n) but also %E_o'(n)_

For a given function f(n) defined for natural numbers n we write

P(n) = Yf(d).

dajmn
Let us find the sum
If]1 [x]
2 P@ = > M@
n=1 n=1 d|n

for the real values # > 1.

The sum on the right-hand side of the last formula comprises the
summands f(k), where %k are natural numbers < z.

For a given natural number k¥ <« the summand f(k) appears in

the sum } f(d) if and only if % is a divisor of number n. (Clearly, it appears
dn
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at most onee). The number of such natural numbers » < z is of course
[%] Consequently, the number of the summands f(%) in the double sum
is [ﬁ] , Whence

k
[z} [}

DIFm) = Y fk) [%]
& &

In particular, if f(n) = °, where s is a fixed integer, then F(n)
is the sum of the sth powers of the natural divisors of the natural num-
ber n. This sum is sometimes denoted by o,(n). Then formula (30) gives

[z] [2]
Sn- Sl

k=1

(30)

We have of course oo(n) = d(n), oy(n) =o(n) for n =1,2,... and
we see that formulae (11) and (26) are particular cases of the last formula,.

§ 10. Mobius function. Under this name we mean the arithmetical
function u(n) defined by the conditions

1° (1) =1,

2° p(n) = 0 if the natural number » is divisible by the square of
a natural number > 1,

8° u(n) = (—1)* if the natural number n is the product of & dif-
ferent prime factors.

Accordingly, p(l) =1, p(2) =p(3) = —1, p(4) =0, a(5) = —1,
#(8) =1, u(7) = —1, p(8) = p(9) = 0, p(10) =1.

Now we are going to show a certain property of the function w(n).
Let n be a natural number > 1 whose factorization into prime numbers
is a8 in (1). Consider the produet

1—-@A—g)...0—aq),

where s i3 a given integer.

The expansion of product (31) consists of the number 1 and the num-
bers +d°, where 4 is a divisor of number n, being a product of different
prime factors; the sign + or — at each of the numbers appears accord-
ing to whether the number is the produet of an even or of an odd number
of prime factors. In virtue of property 3° of the definition of the Mo6bius
function, we see that the coefficient 4 at d° is equal to p(d).

I, in addition, we note that u(1)-1° = 1 and that, in order that the
number @ be equal to 1 or to the product of different prime numbers,
it is necessary and sufficient that the number » have no divisor which

(31)

21
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is the square of a natural number > 1, then, by property 2°, we see that
the product (31) is equal to the sum

Du@a.
djn
That is

A—@—a)...1—g) = ) p(@)-&,

djn
whence for s = 0 we obtain

(32) Du@ =0

din .
for every natural number n > 1. Clearly, for n = 1, we have ) u(d) =
dj1
#(1) = 1. We see that, if F(n) = 3 u(d), then F(1) =1 and F(n) =0
din
for natural numbers n>1. Consequently, formula (30) gives

(33) z>1.

Since the inequalities 0 <¢—[t]< 1 hold for all real numbers ¢ and
i
since |u(%)] <1 for natural numbers %, we see that l u(k) [%]— p(k)%] <1

is valid whenever # is a real number >1 and % is a natural number.
From this we deduce that, if we drop the symbol [ ]in each of the sum-
mands of (33), then the error thus obtained is less than 1 and in the first
summand is equal precisely to #— [«]. Thus, since there are [#]—1 sum-
mands in the sum excluding the first term, we have

Nt (o], s :
| Du [%]“”2 28] <o ltm—1 =51,
k=1

k=1

whence, by (33), we obtain

z] » [l

and this implies [# ' u(k)/k| < » and consequently | 2 u(k)/k <1. This
k=1 =1

proves that the module of each of the partial sums of the infinite series

s1) L B2 | k6

(34) T g Fg e
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is < 1. As was proved by H. v. Mangoldt in 1897, sum (34) is equal to 0.
This had already been conjectured by Euler in 1748.

Now, we apply Dirichlet’s multiplication to the series 3 u(%)/%° and
o

12 1/F, where s is a natural number > 1. In virtue of u(l) =1 and
=1

formula (32) we obtain

i.e. the formula

§ being a real number > 1. In particular, since, as is known from Analy-
sis, £(2) = =2/6, the last equality implies

k) 6

_k?- —
k=1

2

In this connection we observe, that it is easy to prove the equality
Z (k) L(s)
= NE}
oK 12

where s is a real number > 1.

0

L
Reducing the iterated series 2 n(k)a® to an ordinary series
E

=1 l=1
by the method we applied previously to the series (29), for [o| <1
we obtain the formula

o1 4(n)a"

— =,
1—a"
=1

n:

T@om 6. For every arithmetical fumction F(n) there emists only
one arithmetical fumction f(n) such that the equality

(35) Fn) = Y (@)

din

holds for all matural numbers n.
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Proof. If, for n = 1,2, ..., formula (35) is valid, then the follow-
ing infinite sequence of equality holds:

F(1) =f@),
F(2) = f(1)+1(2),
F(3) =fA)+£(3),
(36) F(4) = fL)+F(2)+f(4),
F(3) = f(1)+f(5),
F(6) =f(1)+£(2) +f(3) + f(6)

The first equality gives f(1) = F(1). So f(2) can be calculated
from the second equality. Then, since f(1) and f(2) have already
been found, f(3) can be calculated from the third equality and so on. The
nth equality gives the value of f(n), provided the values of f(k) for £ < n,
have already been found from the previous equalities. Therefore we
see that if there exists a function satisfying formula (35), then there is
only one such function. On the other hand, it is easy to see that, cal-
culating the values f(1), f(2), ... from (36), successively, we obtain a fune-
tion f(n) satisfying all the equalities of (36) and, consequently, satis-
fying (35).

The theorem is thus proved.

Equation (36) enables us to find the values f(n) provided F (1), F(2),...
..., F(n) are known. There exists also a general formula for the function
f(n), namely

(37) fo) = D) w@r (2)
E
which can alternatively be written in the form
(38) s =Y u(3) 7@
or in the form "
(39) fon = 3 B F @),

where the summation is over all the pairs k,7 of the natural numbers
for which kI = n.

In order to prove these formulae it is, of course, sufficient to prove
that the function defined by (39) satisfies formula (35) for every natural
number #.
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In fact, (39) implies that

2@ =" 3 umF) = > u)F )

din din kl=d Ikin
= DFQ) Y (k) = F(n)
in Kjmgt

because, by the properties of the function u stated above, > u(k) is dit-
knjt

ferent from zero (and thus equal to 1) only if afl =1, ie. I =n.

In particular, for F(1) =1 and F(n) =0, n =2, 3, ..., theorem
6 implies that there exists precisely one function f, namely the Mobius
function, u(n) = f(n), for which the following conditions are satisfied,

fay =1, Mf@=o0

din

for n=2,3,...

§ 11. Liouville function A(n).
defined by the conditions

19 A(1) =1,

2° A(n) = (—1)"r*2t-+% provided the factorization of # into prime
numbers is of the form (1).

We have A(1) =1, A(2)=4i(3) = —1, Me) =1, A(B) = —1,
AB) =1, A7) = A(8) = —1, A(9) = 2(10) =1. )

Suppose that for a natural number » > 1 the factorization of n into
primes is ag in (1).

Consider the product

This is the arithmetical funetion

k
J] =gt @ =g+ (1),
i=1
where s is an arbitrary integer. Expanding this product, we obtain
the a.llgebraic sum of the summands (g'g;2...g#), each multiplied by
(=1t = (gl %), where the summation is all over the set

of the divisors d = ¢fig2...* of number n. Consequently, the product
is equal to the sum Y A(d)d*.

dan
On the other hand, the formula for the sum of a geometric progres-
sion gives
Cas 14 (—1)gfetne
1—g$+q%‘—q§‘+...+(—l)"*qf" =——
1+g¢ )
Applying this to each of the factors of the product we get

k
1+ (—1ysgger
g = DM,

=1

icm
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In particular, for s = 0 we obtain the formula

T4 (=1 1(=12  14(—17%
(40) T _dlzn;.(d).

The number -1—_}‘—(9—_-1 is equal to zero or to one, depending on wheth-

er a is odd or even. It follows that the left-hand side of formula (40)
is different from zero, and thus equal to 1, if and only if all the exponents
0y, Ogy ..., @z are even, i.e. if n is the square of a natural number. Thus
we have proved the following

TEEOREM 7. The sum > A(d) is equal either to 0 or—in the case where
djn
n 48 the square of & natural nwmber—to 1.
Although in the proof of theorem 7 we assumed # > 1, the theorem
is true for % =1, since A(1) = 1. '
Let F(n) = ) A{d). Consequently, F(n) = 1 holds for any » which
an . ..
js the square of natural numbers and F(n) = 0 otherwise. In virtue
of (30) (for f(k) = A(k)) we obtain

=] [}
2 A(R) [7‘:-] = 2 F(n)
k=1 N=1

whenever # > 1. The sum on the right-hand side of this equality consists
of as many summands equal to 1 as there are natural numbers < # which

are squares. Consequently the sum is equal to [}/E]. Hence

Dam) [—%]: Wa] for o>1.
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