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a b s t r a c t

Layered compression paradigms such as scalable, multiple description, and multi-view

video coding, require coupled encoding decisions among layers to achieve optimal

distortion performance under buffer constraints. Moreover, due to the dynamic and

time-varying source characteristics, and temporal coupling of encoding decisions

through the buffer constraints, it is not only necessary to consider the immediate

rate–distortion impact of encoding decisions, but also their long-term rate–distortion

impact. In other words, optimal encoding decisions must consider the coupling between

layers and the coupling across time. In many scenarios, however, it may be impractical

to make joint coding decisions for all of the layers. For instance, a two layer bitstream

may be coded using different encoders for the base layer and enhancement layer, each

with its own autonomous control plane; or, if the same encoder is used for multiple

layers, then a joint decision process, which considers the aforementioned dependencies,

may be too complex. In this paper, we propose a framework for autonomous decision

making in layered video coders, which decouples the decision making processes at the

various layers using a novel layered Markov decision process. We illustrate how this

framework can be applied to decompose the decision processes for several typical

layered video coders with different dependency structures and we observe that the

performance of the proposed decomposition highly depends on the ability of the layers

to model each other.

& 2009 Elsevier B.V. All rights reserved.
1. Introduction

Layered video coders compress video sources into
multiple bitstreams, which can be selectively transmitted
depending on the available network bandwidth [5,15].
These bitstreams can be encoded to adhere to indepen-
dent or shared buffer constraints using a video buffer
verifier [1,2]. To achieve optimal distortion performance
under these buffer constraints, decisions on how to
encode each layer must be made (i) in a foresighted

manner, because of the temporal coupling of encoding
ll rights reserved.

+1310 206 4685.

ronarde),
decisions through the buffer constraints, and (ii) jointly,
because of the dependencies among the layers.

Foresighted optimizations not only consider the im-
mediate rate–distortion impact of encoding decisions, but
also their long-term impact. This is important, because the
number of bits allocated to encode a data unit (DU) (e.g.
video picture) at the current time determines the amount
of bits available to encode future data units. Hence,
foresighted encoding decisions can significantly improve
the long-term rate–distortion performance of encoders.

In this paper, we formulate the buffer control problem
as a Markov decision processes (MDP). Using MDP
formalisms, foresighted decisions can be made by either
doing multi-pass encoding [11,12], to learn the rate–
distortion characteristics of the video sequence before
making final encoding decisions, or they can be learned
at run-time using online learning techniques [13,14].

www.sciencedirect.com/science/journal/image
www.elsevier.com/locate/image
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Importantly, it has been shown that video sequence
characteristics and video traffic can be accurately modeled
as a Markov process [4]. Hence, MDPs provide a rigorous
and formal methodology for using these existing models
to improve video encoder performance.

Dependencies in layered video coders come in two
flavors: data dependencies and (rate) budget dependencies.
Data dependencies make it so that an enhancement layer
can only be encoded or decoded after the base layer is
encoded or decoded. For example, additional B frames in a
temporal enhancement layer can only be encoded or
decoded after the low frame-rate I and P frames in the
base layer are encoded or decoded. Importantly, data
dependencies also imply that the distortion and encoded
rate of the enhancement layer depend on how the base
layer has been encoded. Meanwhile, budget dependencies
govern the allocation of bits to the various layers. The
budget dependencies are not important if the layers have
independent rate budgets; however, they become crucial if
the base layer and enhancement layers share a rate budget
because this forces the coders to make tradeoffs between
the quality of the base layer and the enhancement
layer(s), the quality of the various descriptions, or the
quality of views from different cameras.

Despite the need for joint encoding decisions to cope
with the data and budget dependencies, and to achieve
optimal long-term distortion performance under buffer
constraints, there are a number of reasons that it may be
impractical or even impossible to make joint encoding
decisions across all of the layers in some scenarios:
1.
 Computational Complexity: a centralized foresighted
optimization can be orders of magnitude more com-
plex than a distributed foresighted optimization.
2.
 Design and Implementation Time: if a layered video
encoder is constructed from two or more legacy and/or
proprietary encoders, each with their own existing
autonomous controllers, then additional software
would have to be designed to jointly control all of the
layers’ decisions in a centralized way. In this case,
significantly more engineering effort is required if the
layers must act jointly.
3.
 Distributed Encoders: in emerging multi-view video
capture systems, cameras and their associated buffers
are not always collocated, and inter-camera commu-
nication must be minimized [16]; hence, a centralized
controller is impractical in this scenario, because it
would require every camera to frequently communi-
cate with every other camera or with some centralized
entity.
4.
 Differential Information: for multiple description en-
coders, encoding decisions for different descriptions
with their own independent buffers may be condi-
tioned on the dynamic bandwidth constraints of
different network paths [18]. In this scenario, there
may only be marginal benefit (or none at all) for using
a centralized controller.
If a centralized control plane like the one in Fig. 1(a) is
impractical to implement for any of the above reasons,
then a distributed control plane like the one in Fig. 1(b)
can be deployed, which allows each layer to autono-
mously select its own encoder settings based on limited or
no information from the other layers.

In this paper, we introduce a framework for autono-
mous decision making in layered video coders, which
takes into account the data and budget dependencies
among the video layers. To illustrate how different video
applications with different dependencies can be imple-
mented in our framework, and how these dependencies
impact the decision processes, we consider a variety of
layered video coders, including scalable [15], multiple
description [5], and multi-view [8] encoders. Importantly,
the proposed framework and methodologies are general
enough to be applied in various buffer-constrained
encoder settings such as video buffer verifiers [1,2] and
video complexity verifiers [3]; however, for simplicity, we
will focus exclusively on video buffer verifiers in this
paper.

Our contributions are as follows:
�
 We formulate the layered rate control problem as a
centralized MDP, which not only considers the im-
mediate rate–distortion impact of encoding decisions
on the current frame, but also their long-term impact
on future frames, thereby optimizing the long-term
rate–distortion performance of the encoder.

�
 We propose a methodology for decomposing the

centralized MDP into a novel layered MDP, which
enables each layer to autonomously select its own
encoding actions. We analytically define the perfor-

mance gap, which measures the performance loss
associated with a layered MDP compared to the
optimal centralized MDP.

�
 We apply our decomposition methodology to three

illustrative examples with different data and budget
dependency structures. We identify three decomposi-

tion principles, which we use to formulate decompo-
sable approximations of centralized MDPs in our
illustrative examples.

�
 We discuss how the proposed framework can be

applied to emerging Reconfigurable Video Coding
(RVC) Motion Picture Expert Group (MPEG) standards
and how it can be extended to include online
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adaptation to dynamically changing source and traffic
characteristics or network constraints.
Importantly, this paper is not intended to show all
possible combinations of data and budget dependencies
that can occur in layered encoder settings. Instead,
examples are selected only to illustrate the proposed
methodology when dealing with various data and budget
dependencies that may be encountered under different
application scenarios. In other words, some new settings
may benefit from the illustrative decomposition examples
in this paper, while others may require new or refined
solution methodologies.

The paper is organized as follows. In Section 2, we
present our general data dependency model for layered
video coders. In Section 3, we present three budget
dependency models. In Section 4, we present the
centralized Markov decision process-based problem for-
mulation and informally outline the proposed decom-
position methodology. In Section 5, we present three
detailed decomposition case studies to illustrate the
proposed decomposition methodology. In Section 6, we
discuss how the proposed framework can be applied to
emerging Reconfigurable Video Coding MPEG standards
and how to integrate dynamic online adaptation into the
framework. In Section 7, we present our experimental
results and we conclude the paper in Section 8.
2. Data dependency models

In this section, we propose a general model for
describing the inter-layer data dependencies arising in
layered video coders. We illustrate three typical instantia-
tions of the model: one based on a scalable coder, one
based on a multiple description coder, and one based on a
multi-view encoder. These examples are designed to
illustrate several representative data dependency struc-
tures that are typical in layered video coders, and are by
no means intended to exhaustively explore all possible
dependency structures and encoder instantiations.

We assume that the layered video encoder generates a
set of L video layers2 denoted by L ¼ f1; . . . ; Lg. In
general, the data dependencies among layers can be
expressed using a directed acyclic graph (DAG), where
each node of the graph represents one layer and each edge
of the graph directed from layer l0 to layer l represents the
dependence of layer l on l0. Formally, we define a partial
relationship between two layers by writing l0!l, if layer l0

is an ancestor of layer l. In other words, l0!l means that
layer l cannot be encoded or decoded unless layer l0 has
been encoded or decoded.

Example: inter-layer data dependencies: consider a
temporal scalable bitstream comprising a low frame-rate
base layer (say layer l0) containing only I and P frames and
an enhancement layer (say layer l) containing only B
frames. The B frames cannot be encoded or decoded
2 Throughout this paper, we will use the terms ‘‘layers, ‘‘descrip-

s,’’ and ‘‘views’’ interchangeably.
unless the I and P frames are encoded or decoded
(i.e. l0!l).

We define the lth layer’s set of ancestors3 as

Gl ¼ fl
0
2Ljl0 � lg.

We note that if Gl ¼+ then layer l is an independently

encodable or decodable layer. On the other hand, if Gla+,
then there exists an l0AGl such that Gl0 ¼+. In other
words, every chain of ancestors terminates at atleast one
independently encodable or decodable layer (which is
usually the base layer for a scalable coder or any side
description for a multiple description coder). We further
define the set

Ll ¼ flg [ Gl,

which represents an independently encodable or decod-
able set of layers that contains layer l and all of its
ancestors. In other words, if the set of layers Ll is available
at a receiver, then it will be able to decode layer l and its
ancestors.

We model each layer l 2L as a sequence of data units

indexed by n. In this paper, we assume that a DU
corresponds to one video picture. We interchangeably
refer to a DU that belongs to layer l as the lth layer’s DU or
a layer-l DU.

At every DU index n, we allow each layer-l DU (for all
l 2L) to be coded under different encoder configurations.
We denote the set of configurations available to encode
layer-l DUs as Al, and let al 2Al represent one such
configuration. We refer to al as the lth layer’s action and
Al as its action set. Although actions are selected per DU
(i.e. a new action can be chosen at every DU index n), we
omit this from the notation until Section 3.

Example: encoder actions: encoder actions include any
decisions that are made at encoding time that impact the
rate–distortion performance. For instance, the choice of
sub-pixel motion accuracy, macroblock partition size,
quantizer parameter (QP), deblocking filter, entropy
coding scheme, motion estimation algorithm, frame type
etc. are all possible encoder actions. In the illustrative
results in this paper, we limit the actions to the choice
of QP.

Let us assume that the joint encoding action a ¼
ða1; . . . ; aLÞ 2A ¼A1 � � � � �AL is used to encode the L

layers, where action al is used to encode layer l. The
encoded rate (bits/DU) and decoded distortion (mean-
squared error) of the set of layers Ll ¼ {l}[Gl not only
depend on the action al, but also on the actions
al0Aa(Gl) ¼ {[a]l0|l

0AGl} of the lth layer’s ancestors, where
[a]l0 ¼ al0 is the l0th component of the joint action a ¼
(a1,y, aL). This dependency exists because the actions
al0Aa(Gl) shape the reference DUs that layer l depends on.
We denote these reference DUs as fl(a(Gl)).

Example: reference DUs: consider the triplet of frames
I–P–B. The B frame in the temporal enhancement layer
(say layer l) is bi-directionally predicted from the decoded
I and P frames in the base layer (say layer l0); therefore, in
3 In typical scalable video coding nomenclature, Gl is the set of

sublayers that must be decoded to decode layer l.
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this example, fl(a(Gl)) represents the decoded I and P
frames that are used as references for predicting the B
frame.

Encoding the DU composed of the set of layers
Ll ¼ {l}[Gl yields the decoded distortion dLl

ðal;aðGlÞÞ

and encoded rate bLl
ðal;aðGlÞÞ. As we will see in the

following three subsections, the precise definition of these
quantities depends on the application and its dependency
structure.

It is important to note that, in this paper, we only
consider inter-layer data dependencies, which dictate how
one layer’s actions impact another layer’s rate–distortion
behavior; consequently, we ignore intra-layer data depen-
dencies, which dictate how actions at DU index n impact
the rate–distortion behavior of future DUs, at indices n+1,
n+2,y, in the same layer.

Example: intra-layer data dependencies: the QP selected
for an I frame impacts the rate–distortion behavior of all
subsequent DUs in the same group of pictures.

Although we ignore intra-layer data dependencies,
encoding decisions at DUs n+1, n+2,y, are still coupled
with the encoding decision for DU n through the post-
encoding buffer (see Section 3). For illustration of how
intra-layer dependencies can be dealt with, we refer the
interested reader to [6].

2.1. Scalable coding example

For a scalable video coder, we let layer l ¼ 1 represent
the base layer and layers lA{2,y, L} represent the L�1
enhancement layers (e.g. temporal, spatial, or signal-to-
noise ratio enhancements). We assume that each layer can
be generated by different video standards (e.g. the base
layer can be generated by an MPEG-2-based coder while
the enhancement layers can be generated by an H.264/
AVC-based coder). Fig. 2 illustrates a simple example of
temporal scalability with L ¼ 2 layers. Note how we index
DUs and how we define a ‘‘2-layer DU’’ as the combination
of a ‘‘Layer-1 DU’’ and a ‘‘Layer-2 DU.’’ Spatial and signal-
to-noise ratio enhancements can be represented similarly.

Due to the hierarchical relationship between layers, the
lth layer can only be encoded after layers l0A{1,y, l�1}
have been encoded; hence, Gl ¼ {1,y, l�1}, Ll ¼ {1,y, l},
and a(Gl) ¼ {a1,y, al�1}. The base layer’s action a1

determines the base layer’s distortion d1(a1) and encoded
rate b1(a1). We denote the resulting decoded base layer,
which is used as a reference by layer 2, as f2(a1), where
I

P

P

P

2-layer DU 

P

P

...

Layer-1 DU 

Layer-2 DU

...

n - 1 n + 1n DU
Index 

Base layer

Layer

Enhancement
layer (l = 2)

(l = 1)

Fig. 2. Scalable video coding example: temporal scalability with one

base layer and one enhancement layer.
{a1} ¼ a(G2). Given f2(a1), the first enhancement layer’s
action a2 determines its distortion reduction4 Dd2(a2,
f2(a1)) and encoded rate b2(a2, f2(a1)). We denote the
resulting references used by layer 3 as f3(a1, a2), where {a1,
a2} ¼ a(G3).

In general, given the references generated by layers
l0AGl, i.e. fl(a1,y, al�1), the lth layer’s action al, for
lA(2,y, L), determines its distortion reduction Ddl(al,
fl(a1,y, al�1)) and encoded rate bl(al, fl(a1,y, al�1)) as
illustrated in Fig. 3(a). When we discuss the proposed
decomposition methodology in Section 4 and the decom-
positions in Section 5, it will be important to understand
why Ddl(al, fl(a1,y, al�1)) and bl(al, fl(a1,y, al�1)) are
functions of the reference frames f1(a1,y, al�1) and not
the actions a1,y, al�1. To understand this, consider the
following example.

Example: impact of fl(a1,y, al�1): consider again the
I–P–B frame triplet. As before, the encoding actions
selected for the I and P frames in the base layer determine
the reference information used to predict the B frame in
the enhancement layer. Regardless of the actions used to
encode the I and P frames, if they result in an identical set
of reference pixels, then the B frame’s distortion reduction
and encoded rate only depend on those reference pixels
and the enhancement layer’s action.

The l-layer DU comprising layers Ll ¼ {1,y, l} has
distortion5

dLl
ða1; . . . ; alÞ ¼ d1ða1Þ �

Xl

k¼2

Ddkðak; f kða1; . . . ; ak�1ÞÞ, (1)

and encoded rate

bLl
ða1; . . . ; alÞ ¼ b1ða1Þ þ

Xl

k¼2

bkðak; f kða1; . . . ; ak�1ÞÞ. (2)

In words, decoding more layers additively decreases the
video distortion at the expense of an additively increased
bit-rate. Fig. 3(a) illustrates the relationships among the
quantities on the right-hand sides of Eqs. (1) and (2).
Fig. 3(b) illustrates the construction of the l-layer DU and
its parameters on the left-hand sides of Eqs. (1) and (2).

When we discuss the budget dependency models in
Section 3, it will be important to understand why Ddl(al,
fl(a1,y, al�1)) and bl(al, fl(a1,y, al�1)) are non-determinis-
tic. To understand this, consider the following example.

Example: non-deterministic rate–distortion behavior:

consider again the I–P–B frame triplet. The actual rate–
distortion behavior of the B frame depends on how well it
is correlated with its reference frames (i.e. the decoded I
and P frames). For instance, if the B frame is the same as
the I or P frame, then bl(al, fl(a1,y, al�1)) will be quite
small; however, if there is a lot of motion in the sequence,
then the B frame will not be well correlated with either of
4 The distortion reduction at layer 2 represents the decrease in

distortion relative to the base layer’s distortion (i.e. layer 1). In other

words, decoding the first enhancement layer in addition to the base layer

yields total distortion dL2
ða1; a2Þ ¼ d1ða1Þ � Dd2ða2 ; f 2ða1ÞÞ.

5 This distortion model assumes that there is only one indepen-

dently decodable ancestor layer (i.e. the base layer). If the scalable video

encoder has more than one base layer, then a different model is needed.
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Fig. 3. Scalable coding data dependencies: (a) relationships among the layer-l DUs and their parameters; and (b) construction of the l-layer DU, and its

parameters.

Fig. 4. Multiple description coding example: (a) temporal splitting with two descriptions; and (b) multiple description coding data dependencies.
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the reference frames. If this correlation is not known,
then Ddl(al, fl(a1,y, al�1)) and bl(al, fl(a1,y, al�1)) are
non-deterministic and depend on the video source’s
characteristics.
2.2. Multiple description coding example

We consider an illustrative multiple description coder
with L ¼ 2 descriptions generated by temporal or spatial
information splitting, syntactic–semantic splitting, or
layered coding [5]. Fig. 4(a) illustrates a simple example
of multiple description coding with temporal splitting.
The dotted oval indicates that the two DUs (i.e. the P
frames in descriptions 1 and 2) have the same DU index.

Due to the asymmetric relationship between the two
descriptions, each is independently encodable and decod-
able (i.e. there are no data dependencies between the
descriptions). In our framework, a multiple description
coder with two descriptions can be modeled as having
L ¼ 3 layers, where layer l ¼ 1 represents the first
description, layer l ¼ 2 represents the second description,
and layer l ¼ 3 represents a virtual layer comprising both
descriptions. Hence, G1 ¼+, G2 ¼+, and G3 ¼ {1,2};
and, L1 ¼ {1}, L2 ¼ {2}, and L3 ¼ {1,2,3}. The first de-
scription’s action a1 determines its distortion d1(a1) and
encoded rate b1(a1). Similarly, the second description’s
action a2 determines its distortion d2(a2) and encoded rate
b2(a2). Note that layer l ¼ 3 (i.e. the virtual layer made of
descriptions 1 and 2) does not have its own action, i.e.
A3 ¼+, because it is merely the combination of the first
two layers. We write a3 ¼ 0 to indicate a null action and
d3(0) ¼ 0, b3(0) ¼ 0 to indicate the corresponding decoded
distortion and encoded rate, respectively. If both descrip-
tions are received, then the final decoded distortion
becomes dL3

ða1; a2Þ, which is less than both d1(a1) and
d2(a2) [5], and the final encoded rate becomes
bL3
ða1; a2Þ ¼ b1ða1Þ þ b2ða2Þ.
Fig. 4(b) illustrates the dependencies among the

multiple description coders’ layers and the corresponding
parameters. As we mentioned in Section 2.1, we do not
explicitly consider the intra-layer dependencies, but
we account for the temporal coupling of decisions at
different DU indices through the post-encoding buffer
(see Section 3).
2.3. Multi-view coding example

For illustration, we consider a very simplistic multi-
view coding example with L independently encodable or
decodable views from L cameras (i.e. there are no data
dependencies among the L views). Hence, Gl ¼+ and
Ll ¼ {l}. The lth sequence’s action al determines its
distortion dl(al) and encoded rate bl(al). Although we
consider a very simple example here, our data dependency
framework can be applied to multi-view coders with
various inter-view dependencies such as those in [7,8].
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3. Budget dependency models

In the previous section, we discussed how inter-layer
data dependencies couple the descendent layers’ rate–
distortion performance with the actions of their ancestor
layers. In this section, we discuss budget dependency
models, which define how the encoding action taken for
the current DU in one or more layers impacts the available
bit budget for future DUs in one or more layers. By
combining different data dependency models and differ-
ent budget dependency models, a large number of
application’s and constraints can be represented.

In this paper, we use the budget models within a
buffered rate-control framework [1] to regulate the
encoded rate of one or more layers; however, a similar
approach can be applied in a video complexity verifier
setting as well [3], by substituting encoded rate for
decoding complexity. Importantly, the budget dependency
models proposed in this section are just for illustration.
Other budget dependency structures may be required for
other application scenarios.

Fig. 5 illustrates the three considered buffer models. In
Fig. 5, an arrow pointing from a layer-l DU to a buffer
indicates that bl bits are deposited into the buffer after the
DU is encoded using action al. The arrows from the buffers
back to the DUs indicate that the action selected for
encoding each DU is conditioned on the current state of
one or more of the buffers.

3.1. Independent budget (IB)

The independent budget buffer model illustrated in Fig.
5(a) assigns to each layer one buffer, which independently
regulates the encoded rate of that layer’s bitstream. We
assume that the buffer at layer l drains at the rate b̄l.

Under the IB model, we denote the lth layer’s buffer’s
occupancy prior to coding the nth DU as ql

n, where the
subscript indicates that the lth layer’s buffer only regulates
the rate of layer l. The buffer’s occupancy evolves recursively
from DU index n to DU index n+1 as follows [1,2]:

qnþ1
l ¼minf½qn

l þ bn
l ða

n
l ; f

n
l ða

nðGlÞÞÞ � bl�
þ; qmax

l g

q0
l ¼ qinit

l , (3)
Fig. 5. Illustrative budget dependency models: (a) independent budget (IB) mod

budget joint constraint (SBJC) model.
where ql
init is the initial buffer occupancy; ql

max is the
maximum allowable buffer occupancy; [Y]+

¼max{Y, 0}; b̄l

is the buffer’s drain rate; an(Gl) is the set of the lth layer’s
ancestor’s actions; and, bl

n(al
n,fl

n(an(Gl))) is the number of
bits allocated to the nth layer-l DU given the lth layer’s
action al

n and its reference frames fl
n(an(Gl)).

The buffer state at layer l represents the buffer’s
occupancy qlA[0,ql

max]; however, since ql is continuous,
we need to discretize it to formulate the buffered rate-
control problem as a discrete-time Markov decision
process in Section 4. To this end, we assume that a
function cl maps the buffer occupancy into one of Zl

discrete values, i.e.

clðqlÞ ¼ sl 2 fs
1
l ; . . . ; s

Zl

l g.

We refer to these values as buffer state descriptions.
Accordingly, the set of buffer states at layer l is finite and
can be expressed as

Sl ¼ fsljsl ¼ clðqlÞ; ql 2 ½0; qmax
l �g.

Due to the fact that bl
n(al

n,fl
n(an(Gl))) is non-determi-

nistic (see Section 2.1), the state transition for each layer’s
buffer is also non-deterministic. The lth buffer’s transition
(defined recursively in Eq. (3)) can be modeled as a
controllable Markov process with transition probabilities

fpðs0ljsl; al; f lðaðGlÞÞÞ : s0l 2Slg, (4)

where sl ¼ sl
n and s0l ¼ snþ1

l are the lth layer’s buffer states
at the beginning of DU indices n and n+1, respectively.
Thus, the transition of the joint buffer state s ¼

ðs1; . . . ; sLÞ 2S ¼S1 � � � � �SL given the joint action
a ¼ a1; . . . ; aL 2A ¼A1 � � � � �AL can be written as

pðs0js;aÞ ¼
YL

l¼1

pðs0 ljsl; al; f lðaðGlÞÞÞ. (5)

This expression intuitively follows from Fig. 5(a), which
illustrates that the lth layer’s buffer transition is indepen-
dent of the other layers’ buffer transitions given fl(a(Gl))
(i.e. the number of bits arriving in the base layer’s buffer
neither depends on, nor impacts, the number of bits
arriving in the enhancement layer’s buffer if the enhance-
ment layer knows fl(a(Gl)).
el; (b) shared budget individual constraints (SBIC) model; and (c) shared
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The uncertainty in the value of bl
n(al

n,fl
n(an(Gl))) (and

therefore the uncertainty of the next state) can be reduced
by modeling the video sequence characteristics and rate
traffic as a Markov process, with video source states

representing different frame types and activity levels [4].
In this paper, to emphasize the proposed decomposition
methodology, we do not directly model the source
characteristics in this manner. However, such models
can be easily integrated into our framework to improve
performance at the expense of increased memory and
computational complexity.

When layer l takes action al in state sl, it incurs a buffer

cost gl(sl, al,fl(a(Gl))), which penalizes the layer as its buffer
fills, thereby protecting against overflows that may result
from a sudden burst in buffer arrivals. We present
illustrative buffer cost models in Appendix B.

3.2. Shared budget individual constraints (SBIC)

The shared budget individual constraints (SBIC) buffer
model illustrated in Fig. 5(b) uses the buffer at layer l to
regulate the encoded rate of the layers in the set
Ll ¼ {l}[Gl,

6 instead of only regulating layer l as in the
IB model. In this way, each individual bitstream Ll, for all
l 2L, is forced to adhere to a maximum budget (as in the
IB buffer model), but has the flexibility to share its budget
among its various layers (unlike the IB buffer model). In
Appendix A, we describe the conditions under which this
extra flexibility can improve the overall rate–distortion
performance of the layered video coder.

Under the SBIC model, we assume that the buffer at
layer l drains at the rate b̄Ll

, where b̄Ll
is the maximum

average channel rate for the bitstream composed of the
layers in the set Ll. We denote the lth layer’s buffer’s
occupancy prior to encoding the nth DU as qn

Ll
, where the

subscript indicates that the lth layer’s buffer regulates the
combined rate of all layers in Ll. The lth layer’s buffer
evolves recursively from DU index n to DU index n+1 as
follows:

qnþ1
Ll
¼minf½qn

Ll
þ bn

Ll
ðan

l ;a
nðGlÞÞ � b̄Ll

�þ; qmax
Ll
g

q0
Ll
¼ qinit

Ll
, (6)

where qinit
Ll

is the initial buffer occupancy; qmax
Ll

is the
maximum allowable buffer occupancy; b̄Ll

is the buffer’s
drain rate; and bn

Ll
ðan

l ;a
nðGlÞÞ is the number of bits

allocated to the nth DU in the bitstream Ll. Note that
we use an(Gl) here instead of f(an(Gl)), because
bn
Ll
ðan

l ;a
nðGlÞÞ depends directly on the actions (see Eq. (2)).

As in the IB buffer model, a state at layer l represents
the quantized buffer occupancy; hence, the lth layer’s
buffer state set is Sl ¼ fsljsl ¼ cLl

ðqLl
Þ; qLl

2 ½0;qmax
Ll
�g.

Due to the uncertainty in bn
Ll
ðan

l ;a
nðGlÞÞ, each buffer’s

state transition is non-deterministic. The state transition
at video layer l (defined recursively in Eq. (6)) can be
6 It is important to note that, under the SBIC model, the budget

dependency structure depends on the application specific data depen-

dency structure (i.e. Ll ¼ {l}[Gl, for all l 2L); however, it is also possible

to have a buffer model where layers have no data dependencies, but still

have shared buffers.
modeled as a controllable Markov process with transition
probabilities

fpðs0 ljsl; al;aðGlÞÞ : s0 l 2Slg. (7)

Thus, the transition of the joint buffer state s given the
joint action a can be written as

pðs0js;aÞ ¼
YL

l¼1

pðs0 ljsl; al;aðGlÞÞ, (8)

where the lth layer’s buffer transition is independent of
the other layer’s buffer transitions given a(Gl). The form of
Eq. (8) intuitively follows from Fig. 5(b), which shows that
the actions of the layers in Ll determine the number of
bits that enter the lth buffer.

If layer l is in state sl, layer l takes action al, and layers
l0AGl take actions a(Gl), then layer l incurs a buffer cost
gLl
ðsl; al;aðGlÞÞ. We present illustrative buffer cost models

in Appendix B.

3.3. Shared budget joint constraints (SBJC)

The shared budget joint constraint buffer model
illustrated in Fig. 5(c) is a special case of the SBIC buffer
model. The SBIC buffer model reduces to the SBJC model
when the buffer sizes and drain rates of layers lA{1,y,
L�1} are infinite and their buffer costs are zero. In other
words, the SBJC buffer model regulates the encoded rate of
the entire bitstream LL,

7 without imposing any con-
straints on individual sublayers or side descriptions.

4. Decomposition methodology

In this subsection, we begin by introducing the centra-
lized problem formulation based on a conventional Markov
decision process. Subsequently, we informally outline the
decomposition methodology proposed in this paper.

4.1. Centralized problem formulation

We formulate the buffered rate-control problem for
layered video coders as an MDP. MDPs enable foresighted

decisions, which not only consider the immediate rate–
distortion impact of coding decisions, but also their long-
term rate–distortion impact. This is important in our
setting, because the number of bits allocated to encode a
DU at the current time determines the amount of bits
available to encode future DUs. Hence, foresighted
encoding decisions can significantly improve the long-
term rate–distortion performance of encoders, for a given
buffer model.

Formally, an MDP is a tuple hS;A; J; p; gi, where S is a
set of states; A is a set of actions; J : S�A/R is a cost
function; p : S�A�S/½0;1� is a transition probabil-
ity function; and gA[0,1) is a discount factor. In the
proposed framework, the set of actions is
A ¼A1 � � � � �AL, where Al is the lth layer’s set of
7 If there are no data dependencies, then the SBJC model can

regulate the encoded rate of all layers in L.
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Table 1
Centralized MDP: information requirements, memory complexity, and

computational complexity.

Transition probability function Cost

function

Information

requirements

P(s0|s,a) J(s,a)

Memory complexity jSj2jAj jSjjAj

Offline computational

complexity
OðjSj2jAjÞ per VAL_I

Performance gap Provides benchmark for optimal

performance
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encoding parameter configurations as described in Section
2; and, the set of states and the transition probability
function depend on the budget dependency model as
described in Section 3. We will define cost functions for
several illustrative examples in Section 5.

We define a Markov decision policy p as a mapping from
joint states to joint actions, i.e. p : S/A. In our setting,
the policy p simply dictates which encoding actions
should be taken by each layer given the current buffer
states. The goal of the MDP is to find the optimal
stationary Markov policy p*, which minimizes the

expected sum of discounted costs

Ep
X1
n¼0

ðgÞnJn
js0

 !
(9)

where the parameter gA[0,1) is the discount factor, which
defines the relative importance of present and future
rewards8; s0 is an initial starting state; and, Jn is the cost
incurred when coding the nth DU index (see Section 5 for
several illustrative cost function definitions).

We will find it useful to express the expected sum of
discounted rewards recursively using the so-called state-
value function [14]:

VðsÞ ¼ min
a2A

Jðs;aÞ þ g
X
s02S

pðs0js;aÞVðs0Þ

( )
, (10)

which can be computed offline, prior to run-time, using a
well-known technique called value iteration9 (VAL_I) [14]:
i.e.

Vk
ðsÞ ¼ min

a2A
Jðs;aÞ þ g

X
s02S

pðs0js;aÞVk�1
ðs0Þ

( )
(11)

where k is the iteration index and V0 is an arbitrary initial
value function. Given the optimal state-value function V*
(obtained as k-N), the optimal policy p* can be
computed as

pnðsÞ ¼ arg min
a2A

Jðs;aÞ þ g
X
s02S

pðs0js;aÞVn
ðs0Þ

( )
. (12)

To compute the optimal stationary policy using VAL_I,
the transition probability function and cost functions
must be known and stationary. Throughout this paper, for
the centralized VAL_I and the layered VAL_I algorithms
proposed in Section 5, we assume that these conditions
are satisfied; however, in Section 6, we discuss potential
extensions to this work, which relax these assumptions,
and allow the optimal policy to be determined online, at
run-time.

Table 1 summarizes the information requirements,
memory complexity, and offline computational complex-
8 If g ¼ 0, then Eq. (9) reduces to the immediate expected reward. If

ga0, then Eq. (9) takes into account the system’s long-run rewards, but

geometrically discounts the future rewards by g. Discounting is desirable

because the multimedia session’s lifetime is not known a priori (i.e. the

session may end unexpectedly) and therefore rewards should be

maximized sooner rather than later. In this context, the discount factor

can be interpreted as the probability that the session will continue for

another stage.
9 Policy iteration can also be used [14].
ity associated with the centralized solution. Notice that
for a large number of states, the computational complex-
ity of the centralized VAL_I algorithm can be huge. We will
see that decoupling the decision processes at the various
layers can dramatically reduce the complexity.

4.2. Decentralized performance gap

The centralized VAL_I algorithm presented in the
previous subsection yields the centralized optimal policy
p*, which maps joint states to joint actions. However, as
we described in the introduction, it may be impractical to
make joint coding decisions for all of the layers. Hence,
the goal of the decompositions proposed in the next
section (i.e. Section 5) is to determine local policies pn

l , for
all l 2L, which map the available information at layer l to
local actions at layer l. We denote the resulting decen-
tralized policy as ðpn

1 ; . . . ; pn
L Þ.

The centralized optimal policy p* provides a perfor-
mance benchmark for the decentralized policy
ðpn

1 ; . . . ; p
n
L Þ. We can analytically determine the expected

performance of p*, Epn ½J�, as follows:

Epn ½J� ¼
X
s2S

mpn ðsÞJðs;pnðsÞÞ, (13)

where mpn ðsÞ is the stationary probability of being in state
s 2S given the centralized policy p*. Similarly, the
expected performance of ðpn

1 ; . . . ; pn
L Þ, Eðpn

1
; ...; pn

L
Þ½J�, can be

determined as:

Eðpn
1
;...;pn

L
Þ½J� ¼

X
s2S

mðpn
1
;...;pn

L
ÞðsÞJðs; ðpn

1ðsÞ; . . . ; p
n
L ðsÞÞ, (14)

where mðpn
1
; ...; pn

L
ÞðsÞ is the stationary probability of being in

state s 2S given the decentralized policy ðpn
1 ; . . . ; pn

L Þ.
The performance gap between a decentralized policy
ðpn

1 ; . . . ; pn
L Þ and the optimal centralized policy p* is

merely the difference between Eqs. (14) and (13), i.e.

Performance gap ¼ Eðpn
1
; ...; pn

L
Þ½J� � Epn ½J�. (15)

Since the decentralized solutions proposed in this paper
are approximations of the centralized solution, the perfor-
mance gap is always non-negative (i.e. Epn ½J�pEðpn

1
; ...; pn

L
Þ½J�).

Building on the decompositions proposed in this paper,
future research should investigate new decompositions
and models that can be deployed to minimize the
performance gap.
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Table 2
Proposed decomposition methodology.

Step 1: Define problem-

specific cost and

transition probability

functions

Additively decompose the cost function

across layers and factor the transition

probability function based on the

problem-specific data and budget

dependencies.

Step 2: Reformulate the

centralized VAL_I

algorithm

Substitute the additively decomposed

cost function and factored transition

probability function from step 1 into the

centralized VAL_I algorithm.

Step 3: Apply appropriate

decomposition principles

Identify the dependencies in the

reformulated centralized VAL_I

algorithm from step 2 and apply the

appropriate decomposition principles to

yield a decomposable approximation of

the algorithm.

Step 4: Formulate local

value iterations

Formulate local value iterations and

determine the appropriate message

exchanges to implement the

decomposition and determine optimal

local policies.
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4.3. Decomposition methodology

The illustrative decompositions presented in Section 5
all follow a general decomposition methodology. In
Table 2, we outline this methodology to connect all of
the examples and to provide a template for future
research that deals with different data and budget
dependency structures or different problem settings (e.g.
Reconfigurable Video Coding).

Step 3 of the proposed decomposition methodology is
about decomposition principles, which are used to for-
mulate a decomposable approximation of a centralized
VAL_I algorithm. In our illustrative examples, we define
several useful decomposition principles; however, exten-
sions to this work may identify new principles for use in
different situations. Decomposition principles that lead to
minimal performance gaps are desirable.

Step 4 yields the local value iteration algorithms at
each layer. These local VAL_I algorithms must conform to
the standard VAL_I form in Eq. (11) to guarantee that they
converge to an optimal state-value function and a
corresponding optimal policy for the given cost and
transition probability functions [19].
5. Decomposition case studies

In this subsection, we present three illustrative
examples for decomposing the decision processes at each
layer using a novel layered Markov decision process. We
characterize the example decompositions by: (i) the
considered dependencies, (ii) the information required
to implement them, (iii) their memory and computational
complexity, and (iv) whether they perform as well as an
optimal centralized solution, or if there is a performance
gap introduced by decomposing the problem (e.g. due to
imperfect models of one layer’s impact on another’s
rate–distortion behavior).
5.1. Case 1: no dependencies

We first consider how to decompose the decision
processes when there are neither data dependencies nor
budget dependencies. This situation arises, for example,
when using the simple multi-view coder described in
Section 2.3 coupled with the IB buffer model described in
Section 3.1 (see Fig. 5(a)).

Before we can decompose the decision process, how-
ever, we need to define the cost function J. In this setting,
J(s,a) can be additively decomposed into local costs
associated with each view, i.e.

Jðs;aÞ ¼
X
l2L

½glðsl; alÞ þ ll dlðalÞ�, (16)

where the buffer cost at layer l, gl(sl, al), is defined as in
Eq. (33), with fl(a(Gl)) ¼ 0 because there are no data
dependencies, and ll weights the relative importance of
each sequence’s buffer cost with its distortion cost.

Using the factored transition probability function
defined in Eq. (5) for the IB model (with fl(a(Gl)) ¼ 0)
and the additive cost function defined in Eq. (16), the
centralized VAL_I algorithm defined in Eq. (11) can be
rewritten as

Vk
ðsÞ ¼ min

a2A

X
l2L

½glðsl; alÞ þ ll � dlðalÞ�

(

þg
X
s02S

YL

l¼1

pðs0ljsl; alÞV
k�1
ðs0Þ

)
, (17)

which can be decomposed into independent VAL_Is at
each layer l 2L, i.e.

Vk
l ðslÞ ¼ min

al2Al

glðsl; alÞ þ ll dlðalÞ þ g
X

s0
l
2Sl

pðs0 ljsl; alÞV
k�1
l ðs

0
lÞ

8<
:

9=
;.

(18)

Given its optimal local state-value function V*l

(obtained as k-N), layer l can compute its locally
optimal policy p*l offline as

pn
l ðslÞ ¼ arg min

al2Al

glðsl; alÞ þ ll dlðalÞ þ g
X

s0
l
2Sl

pðs0 ljsl; alÞV
n
l ðs
0
lÞ

8<
:

9=
;. (19)

Notice that Vn
ðsÞ ¼

P
l2SVn

l ðslÞ and p*(s) ¼ (p*l(sl),y,
p*L(sL)). This leads us to our first decomposition principle:

Decomposition principle 1: if there are no dependencies
among the layers (i.e. neither data nor budget dependen-
cies), then the problem can be decomposed without
performance loss (i.e. the performance gap defined in
Eq. (15) is zero).

Table 1 summarizes the information requirements,
memory complexity, and offline computational com-
plexity associated with the decomposition with no
dependencies.

5.2. Case 2: data dependences only

In our second case study, we consider how to
decompose the decision processes when there are data
dependencies but no budget dependencies. This situation
arises, for example, when using the scalable coder
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Table 3
Decomposition information: no dependencies.

Transition

probability function

Cost function

Information

requirements
P(s0 l|sl,al), 8l 2L gl(sl,al), dl(al), 8l 2L

Memory complexity
P

l2LjSj
2jAj jSljjAlj þ jAlj

Offline

computational

complexity

OðjSlj
2jAljÞ per VAL_I for all l 2L

Performance gap No performance gap when there are no

dependencies among layers
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described in Section 2.1 (see Fig. 3) coupled with the IB
buffer model described in Section 3.1 (see Fig. 5(a)).

In this setting, the cost function J is similar to when
there are no dependencies, however, the reference frames
fl(a(Gl)) ¼ fl(a1,y, al�1) cannot be ignored due to the data
dependencies among the various layers. Hence, J(s, a) can
be additively decomposed as follows:

Jðs;aÞ ¼ g1ðs1; a1Þ þ l1 d1ða1Þ

þ
XL

l¼2

½glðsl; al; f lða1; . . . ; al�1ÞÞ

� ll Ddlðal; f lða1; . . . ; al�1ÞÞ�, (20)

where gl(sl, al, fl(a1,y, al�1)), for all l 2L, is defined as in
Eq. (33), ll weights the relative importance of the base
layer’s buffer cost and its distortion, and ll, for lA{2,y, L},
weights the relative importance of each enhancement
layer’s buffer cost with its distortion reduction.

Using the factored transition probability function
defined in Eq. (5) for the IB model and the additive cost
function defined in Eq. (20), the centralized VAL_I
algorithm defined in Eq. (11) can be rewritten as

Vk
ðsÞ ¼ min

a2A
g1ðs1; a1Þ þ l1d1ða1Þ
�

þ
XL

l¼2

½glðsl; al; f lða1; . . . ; al�1ÞÞ � ll

(

� Ddlðal; f lða1; . . . ; al�1ÞÞ�

þ g
X
s02S

YL

l¼1

pðs0 ljsl; al; f lða1; . . . ; al�1ÞÞV
k�1
ðs0Þ

)
(21)

Unfortunately, because the enhancement layers depend
on the reference frames fl(a1,y, al�1), for lA{2,y, L},
Eq. (21) cannot be decomposed optimally like Eq. (17)
(i.e. with a zero performance gap).

We invoke the following decomposition principle to
decompose Eq. (21) into local VIs at each layer:

Decomposition principle 2: if a descendent layer’s
optimal actions depend on the reference frames generated
by its ancestor layers, or their actions, then the decision
processes of the layers can be decomposed by allowing
the descendent layers to abstract/model the reference
frames or actions of the ancestor layers.

A good abstraction is some quantity, or set of
quantities, that is well correlated with the actions taken
by the ancestor layers and with the rate–distortion
behavior of the descendent layers. Better models, which
incorporate more information, will decrease the perfor-
mance gap, at the expense of increased memory and
computational complexity.

In this instance, we propose to use the distortion
dLl�1
ða1; . . . ; al�1Þ as an abstraction of the reference frames

fl(a1,y, al�1). Importantly, other reference descriptions
could be used instead of, or in addition to, the distortion
(e.g. the number of motion vectors or their magnitudes);
however, as stated in the second decomposition principle,
richer models increase the decomposition’s complexity
(Table 3).

Because dLl�1
ða1; . . . ; al�1Þ is continuous, we quantize it

to determine the reference distortion description (RDD)
xl ¼ cd dLl�1
ða1; . . . ; al�1Þ

� �
, where cd : Rþ/X is a quan-

tizer with reconstruction values in the set X. Substituting
xl for fl(a1,y, al�1), Eq. (21) can be approximated as

Vk
ðsÞ ffi min

a2A
g1 s1; a1ð Þ þ l1 d1 a1ð Þ

(

þ
XL

l¼2

gl sl; al; xlð Þ � ll Ddl al; xð Þ
� �

þg
X
s02S

YL

l¼1

p s0 ljsl; al; xlð ÞVk�1 s0ð Þ

)
. (22)

We propose two solutions for decomposing Eq. (22). The
first solution allows each layer to independently deter-
mine its optimal policy, using only limited information
from its immediate ancestor. We refer to this solution as
the open-loop decomposition because there is no informa-
tion sent from the descendent layers to the ancestor layers
to indicate to them how their decisions impact the costs at
the descendent layers. In contrast, the second solution
allows information to be propagated from the ancestor
layers to the descendent layers and vice versa. We refer to
this solution as the closed-loop decomposition.

5.2.1. Open-loop decomposition

The open-loop decomposition begins with the base
layer determining its locally optimal stationary policy pn

1 :

S1/A1 independently of the states and actions at layers
lA{2,y, L}. It does this using the following offline local
VAL_I algorithm:

Vk
1ðs1Þ ¼ min

a12A1

fg1ðs1; a1Þ þ l1 d1ða1Þ

8<
:
þ g

X
s01

pðs01js1; a1ÞV
k�1
1 ðs

0
1Þ

)
. (23)

After computing its optimal local state-value function
V*1 (obtained as k-N in Eq. (23)), the base layer can
compute its locally optimal stationary policy p*1 as

pn
1 ðs1Þ ¼ argmin

a12A1

g1ðs1; a1Þ þ l1d1ða1Þ

8<
:

þg
X

s0
1
2S1

pðs01js1; a1ÞV
n
1ðs
0
1Þ

9=
;. (24)
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Fig. 6. Open-loop decomposition for scalable video coding with only

data dependencies.
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Recall from Eq. (22) that the transition probability and
cost functions at layer lA{2,y, L} depend on the RDD xl

from layer l�1. Hence, for layers lA{2,y, L}, we define a
composite state ~sl ¼ ðsl; xlÞ. Based on its composite state,
layer lA{2,y, L} performs its local VAL_I offline as
follows:

Vk
l ðsl; xlÞ ¼ min

al2Al

glðsl; al; xlÞ � ll Ddlðal; xlÞ

8<
:

þg
X

s0 l2Sl

p s0 ljsl; al; xlð Þ
X

x0 l2X

p x0 lð ÞV
k�1
l ðs

0
l; x
0
lÞ

9=
;, (25)

where p(x0l) is the stationary probability of the RDD x0 l 2

X from layer l�1. The distribution fpðxlÞjxl 2 Xg, for
lA{2,y, L}, can be calculated by layer l�1 after it
determines its optimal stationary policy p*l�1. Specifically

pðxlÞ ¼
X

sl�12Sl�1

mpn
l�1
ðsl�1ÞI½cdðdLl�1

ðpn
l�1ðsl�1ÞÞÞ ¼ xl�, (26)

where mpn
l�1
ðsl�1Þ is the stationary probability that layer

l�1 is in state sl�1 given policy pn
l�1, and

I½cdðdLl�1
ðpn

l�1ðsl�1ÞÞÞ ¼ xl� is an indicator function that
takes value 1 when cdðdLl�1

ðpn
l�1ðsl�1ÞÞÞ ¼ xl, and takes

value 0 otherwise. Hence, after layer l�1 performs its local
VAL_I, it must calculate the distribution fpðxlÞjxl 2 Xg
using Eq. (26) and forward it to layer l for use in its local
VAL_I. As we mentioned before, other reference descrip-
tions could be used in addition to the distortion (e.g. the
number of motion vectors or their magnitudes) leading to
more sophisticated models than Eq. (26).

Finally, after computing its optimal local state-value
function Vn

l offline (obtained as k-N in Eq. (25)), layer
lA{2,y, L} can compute its locally optimal policy as

pn
l ðsl; xlÞ ¼ arg min

al2Al

glðsl; al; xlÞ � ll Ddlðal; xlÞ

(

þg
X

s0 l

pðs0 ljsl; al; xlÞ
X
x0 l

pðx0 lÞV
n
l ðs
0
l; x
0
lÞ

)
, (27)

where p*l(sl, xl) dictates the optimal action a*l to take in
state sl given the RDD xl from layer l�1.

Table 4 summarizes the information requirements,
memory complexity, and offline computational complex-
ity associated with the open-loop decomposition with
only data dependencies, and describes why it incurs a
Table 4
Decomposition information: open-loop decomposition with only data depende

Transition probability function

Information requirements p(s01|s1,a1), l ¼ 1

p(s0 l|sl,al,xl), p(xl), o.w.

Memory complexity jS1j
2jA1j þ

PL
l¼2ðjSlj

2jAljjXlj þ jXljÞ

Offline computational complexity OðjS1j
2jA1jÞ, per VAL_I at layer l ¼ 1

OðjSl �Xlj
2jAljÞ, per VAL_I o.w.

Performance gap (i) Performance gap incurred because t

RDD.

(ii) Performance gap incurred because
performance gap relative to the optimal centralized policy.
We observe that the computational complexity in this
setting is significantly smaller than for the centralized
case as long as the number of RDDs is not too large. Fig. 6
illustrates how each layer computes its optimal local
policy in the open-loop decomposition, and what in-
formation must be shared among layers.
5.2.2. Closed-loop decomposition

In the open-loop decomposition, the ancestor layers do
not consider how their decisions impact the costs
and state transitions at the descendant layers. Conse-
quently, the optimal local policies (p*1,y,p*L) derived
using the open-loop decomposition can be suboptimal
compared to the centralized optimal policy p* under
the conditions described in Appendix A. Our proposed
solution to this problem is our third decomposition
principle.

Decomposition principle 3: if the ancestor layers main-
tain a model of the impact of their actions on the
descendant layers’ costs and state transitions, then this
model can be integrated into the ancestor layer’s VAL_I
algorithm to improve the decentralized decision policy.

For illustration, let us assume that there are only two
layers and that the base layer (i.e. l ¼ 1) knows the
joint state s ¼ (s1, s2). Let the base layer have a model
M(s2, a1) ¼ (JM(s2, a1), pM(s02|s2, a1)) of how its actions
impact the enhancement layer’s cost and state transition
given the enhancement layer’s state. Given the model M,
the VAL_I at the base layer can be performed offline
ncies.

Cost function

g1(s1,a1), d1(a1), l ¼ 1

g1(s1,a1,xl), Ddl(al,xl), o.w.

jS1jjA1j þ jA1j þ
PL

l¼2ðjSljjAljjXlj þ jAljjXljÞ

he descendent layers imperfectly model the ancestor layers based on the

the ancestor layers do not know their impact on the descendent layers.
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as follows:

Vk
1ðsÞ ¼ min

a12A1

g1ðs1; a1Þ þ l1d1ða1Þ þ JMðs2; a1Þ

(

þ g
X
s02S

pðs01js1; a1ÞpMðs
0
2js2; a1ÞV

k�1
1 ðs

0Þ (28)

After computing V*1 (obtained as k-N), the base layer
can determine its optimal local policy p*1 as follows:

pn
1 ðsÞ ¼ arg min

a12A1

g1ðs1; a1Þ þ l1d1ða1Þ þ JMðs2; a1Þ

(

þ g
X
s02S

pðs01js1; a1ÞpMðs
0
2js2; a1ÞV

k
1ðs
0Þ (29)

Subsequently, the closed-loop decomposition proceeds
like the open-loop decomposition illustrated in Fig. 6: i.e.,
the base layer computes its RDD distribution fpðx2Þjx2

2 Xg, and forwards it to the enhancement layer, which
subsequently performs its own local VAL_I offline using
Eq. (25).

It remains to explain how the base layer can determine
JM(s2,a1) and pM(s02|s2,a1). These models can be derived by
allowing the enhancement layer to share its cost function
g2(s2,a2,x2)�l2Dd2(a2,x2) and transition probability func-
tion p(s02|s2,a2,x2) with the base layer. Then, given these
functions, the base layer can estimate its models by
substituting the distortion description x2 with the actual
expected distortion description cd(d1(a1)) given action a1:
i.e.,

JMðs2; a1Þ ¼ g2ðs2; a2;cdðd1ða1ÞÞÞ � l2 Dd2ða2;cdðd1ða1ÞÞÞ

pMðs
0
2js2; a1Þ ¼ p s02js2; a2;cdðd1ða1ÞÞ

� �
. (30)

Unfortunately, plugging in these models into the base
layer’s local VAL_I defined in Eq. (28) does not decouple the

decision processes at the two layers because Eq. (30) still
depends on the action at the enhancement layer (i.e. a2).
Hence, without further modification to Eq. (30), we cannot
determine the optimal stationary policy p*1 at the base
layer without knowing the optimal stationary policy p*2

at the enhancement layer (which would fix action a2 for
each s2, i.e. a*2 ¼ p*2(s2), thereby making Eq. (30)
independent of a2), which in turn can only be determined
if we know p*1 as illustrated in the previously described
open-loop decomposition.

To decouple the interdependent decision processes, we
must modify Eq. (30) to be independent of the enhance-
ment layer’s action. We assume that each action a2 2A2
Table 5
Decomposition information: closed-loop decomposition with only data depend

Transition probability function

Information requirements p(s01|s1,a1), pM(s02|s2,a1), l ¼ 1

p(s02|s2,a2,x2), p(x2), l ¼ 2

Memory complexity jS1j
2jA1j þ jS2j

2jA1j þ jS2j
2jA2jjX2j þ jX

Offline computational complexity OðjSj2jA1jÞ, per VAL_I at layer l ¼ 1

OðjS2 �X2j
2jA2jÞ, at layer l ¼ 2

Performance gap (i) Performance gap incurred because the de

(ii) Performance gap incurred because the an

using JM(s2,a1) and pM(s02|s2,a1).
is taken with probability pA2
ða2Þ (which may be derived

from a previous encoding session), and therefore the
models in Eq. (30) can be rewritten as

JMðs2; a1Þ ¼
X

a22A2

pA2
ða2Þ½g2ðs2; a2;cdðd1ða1ÞÞÞ

� l2 Dd2ða2;cdðd1ða1ÞÞÞ�

pMðs
0
2js2; a1Þ ¼

X
a22A2

pA2
ða2Þpðs

0
2js2; a2;cdðd1ða1ÞÞÞ; (31)

which are independent of a2. Although this is not a perfect
model, it is indicative of the relative impact of the base
layer’s various actions on the enhancement layer’s cost
and state transition. Note that it is also possible to
simplify Eq. (31) by averaging out s2 in addition to a2.

Table 5 summarizes the information requirements,
memory complexity, and offline computational complex-
ity associated with the closed-loop decomposition with
only data dependencies, and describes why it incurs a
performance gap relative to the optimal centralized policy.
Fig. 7 illustrates how each layer computes its optimal local
policy in the closed-loop decomposition, and what
information must be shared among layers.

5.3. Case 3: data and budget dependencies

In our third case study, we consider how to decompose
the decision processes when there are data dependencies
and budget dependencies. This situation arises, for
example, when using the scalable coder described in
Section 2.1 (see Fig. 3) coupled with the SBIC buffer model
described in Section 3.2 (see Fig. 5(b)) or the SBJC buffer
model described in Section 3.3 (see Fig. 5(c)).

Due to its similarities to the previous case study with
only data dependencies, we discuss this case study in
Appendix C.

6. Extensions of the proposed framework

6.1. Applications to reconfigurable video coding

Reconfigurable Video Coding MPEG decoders can
dynamically compose decoding solutions from a set of
registered video coding tools and libraries [9,10]. To fully
take advantage of this flexibility at the decoder, an
encoder mechanism must be in place for optimally
selecting among the available coding tools depending on
encies.

Cost function

g1(s1,a1), d1(a1), JM(s2,a1), l ¼ 1

g2(s2,a2,x2), Dd2(a2,x2), l ¼ 2

2j jS1jjA1j þ jA1j þ jS2jjA1j þ jS2jjA2jjX2j þ jA2jjX2j

scendent layers imperfectly model the ancestor layers based on the RDD.

cestor layers imperfectly model their impact on the descendent layers
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Fig. 7. Closed-loop decomposition for scalable video coding with only data dependencies.
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Fig. 8. Example RVC-based encoder and corresponding distributed control plane.
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the video source characteristics and the coupled behavior
of the interacting components. For example, a particular
transform–quantizer pair may work best for natural video
content, while another may be best for computer-
generated video content.

Fig. 8 illustrates an example RVC-based encoder, where
each codec component has several possible instantiations.
The codec components correspond to functional blocks in
the encoder pipeline (e.g. transform, quantization, motion
estimation, and entropy coding) and each component
instantiation corresponds to a different implementation of
that functional block from a different standard or
company. A distributed control plane computes the
optimal local policies offline; then, online, at run-time,
the codec components select their instantiations based on
their offline computed policies and the state feedback.

Although there are several differences between the
RVC-based encoder and the layered encoder, there are also
several marked similarities. First, in the layered encoder,
actions at the ancestor layers impact the rate–distortion
performance of the descendent layers. In the RVC-based
encoder, on the other hand, actions at the earlier
components impact the performance of the later compo-
nents (e.g. the choice of transform impacts the quantizer’s
efficiency). Second, in the layered encoder, actions act on
DUs in each layer. In the RVC-based encoder, on the other
hand, actions act on the same DU, but across different
components. Finally, in the layered encoder, post-encod-
ing buffers contain bits. In the RVC-based encoder, on the
other hand, the buffers between components contain
processed data. Despite these differences, the decisions
among layers or components are coupled, which allow us
to apply a similar decomposition methodology as the one
in this paper to the coding tool selection problem in RVC-
based encoders.

The proposed framework provides a methodology for
decoupling the decision processes of two or more codec
component functions, by enabling them to autonomously
select their optimal instantiations in response to the
behavior of their interconnected components. Using the
terminology introduced in this paper, both open- and
closed-loop decompositions are possible as illustrated in
Fig. 8. An open-loop decomposition would begin with the
first component computing its optimal local policy and
then forwarding information about its selected operating
points to the second component, which will then compute
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its optimal local policy and forward information to the
third component, and so forth, with each component
ignoring its impact on the subsequent components when
determining its optimal local policy. In contrast, the
closed-loop decomposition would begin with the earlier
components modeling their impact on the latter compo-
nents, and then proceeding as in the open-loop decom-
position, but with modified local VAL_I algorithms that
account for the impact of the first components on the
latter components.
Coupled Dynamics

Value
Function

Policy 

cost

estimation
error

state action

Layer 1

Fig. 9. Conceptual reinforcement learning diagram for two layers.
6.2. Dynamic online adaptation

In this paper, we assume that the rate–distortion
behavior of each layer is known and stationary. This
enables us to determine the cost and state transition
probability functions used in the various decompositions
(i.e. the ‘‘required information’’ in Tables 3–5, 8 and 9). In
practice, however, the rate–distortion behavior is un-
known a priori and therefore the transition probability
and cost functions are also unknown. Consequently,
online learning techniques [13,14] must be deployed to
learn the optimal policies for each layer at run-time, based
on experience.

One possible learning solution is to estimate the cost
and transition probability functions using maximum
likelihood estimation as new experience is acquired, and
then recompute the optimal local policies at each layer
based on the estimated quantities. Unfortunately, this
technique can incur significant computational overheads
every time the policy is updated (see the ‘‘computational
complexity’’ fields in Tables 3–5, 8 and 9 for order-of-
magnitude estimates).

An alternative, and preferable, solution is to deploy
low-complexity reinforcement learning techniques that
are explicitly designed for learning MDP policies online
[13,14,17]. Reinforcement learning techniques can be used
to directly update the state-value function and policy after
encoding each DU.

Fig. 9 illustrates a conceptual reinforcement learning
implementation when there are two layers with coupled
state transitions and costs. The learning process works as
follows:
�
 Given their current state information, each layer takes
an action dictated by its current policy.

�
 These actions result in costs incurred at each layer, and

a state transition, both of which may depend on the
states and actions at the other layer because of the
coupled dynamics.

�
 The incurred costs are then used to update the value

function and policy at each layer, and the process
repeats.
Similar to the decompositions proposed in this paper,
learning decompositions may also incur performance loss
compared to a centralized learning algorithm. Investigat-
ing these learning techniques forms an important area of
future research.
7. Illustrative results

In this section, we compare the performance of the
proposed open- and closed-loop decompositions to the
performance of the centralized solutions using the IB and
SBIC buffer models. For illustration, we use the H.264 JM
Reference Encoder (version 13.2) to generate scalable
bitstreams of Foreman (first 145 frames, CIF resolution,
low motion) and Stefan (last 145 frames, CIF resolution,
high motion) with two temporal layers. The low frame-
rate base layer contains only I and P frames (15 frames per
second, intra-period 8) and the enhancement layer
contains only B frames (which contribute an additional
15 frames per second when decoded).
7.1. Illustrative layered coding system parameters

Table 6 details the parameters used in our illustrative
results for each buffer model, including information about
the buffer sizes, number of buffer states, buffer drain rates,
and action sets at each layer. In Table 6, parameters in
parentheses are used for encoding Stefan and those that
are not in parentheses are used for encoding Foreman. If
no parentheses are present in a field, then the parameters
are used for both Stefan and Foreman. We make the
following observations about the selected parameters:
�
 For both buffer models, the buffer sizes and number of
buffer states are selected to make each buffer state
correspond to a 20 kbit interval for Foreman and a
40 kbit for Stefan after applying the state description
mapping function defined in Section 3.1. For illustra-
tion, we assume that the state description mapping
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Table 6
Parameters used for illustrative results.

Base layer l ¼ 1 Enhancement layer l ¼ 2

IB buffer model Buffer Size (kbits) ql
max 200 (400) 100 (200)

No. Buffer States (uniform quantization) 10 5

Drain Rate (kbits/DU) b̄l
40, 35, 25, 20, 15, 12.5, 10, 7.5 (125, 110, 90 70 60 45 30 25) 10 (60)

SBIC buffer model Buffer Size (kbits) qmax
Ll

q1
max q1

max+q2
max

No. Buffer States (uniform quantization) 10 15

Drain Rate (kbits/DU) bLl
b̄1 b̄1 þ b̄2

Action Sets (Encoder QPs) Al {24,26,28,30,32,34,36,38} {24,26,28,30,32,34,36,38}
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Fig. 10. Full framerate PSNR vs. full framerate kbits/DU. (a) Foreman; and (b) Stefan.
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function is a uniform quantizer such that each state
represents an equal length interval of the buffer;
however, it is possible that performance could be
improved by using a non-uniform quantizer (e.g. using
denser state descriptions for higher buffer occupancy
levels).

�
 The enhancement layer’s buffer under the SBIC

model is as large as both buffers combined in the IB
model. This is because the SBIC model imposes
independent constraints on every independently de-
codable subset of layers (e.g. L1 ¼ {1} and L2 ¼ {1,2} in
our example with two temporal layers), and therefore
the enhancement buffer must simultaneously regulate
the bits from the base layer and the enhancement
layer.

�

10 The data in Table 7 is a specific instantiation of the ‘‘computa-

tional complexity’’ fields in Table 1 (centralized), Table 4 (open-loop, IB

buffer model), Table 5 (closed-loop, IB buffer model), Table 8 (open-loop,

SBIC buffer model), and Table 9 (closed-loop, SBIC buffer model) for the

parameters in Table 6.
For both buffer models, the base layers’ drain rates are
the same and the total rates are the same (i.e. bL1

¼ b̄1

and bL2
¼ b̄1 þ b̄2).

Fig. 10 illustrates the impact of the base layer’s QP on
the overall quality-rate performance of the video encoder
for the Foreman and Stefan sequences. We observe that
decreasing the base layer’s QP increases the minimum bit-
rate required to encode the full frame-rate sequence, and
concomitantly decreases the bits required to encode the
enhancement layer. In the context of Fig. 10, the goal of the
proposed decentralized decision making framework is for
the layers to autonomously configure themselves given
the their buffer constraints to select an optimal feasible
operating point within the convex set defined by these
curves.

7.2. Value iteration complexity

Table 7 compares the complexity of the centralized,
open- and closed-loop solutions for the IB and SBIC buffer
models when using the parameters in Table 6.10 We
assume that the enhancement layer uses four reference
distortion descriptions (see Section 5.2) and four reference
rate descriptions (RRDs) (see Appendix C) to model the
base layer in the appropriate decompositions. The com-
plexity per value iteration in all of the cases is normalized
by CIB, which is the complexity of a centralized VAL_I
using the IB buffer model.

We observe from Table 7 that decomposing the original
centralized problem for each buffer model significantly
reduces the VAL_I complexity by up to two orders of
magnitude; however, both SBIC buffer model decomposi-
tions are still quite complex. This is because the enhance-
ment layer must use both the RDDs and the RRDs to
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Fig. 11. Full framerate PSNR vs. base layer’s rate constraint (kbits/DU). (a) Foreman sequence (fixed enhancement drain rate of 10 kbits/DU); and (b) Stefan

sequence (fixed enhancement drain rate of 60 kbits/DU).

Table 7
Normalized complexity per value iteration using the illustrative parameters in Table 6.

Centralized Open-loop decomposition

(CIB per VAL_I)

Closed-loop decomposition

(CIB per VAL_I)

IB buffer model CIB per VAL_I Layer l ¼ 1 0:005 0:125

Layer l ¼ 2 0:02 0:02

SBIC buffer model 9CIB per VAL_I Layer l ¼ 1 0:005 1:125

Layer l ¼ 2 2:88 2:88

Four reference distortion descriptions and four reference rate descriptions are assumed.
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model the base layer, which results in exponential growth
of its composite state set. Complexity can be reduced in all
cases, at the expense of performance, by using a coarser
quantization of the buffer states and/or using less RDDs
and RRDs.
7.3. Decomposition performance comparison

Fig. 11 compares the rate–distortion performance of
the centralized, open-loop, and closed-loop solutions for
the IB and SBIC buffer models when using the parameters
in Table 6 for the Foreman and Stefan sequences. Fig. 11(a)
shows that decomposing the decision process for the
relatively low motion Foreman sequence results in a
performance gap (relative to the centralized optimal
solution for the same buffer model) of less than 0.55 dB
PSNR across all base layer drain rates using either buffer
model. Meanwhile, Fig. 11(b) shows that decomposing the
decision process for the high-motion Stefan sequence
results in a performance gap of less than 1.7 dB PSNR in all
cases. These results indicate that the performance of the
proposed solutions is highly dependent on the video
source characteristics, which impact the ability of the
layers to model each other.
We also observe from Fig. 11 that at high base
layer drain rates, the optimal performance using the SBIC
buffer model is better than the optimal performance using
the IB buffer model (for the Foreman sequence, the
maximum observed improvement is approximately
0.4 dB PSNR and for the Stefan sequence it is approxi-
mately 0.7 dB PSNR). This is because, in the former case,
the enhancement layer can borrow bits from the base
layer to optimally balance the allocation of bits across
layers.
8. Conclusion

In this paper, we propose a framework for autonomous
and foresighted decision making in layered video coders,
which decouples the decision making processes at the
various layers using a novel layered Markov decision
process. We propose a step-by-step decomposition meth-
odology for converting centralized MDP-based problem
formulations into decomposable layered MDPs. We apply
this methodology in several illustrative settings with
different data and budget dependencies among layers. In
our illustrative results, we show that compared to a
centralized MDP-based solution, the proposed layered
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MDP decreases the optimization complexity by up to two
orders of magnitude while only incurring a worst-case
performance gap of 0.55–1.7 dB PSNR.

In this paper, we assume that the source and encoder
dynamics are stationary and known (e.g. the rate–distor-
tion behavior is known and statistically time-invariant).
We comment on how these assumptions can be relaxed in
future research, by incorporating online learning techni-
ques into the proposed framework. We also discuss how
the proposed work has applications to emerging Reconfi-
gurable Video Coding MPEG standards. Although we focus
on the interdependencies of the entire encoding pipeline
in this paper, we envision that the proposed framework
can be applied in an RVC encoder to decouple the decision
processes of two or more codec component functions, by
enabling them to autonomously select their optimal
instantiations in response to the behavior of their
interconnected components.
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Appendix A. : Buffer model properties

The IB buffer model introduced in Section 3.1 imposes
a maximum average rate on each layer (i.e. b̄1) such that
the bitstream L1 is guaranteed to comply with a
maximum average rate (e.g. under the IB buffer model,
the bitstream L1 cannot exceed the maximum average
channel rate bLl

p
P

k2Ll
b̄k). This is desirable when a

receiver needs to subscribe to a bitstream L1 that is
guaranteed to comply with its experienced channel rate.
However, the IB buffer model is inflexible in its allocation
of bits. For instance, in a two layer coder like the one
illustrated in Fig. 2, if the base layer only uses an average
of b̄1 � z bits/DU, then the enhancement layer is still
constrained to use only b̄2 bits/DU, even though it could
use b̄2 þ z bits/DU without exceeding the maximum
average rate bL2

pb̄1 þ b̄2. Despite its inflexibility, this
buffer model is sufficient for optimizing the rate–distor-
tion performance when the video source characteristics
coupled with the layered coder satisfy the property

Dðb̄1; b̄2ÞpDðb̄1 � z; b̄2 þ zÞ; z40, (32)

which states that it is always better in terms of overall
rate–distortion performance to allocate the maximum
allowable amount of bits to the base layer. More generally,
in an L layer setting, the property would imply that taking
bits from an ancestor layer to allocate to a descendant
layer would never improve the overall rate–distortion
performance.

In contrast, the SBIC and SBJC buffer budget models
introduced in Sections 3.2 and 3.3, respectively, can be
used to optimize the rate–distortion performance when
the sequence characteristics coupled with the layered
coder do not satisfy (32). This can happen, for example,
when using temporal scalability to encode a high-motion
sequence [20].

Appendix B. : Buffer costs

In Section 3, we introduced the concept of a buffer cost,
which penalizes the layer as its buffer fills, thereby
protecting against overflows that may result from a
sudden burst in buffer arrivals. In this appendix, we
present illustrative buffer cost models for the IB and SBIC
buffer models. Importantly, other forms of the buffer cost
models can be used, which may yield more conservative
or more aggressive utilization of the buffer than the
exemplary models used in this paper.

IB Buffer Cost: when layer l takes action al in state sl, it
incurs a buffer cost

glðsl; al; f lðaðGlÞÞÞ ¼
1

qmax
l

 !2

ðsl þ blðal; f lðaðGlÞÞÞ � b̄lÞ
2,

(33)

which is near its minimum when the buffer is empty and
is maximized when the buffer is full. This buffer cost non-
linearly penalizes the layer as its buffer fills.

SBIC Buffer Cost: if layer l is in state sl, layer l takes
action al, and layers l0AGl take actions a(Gl), then layer l

incurs a buffer cost

gLl
ðsl; al;aðGlÞÞ ¼

1

ðqmax
Ll
Þ
2
ðsl þ bLl

ðal;aðGlÞÞ � b̄Ll
Þ
2, (34)

which is near its minimum when the buffer is empty and
is maximized when the buffer is full.

Appendix C. : Case study 3

When there are both data and budget dependencies,
the cost function J takes a similar form to when there are
only data dependencies; however, the buffer cost at layer l

now depends directly on the actions a(Gl) ¼ a1,y, al�1

taken by its ancestor layers because they influence the
number of bits arriving in the lth layer’s buffer (see the
buffer evolution equation for the SBIC buffer model
defined in Eq. (6) and Fig. 5(b) and (c). Hence, J can be
additively decomposed as follows:

Jðs;aÞ ¼ gL1
ðs1; a1Þ þ l1 d1ða1Þ

þ
XL

l¼2

½gLl
ðsl; a1; . . . ; alÞ

� ll Ddlðal; f lða1; . . . ; al�1ÞÞ�, (35)

where gLl
ðsl; a1; . . . ; alÞ is defined as in Eq. (34), l1 weights

the relative importance of the base layer’s buffer cost and
its distortion, and ll, for lA{2,y, L}, weights the relative
importance of each enhancement layer’s buffer cost with
its distortion reduction.

Using the factored transition probability function
defined in Eq. (8) for the SBIC buffer model and the
additive cost function defined in Eq. (35), the cen-
tralized VAL_I algorithm defined in Eq. (11) can be
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11 Note that Vl(sl, xl, yl) and p*l(sl, xl, yl) can be represented more

compactly as Vl(cl(sl+yl)) and p*l(cl(sl+yl),xl), respectively, because yl can

be treated as an initial offset to the actual buffer state.
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rewritten as

Vk
ðsÞ ¼ min

a2A
gL1
ðs1; a1Þ þ l1d1ða1Þ

(

þ
XL

l¼2

½gLl
ðsl; a1; . . . ; alÞ � llDdlðal; f lða1; . . . ; al�1ÞÞ�

þg
X
s02S

YL

l¼1

pðs0 ljsl; a1; . . . ; alÞV
k�1
ðs0Þ

)
(36)

We observe that the distortion reduction at layer
lA{2,y, L} is a function of fl(a1,y, al�1), as in the case
with only data dependencies. However, in this case, the
buffer costs and transition probabilities at layer lA{2,y,
L} depend directly on the actions at the ancestor layers.

We may proceed in a similar fashion as we did in the
case with only data dependences, and once again invoke
decomposition principle 2 introduced in Section 5.2. As
before, we use the distortion dLl�1

ða1; . . . ; al�1Þ defined in
Eq. (1) as a model of fl(a1,y, al�1). In addition, we propose
to use the rate bLl�1

ða1; . . . ; al�1Þ defined in Eq. (2) as a
model for the actions a1,y, al�1. The rate is an ideal
abstraction of a1,y, al�1 because it corresponds directly to
the impact of the ancestor layers’ actions on the
descendent layer’s buffer cost and buffer transition.
Moreover, the rate can be easily inferred by any descen-
dent layers by looking at the ancestor layer’s buffer; or,
alternatively, given any rate–distortion (distortion–rate)
model (e.g. [21]), the descendent layers can infer the rate
(distortion) given the distortion (rate) from the ancestor
layers.

Because bLl�1
ða1; . . . ; al�1Þ is continuous, we quantize it

to determine the reference rate description (RRD)
Yl ¼ cbðbLl�1

ða1; . . . ; al�1ÞÞ, where cb : Rþ/Y is a quan-
tizer with reconstruction values in the set Y. Using the
RRD yl and the RDD xl, bLl

ða1; . . . ; alÞ defined in Eq. (2) can
be rewritten as

bLl
ða1; . . . ; alÞ ¼ yl þ blðal; xlÞ, (37)

which can be substituted into the SBIC model’s buffer
evolution equation defined in Eq. (6) and the buffer cost
defined in Eq. (34). Subsequently, Eq. (36) can be
approximated as

Vk
ðsÞ ffi min

a2A
gL1
ðs1; a1Þ þ l1 � d1ða1Þ

(

þ
XL

l¼2

gLl
ðsl; al; xl; ylÞ � ll � Ddlðal; xlÞ

h i

þg
X
s02S

YL

l¼1

pðs0 ljsl; al; xl; ylÞV
k�1
ðs0Þ

)
(38)

Note that gLl
ðsl; al; xl; ylÞ and p(s0 l|sl,al,xl,yl) can be

expressed more compactly as gLl
ðclðsl þ ylÞ; al; xlÞ and

p(s0l|cl(sl+yl), al, xl, yl), respectively, because yl can be
treated as an initial offset to the actual buffer state.

In the following, we describe an open-loop decom-
position and a closed-loop decomposition for solving
Eq. (38).
11.1. Open-loop decomposition

Similar to the open-loop decomposition in the case
with only data dependencies, we begin with the base layer
determining its locally optimal stationary policy pn

1 :
S1/A1 independently of the states and actions at
layers lA{2,y,L}. It does this using the local VAL_I defined
in Eq. (23) to determine V1 offline, which is then used to
calculate p*1 using Eq. (24).

Recall from Eq. (38) that the transition probability and
cost functions at layer lA{2,y, L} depend on the RDD xl and
RRD yl from layer l�1. Hence, for layers lA{2,y, L}, we define
a composite state~sl ¼ ðsl; xl; ylÞ. Based on its composite state,
layer lA{2,y, L} performs its local VAL_I offline as follows:

Vk
l ðsl; xl; ylÞ ¼ min

al2Al

gLl
sl; al; xl; yl

� �
� ll Ddl al; xlð Þ

8>>><
>>>:

þ g
X

s0 l2Sl

p s0 ljsl; al; xl; yl

� �

�
X
x0

l
2X

y0
l
2Y

p x0 l; y
0
l

� �
Vk�1

l s0 l; x
0
l; y
0
l

� �
9>>>=
>>>;

, (39)

where p(x0l, y0l) is the stationary probability of the reference
distortion and rate description pair ðx0 l; y

0
lÞ 2 X�Y from

layer l�1. The distribution fpðxl; ylÞjxl; yl 2 X�Yg, for
lA{2,y, L}, can be calculated by layer l�1 after it
determines its optimal stationary policy p*l�1. Specifically,

pðxl; ylÞ ¼
X

sl�12Sl�1

mpn
l�1
ðsl�1ÞI½cdðdLl�1

ðpn
l�1ðsl�1ÞÞÞ

¼ xl and cbðbLl�1
ðpn

l�1ðsl�1ÞÞÞ ¼ yl�, (40)

where mpn
l�1
ðsl�1Þ is the stationary probability that layer l�1 is

in state sl�1 given policy p*l�1, and I[ � ] is an indicator
function. Hence, after layer l�1 performs its local VAL_I
offline, it must calculate the distribution fpðxl; ylÞjxl; yl 2

X�Yg using Eq. (26) and forward it to layer l for use in its
local VAL_I.

Finally, after computing its local state-value function Vl

offline (obtained as k-N in Eq. (25)), layer lA{2,y, L}
can compute its locally optimal policy as

pn
l ðsl; xl; ylÞ ¼ arg min

al2Al

gLl
ðsl; al; xl; ylÞ � ll �Ddlðal; xlÞ

8>><
>>:

þ g
X

s0 l2Sl

pðs0 ljsl; al; xl; ylÞ

�
X
x0 l2X

y0 l2Y

pðx0 l; y
0
lÞVlðs

0
l; x
0
l; y
0
lÞ

9>>=
>>;, (41)

where p*1(s1,x1,y1) dictates the optimal action a*l to take
in state sl given the RDD xl and the RRD yl from layer l�1.11
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Table 9
Decomposition information: closed-loop decomposition with data and budget dependencies.

Transition probability function Cost function

Information requirements p(s01|s1,a1), pM(s02|s2,a1) l ¼ 1 gLl
ðs1 ; a1Þ, d1(a1), JM(s2,a1), l ¼ 1

p(s0 l|sl,al,xl,yl), p(xl,yl), o.w. gLl
ðsl ; al ; xl ; ylÞ, Ddl(al,xl), o.w.

Memory complexity jS1j
2jA1j þ jS2j

2jA1j þ jS2j
2jA2jjX2jjY2j þ jX2jjY2j jS1jjA1j þ jA1j þ jS2jjA1jjS2jjA2jjX2jjY2j þ jA2jjX2j

Computational complexity OðjSj2jA1jÞ, per VAL_I at layer l ¼ 1

OðjS2 �X2 �Y2j
2jA2jÞ, at layer l ¼ 2

Performance gap (i) Performance gap incurred because the descendent layers imperfectly model the ancestor layers based on the RDD and

RRD.

(ii) Performance gap incurred because the ancestor layers imperfectly model their impact on the descendent layers using

JM(s2,a1) and pM(s02|s2,a1).

Table 8
Decomposition information: open-loop decomposition with data and budget dependencies.

Transition probability function Cost function

Information

requirements

p(s01|s1,a1), l ¼ 1 gLl
ðs1 ; a1Þ, d1(a1), l ¼ 1

p(s0 l|sl,al,xl,yl), p(xl,yl), o.w. gLl
ðsl ; al ; xl ; ylÞ, Ddl(al,xl), o.w.

Memory

complexity
jS1j

2jA1j þ
PL

l¼2ðjSlj
2jAljjXljjYlj þ jXljjYljÞ jS1jjA1j þ jA1j þ

PL
l¼2ðjSljjAljjXljjYlj þ jAljjXljÞ

Computational

complexity
OðjS1j

2jA1jÞ, per VAL_I at layer l ¼ 1

OðjSl �Xl �Ylj
2jAljÞ, per VAL_I o.w.

Performance gap (i) Performance gap incurred because the descendent layers imperfectly model the ancestor layers based on the RDD and RRD.

(ii) Performance gap incurred because the ancestor layers do not know their impact on the descendent layers.
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Table 8 summarizes the information requirements,
memory complexity, and offline computational complex-
ity associated with the open-loop decomposition with
data and budget dependencies, and describes why it
incurs a performance gap relative to the optimal centra-
lized policy. This open-loop decomposition is similar to
the one in Fig. 6, except that the message exchanged from
layer l�1 to layer l is now fpðxl; ylÞjxl; yl 2 X�Yg and the
information requirements are in Table 8.
11.2. Closed-loop decomposition

As in the case with only data dependencies, the
ancestor layers do not consider how their decisions
impact the costs and state transitions at the descendant
layers. As before, the solution to this problem is for the
ancestor layers to maintain a model of the impact of their
actions on the descendant layers’ costs and state transi-
tions, which can then be integrated into the ancestor
layer’s VAL_I algorithm to improve its decision policy.

The VAL_I algorithm and policy computation at the
base layer are the same as they were in the closed-looped
decomposition with only data dependencies (i.e. V*1 is
calculated offline using Eq. (28) and p*1 is calculated using
Eq. (29)). Subsequently, the closed-loop decomposition
proceeds like the open-loop decomposition with data and
budget dependencies: i.e., the base layer computes its
joint RDD and RRD distribution fpðxl; ylÞjxl; yl 2 X�Yg,
and forwards it to the enhancement layer, which subse-
quently performs its own local VAL_I using Eq. (39).
The main difference between this closed-loop decom-
position and the closed-looped decomposition in the case
with only data dependencies is the precise definition of
M(s2, a1) ¼ JM(s2, a1), pM(s02|s2, a1), which is used at the
base layer to model its impact on the enhancement layer
in accordance with decomposition principle 3 defined in
Section 5.2. Specifically, it is now necessary for JM(s2, a1),
and pM(s02|s2, a1) to take into account the budget depen-
dencies. By allowing the enhancement layer to share its
cost function g2(s2, a2,x2, y2)�l2 �Dd2(a2, x2) and transition
probability function p(s02|s2, a2,x2,y2) with the base layer,
the base layer can estimate its models by substituting the
distortion description x2 and rate description y2 with the
actual expected distortion description cd(d1(a1)) and rate
description cb(b1(a1)) given action a1: i.e.,

JMðs2; a1Þ ¼ g2ðs2; a2;cdðd1ða1ÞÞ;cbðb1ða1ÞÞÞ

� l2 Dd2ða2;cdðd1ða1ÞÞÞ

pMðs
0
2js2; a1Þ ¼ pðs02js2; a2;cdðd1ða1ÞÞ;cbðb1ða1ÞÞÞ. (42)

As in the closed-loop decomposition with only data
dependencies, to decouple the interdependent decision
processes, we must modify Eq. (42) to be independent of
the enhancement layer’s action. We assume that each
action a2 2A2 is taken with probability pA2

ða2Þ (31).
Table 9 summarizes the information requirements,

memory complexity, and offline computational complex-
ity associated with the closed-loop decomposition with
data and budget dependencies, and describes why it
incurs a performance gap relative to the optimal centra-
lized policy. This closed-loop decomposition is similar to
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the one in Fig. 7, except that, to account for the budget
dependencies, the messages forwarded from the enhance-
ment layer to the base layer are functions of the RRD y2 in
addition to the RDD x2.
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