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Abstract

The purpose of this paper is to generalize the incomplete contract model of Bajari and

Tadelis (2001) into a continuous model, and to derive the condition under which the

monotone comparative statics (MCS) methods can be applied. I will show that a type

of single-crossing condition on the isoprobability curves of uncertainty is necessary and

sufficient for the availability of the MCS methods when a player has a supermodular ex

post utility function. In this case, the greater the magnitude of uncertainty, the less his

optimal contract allows the project to proceed smoothly.



1 Introduction

Bajari and Tadelis (2001, henceforth, B-T) have developed an incomplete contract

model, and have analyzed the types of contracts in construction industries. They showed

that the difference was not based on the asymmetry between builders and owners as the

principal-agent theory suggests, rather, it was based on the magnitude of uncertainty

they both builders and owners are confronting with.

In B-T’s model, an owner who wishes to procure a building prepares the design of

the project in advance, and asks a builder to comply with it. Thus, the design can

be considered as a contract. The project involves certain uncertainties that are not

apparent at the beginning, for example, the condition of the ground, the owner’s actual

needs, and so on. One extreme way of dealing with such uncertainties is to describe every

prescription for every possible event in the design, the builder then proceeds with the

project as suggested. However, from a practical viewpoint, it not only is very difficult to

anticipate all possible events but also to describe clauses concerning them. Thus, it is

natural to include some clauses in advance, and to hold renegotiations among stakeholders

when an unforeseen event takes place. B-T analyzed the number of prescriptions that

the owner should have in the contract in advance, that is, how specific a contract she

(the owner) should prepare ex ante. However, they showed that the greater the amount

of uncertainty involved, the less specific is the contract that she prefers.

B-T used a discrete model, where they defined a construction project as a combina-

tion of the number of possible states T and a probability distribution (ft)
T
t=1 on them.

Moreover, they stated that “project T is more complex than project T ′,” if the follow-

ing two conditions are satisfied: (i) (ft)
T
t=1 dominates (f ′

t)
T ′

t=1 in the sense of first-order

stochastic dominance, (ii) the states in project T are constructed by dividing some state

in project T ′. However, in their analysis, they assumed that the second condition is

automatically implied by the first condition, and treated the number of states T as an

index of complexity. Therefore, there was no discussion about the property that the
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probability distributions must satisfy. My main purpose is to derive such a property in

a more general setting.

Since the work of Milgrom and Shannon (1994), the monotone comparative statics

(MCS) methods have been widely researched recently. Among the recent works, see

Athey (1998) and Athey (2002) for details about the application of the MCS methods to

decision-making problems under uncertainty.

This paper is organized as follows. Section 2 presents the model. The set of possible

events is assumed to be continuous, and I assume that the player’s ex post utility function

is supermodular. In section 3, I derive the condition under which the MCS methods can

be applied to the model. I will also show that the optimal contracts have a monotone

property with respect to the magnitude of uncertainty. Section 4 concludes the work. In

the appendix, I list the theorems of Topkis (1998) that are used in my proofs.

2 The Model

In this section, I propose a general model of contract incompleteness. This model is

an extension of B-T’s model. The main purpose is to specify the conditions under which

the monotone comparative statics methods can be applied to the model.

A player is to implement a project with uncertainty. The uncertainty will be resolved

after the launch of the project, and an event will be brought to realization during the

project. The event affects the implementation of the project. Let t ∈ R+ be the event

that is realized ex post. I assume that t is ex post verifiable, and is drawn from a family

of distribution functions indexed by θ ∈ Θ. Let the cumulative distribution functions be

F : T × Θ 7→ R+. Suppose that F is atomless and is absolutely continuous in t for all θ.

The parameter θ represents the magnitude of ex ante uncertainty. The following is

an assumption about it.
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Assumption 1. For all θ′′ ≥ θ′,

F (t, θ′′) ≤ F (t, θ′). ∀t (1)

That is, the larger θ becomes, the more uncertain it would be ex ante.

The events are ordered from the most probable event t = 0 to infinity, based on the

likelihood of its occurrence ex ante, irrespective of the parameter θ. This assumption is

expressed by allowing the density function of the events to be monotonically nonincreasing

in t.

Assumption 2. For all t′′ ≥ t′,

Ft(t
′′, θ) ≤ Ft(t

′, θ), (2)

where the subscripts represent the derivatives of the functions.

As the ex post events can affect the progression of the project, the player may make

a list of clauses about them ex ante. I assume that there is a cost involved for including

clauses about ex post events, thus, it is impossible to have a contract that includes clauses

for all events ex ante. I will later discuss this point in detail. In this list, the player has

arrangements that describe prescriptions for each event that he has selected, moreover,

he treats θ as given. For example, consider an insurance contract. The buyer has to

decide which contract she should buy before any accidents take place, however, on the

other hand, she knows how uncertain they would be, therefore, depending on her ex ante

knowledge, she determines which clauses should or should not be included in the contract.

As I have mentioned above, it is costly to preface a contract. I represent the set of

events that are selected in the contract by S. S is assumed to be an element in the

family of Borel set B of R+. The cost of prefacing a contract S ∈ B is represented by

C(S) ≡ g(µ(S)) for the Lebesgue measure µ and some nondecreasing function g, which

is assumed to be twice continuously differentiable, g′ ≥ 0 and g′′ ≥ 0.
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When the uncertainty is resolved and some event t is brought about, if the contract

contains a clause about t, then the project would progress according to it. On the other

hand, if there is no clause about t, the stakeholders have to coordinate their actions

with regard to the implementation of the project. Therefore, the ex post difficulty of the

project depends on whether or not t ∈ S. The difficulty is represented as an ex post state

ω ∈ Ω ≡ {0, 1}. As ω depends on both the ex ante contract S ∈ B and the ex post event

t ∈ R+, I describe it as a function h : B × R+ 7→ Ω, and

h(S, t) =















1 if t ∈ S

0 if t 6∈ S

. (3)

Finally, I define the player’s ex post utility. Let X ⊆ R be a compact set. X is a set of

the player’s ex post alternatives. The terminal utility is determined by his choice of x, the

ex post event t, and the ex post state ω. Let his utility function be u : X ×R+×Ω 7→ R+.

The supermodularity of u is assumed as follows.

Assumption 3. u(x, t, ω) is supermodular in (x,−t, ω).

Remark 1. This assumption implies that the order of the ex post event t not only de-

pends on the likelihood of its occurrence but also on the player’s utility function. Although

this appears to be too restrictive, what is important in the discussions below is the super-

modularity between x and ω. Thus, assuming that the utility does not depend on t does

not change the following results.

3 Analysis

First, I will solve the player’s problem, assuming the ex post event and state as given.

Then, taking this solution into consideration, the ex ante optimal contract will be derived.

4



Given (t, ω), the player seeks an optimal x. The problem is

max
x∈X

u(x, t, ω) (4)

Let its maximized value be v(t, ω). The next lemma is derived from the results of Topkis

(1998).

Lemma 1. Let (−T ) be the reverse-ordered set of R+. Then, v(t, ω) is supermodular in

(−t, ω) on (−T ) × Ω. Furthermore, there exist a greatest and a least element of

arg max
x∈X

u(x, t, ω),

and they are monotonically increasing in (−t, ω) on (−T ) × Ω.

Proof. Since X is a compact subset of R, there always exists a maximum value of u for all

(t, ω), moreover, arg maxx∈X u(x, t, ω) is not empty. Therefore, by Theorem A.1, v(t, ω)

is supermodular in (−t, ω) on (−T ) × Ω.

Moreover, by Theorem A.2, there exist a greatest element and a least element of

arg maxx∈X u(x, t, ω), and they are increasing in (−t, ω) on (−T ) × Ω.

Next, given v(t, ω) acquired above, define the player’s ex ante expected utility respec-

tive to t and ω. If he selects a set S ∈ B as an ex ante contract, then the ex ante expected

utility will become

V (S, θ) ≡

∫

S

v(t, 1)Ft(t, θ)dt +

∫

SC

v(t, 0)Ft(t, θ)dt.

He selects a contract S, which maximizes this expected utility. I can show that an interval

[0, t̂], which has the origin as an end, maximizes the expected utility with respect to the

Lebesgue measure being constant.
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Lemma 2. For any given µ̄, let S = [0, µ̄]. Then

S ∈ arg max
S′

∈B

µ(S′)=µ̄

V (S ′, θ). (5)

Thus, the interval S = [0, µ̄], which begins at 0, maximizes the expected payoff V under

the condition that its Lebesgue measure is equal to µ̄.

Proof. Let t′ < µ̄ < t′′ and S = [0, µ̄]. Starting with S, define S ′ as follows: remove an

infinitesimal interval dt at t = t′, and add dt at t = t′′ to S. Then, µ(S) = µ(S ′) = µ̄,

and its associated variation dV of V is calculated as

dV = v(t′′, 1)Ft(t
′′, θ)dt − v(t′′, 0)Ft(t

′′, θ)dt − (v(t′, 1)Ft(t
′, θ)dt − v(t′, 0)Ft(t

′, θ)dt)

= (v(t′′, 1) − v(t′′, 0))Ft(t
′′, θ)dt − (v(t′, 1) − v(t′, 0))Ft(t

′, θ)dt.

This is nonpositive by Assumption 2 and Lemma 1.

Lemma 2 reveals that I can concentrate on intervals [0, t̂] as ex ante contracts. There-

fore, I treat either t̂ or the probability p = Prob(t ≤ t̂) as control variables instead

of S. Given p and θ, define t̂(p, θ) as p = F (t̂(p, θ), θ). Furthermore, identifying p as

S = [0, t̂(p, θ)], the functions defined on B will be treated as functions defined on [0, 1].

Rewriting the ex ante expected utility respective to t and ω as a function of p and θ

provides

V (p, θ) ≡

∫ t̂(p,θ)

0

v(t, 1)Ft(t, θ)dt +

∫

∞

t̂(p,θ)

v(t, 0)Ft(t, θ)dt. (6)

Before checking the property of this function, I will prove the supermodularity of t̂(p, θ).

Lemma 3. t̂(p, θ) is increasing in (p, θ) on [0, 1] × Θ. In addition, it is supermodular in

(p, θ) on [0, 1] × Θ if and only if

t′′ ≥ t′ =⇒ Ft(t
′, θ′) ≥ Ft(t

′′, θ′′), ∀(t′, θ′), (t′′, θ′′) s.t. F (t′, θ′) = F (t′′, θ′′) (7)
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holds.

Moreover, suppose F is twice continuously differentiable in t, differentiable in θ, and

has the cross-derivative ∂2F/∂t∂θ. Then, t̂(p, θ) is supermodular in (p, θ) if and only if

∂

∂t

(

−
Fθ(t, θ)

Ft(t, θ)

)

≥ 0. (8)

Proof. Since F is nondecreasing in t for all θ, the inverse function t̂ is nondecreasing in

p. Furthermore, for all θ′′ ≥ θ′ and p, it follows that

p = F (t̂(p, θ′), θ′) = F (t̂(p, θ′′), θ′′) ≤ F (t̂(p, θ′′), θ′).

By Assumption 1. Since F is nondecreasing in t, I obtain t̂(p, θ′′) ≥ t̂(p, θ′).

Suppose (7) holds for all (t′, θ′) and (t′′, θ′′) such that F (t′, θ′) = F (t′′, θ′′). F is

assumed to be absolutely continuous for all θ, and has its derivative Ft. Since t̂ is the

inverse function of F , there exists the derivative respective to p for all θ, and it is given

by

∂t̂(p, θ)

∂p
=

1

Ft(t̂(p, θ), θ)
.

For all θ′′ ≥ θ′, I have F (t̂(p, θ′′), θ′′) = F (t̂(p, θ′), θ′) = p and t̂(p, θ′′) ≥ t̂(p, θ′). By (7),

these conditions imply that

Ft(t̂(p, θ
′), θ′) ≥ Ft(t̂(p, θ

′′), θ′′).

Therefore,

∂t̂(p, θ′′)

∂p
−

∂t̂(p, θ′)

∂p
=

1

Ft(t̂(p, θ′′), θ′′)
−

1

Ft(t̂(p, θ′), θ′)
≥ 0,

that is, t̂ is supermodular in (p, θ). The opposite direction is straightforward and I skip

the proof.

Next, I will analyze the case in which some additional differentiability conditions hold.
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Suppose F is twice continuously differentiable in t, differentiable in θ, and has the cross-

derivative Ftθ. Let p = F (t̂(p, θ), θ). Differentiating both sides of this equation by p and

θ, I obtain

1 = Ft(t̂(p, θ), θ)
∂t̂(p, θ)

∂p
,

0 = Ft(t̂(p, θ), θ)
∂t̂(p, θ)

∂θ
+ Fθ(t̂(p, θ), θ).

These equalities imply that

∂t̂(p, θ)

∂p
=

1

Ft(t̂(p, θ), θ)
≥ 0, (9)

∂t̂(p, θ)

∂θ
= −

Fθ(t̂(p, θ), θ)

Ft(t̂(p, θ), θ)
≥ 0. (10)

To prove the supermodularity of t̂, calculating the cross-derivative of t̂(p, θ) leads to the

following.

∂2t̂(p, θ)

∂θ∂p
=

∂

∂θ

(

1

Ft(t̂(p, θ), θ)

)

= −
1

Ft(t̂(p, θ), θ)2

(

Ftt(t̂(p, θ), θ)
∂t̂(p, θ)

∂θ
+ Ftθ(t̂(p, θ), θ)

)

= −
1

Ft(t̂(p, θ), θ)2

×

{

Ftt(t̂(p, θ), θ)

(

−
Fθ(t̂(p, θ), θ)

Ft(t̂(p, θ), θ)

)

+ Fθt(t̂(p, θ), θ)

}

.

The expression in the curly brackets is nonpositive for any (p, θ) if and only if (8) holds

for any (t, θ). This concludes the proof.

The supermodularity of the cost function C(p, θ) = g(t̂(p, θ)) immediately follows this

lemma.

I will discuss some points about the conditions in this lemma. First, to identify the

equivalence between (7) and (8), it will suffice to differentiate Ft(t̂(p, θ), θ) in θ. Next, (7)
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can be interpreted as follows. Suppose, given a probability p, the player has to prepare

a contract in which the probability of including a clause about events ex post is exactly

p. If he attempts to prepare this contract more specifically and include some additional

clauses, then the greater the magnitude of uncertainty, the less the increment of the ex

ante probability. In another words, if he wishes to increase the ex ante probability by

some fixed degree, then the more greater the magnitude of uncertainty ex ante, the larger

is the number of clauses that he must include. Finally, note that (8) implies that the slope

of the isoprobability curve of F is nondecreasing in t. Therefore, this condition can be

regarded as a type of single-crossing condition about the isoprobability curve. However,

they never cross each other on their domain.

Using the supermodularity of t̂ derived as above, I will prove the supermodularity of

V .

Lemma 4. If t̂ is supermodular in (p, θ) on [0, 1] × Θ, then V (p, θ) is supermodular in

(−p, θ) on [0, 1] × Θ.

Proof. Differentiating V (p, θ) with p provides

∂V (p, θ)

∂p
= (v(t̂, 1)Ft(t̂(p, θ), θ) − v(t̂, 0)Ft(t̂(p, θ), θ))

∂t̂(p, θ)

∂p

= (v(t̂(p, θ), 1)Ft(t̂(p, θ), θ) − v(t̂(p, θ), 0)Ft(t̂(p, θ), θ))

(

1

Ft(t̂(p, θ), θ)

)

= v(t̂(p, θ), 1) − v(t̂(p, θ), 0).

For any θ′′ ≥ θ′, I have

∂V (p, θ′′)

∂p
−

∂V (p, θ′)

∂p

= (v(t̂(p, θ′′), 1) − v(t̂(p, θ′′), 0)) − (v(t̂(p, θ′), 1) − v(t̂(p, θ′), 0)) ≤ 0.

The last inequality is derived from the fact that t̂ is increasing in θ and that v is super-

modular in (−t, ω).
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I shall now prove the main theorem.

Theorem 1. Suppose either (7) or (8) is satisfied. Then, for all θ, there exist a greatest

and a least element of

arg max
p∈[0,1]

V (p, θ) − C(p, θ), (11)

and they are monotonically nonincreasing in θ.

Proof. Note that arg maxp∈[0,1] V (p, θ) − C(p, θ) is nonempty. By Lemmas 3 and 4,

V (p, θ)−C(p, θ) is supermodular in (−p, θ). Hence, by Theorem A.2, there exist a great-

est and a least element of arg maxp∈[0,1] V (p, θ) − C(p, θ), and they are monotonically

nonincreasing in θ.

4 Conclusion

In this paper, I extended B-T’s model into a continuous model, and derived a con-

dition under which the MCS methods can be applied. The intuitive interpretation of

the condition is also provided. The main result indicated that if the supermodularity

of ex post utility function is assumed, then a type of single-crossing condition of the

isoprobability curves of uncertainty is necessary and sufficient.
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A Appendix

In this appendix, I list the theorems of Topkis (1998) that are used in my proofs.

The main result on the maximization of supermodular functions is the following the-

orem.

Theorem A.1 (Topkis (1998)). If X and T are lattices, S is a sublattice of X × T ,

f : X × T 7→ R is supermodular in (x, t) on S, St is the section of S at t in T , and

g(t) = supx∈St
f(x, t) is finite on the projection ΠT S of S on T , then g(t) is supermodular

on ΠT S.

The next theorem assures the monotonicity of solutions.

Theorem A.2 (Topkis (1998)). Suppose that X is a nonempty lattice, T is a partially

ordered set, f : X × T 7→ R is supermodular in x on X for each t in T , and f is

supermodular in (x, t) on X × T . If either

(i). X is finite or

(ii). X is a compact subset of R
n and f is upper semicontinuous in x on X for each t

in T ,

then each arg maxx∈X f(x, t) (being either finite or a compact subset of R
n) is a nonempty

sublattice of X with a greatest element and a least element, and the greatest (least) element

of arg maxx∈X f(x, t) is increasing in t on T .
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