
Towards Domain-Specific Modelling Environments
based on Augmented Reality

Léa Brunschwig
Univ. Autónoma de Madrid

Madrid, Spain
Lea.Brunschwig@uam.es

Rubén Campos-López
Univ. Autónoma de Madrid

Madrid, Spain
Ruben.Campos@uam.es

Esther Guerra
Univ. Autónoma de Madrid

Madrid, Spain
Esther.Guerra@uam.es

Juan de Lara
Univ. Autónoma de Madrid

Madrid, Spain
Juan.deLara@uam.es

Abstract—Models are pervasive in many disciplines, like soft-
ware and systems engineering. Modelling by the use of domain-
specific languages (DSLs) has lowered the entry barrier to this
activity to domain experts and citizen developers. At the same
time, we are witnessing constant improvements in the capabilities
of mobile devices, like augmented reality (AR) based on their
camera. AR could be exploited in modelling scenarios that
require locating virtual objects in the surrounding physical space.

In this vision paper, we explore the use of DSLs with AR
syntax, and propose the automated synthesis of mobile modelling
environments for them. This opens the door to novel scenarios for
domain-specific modelling in areas like interior design, Industry
4.0, domotics, tourism and transportation, among others. We
propose a design process founded on Software Language Engi-
neering principles, provide prototype tool support, and identify
open challenges for the community.

Index Terms—Modelling, Domain-Specific Languages, Aug-
mented Reality, Software Language Engineering.

I. INTRODUCTION

Modelling is central to all engineering disciplines to specify,
understand, analyse and build the system under study (SUS),
among other activities. Software engineering is no exception,
as models are pervasively used during the development pro-
cess. Models can be built either using general-purpose mod-
elling languages, like the UML [1], or with domain-specific
languages (DSLs) [2], [3] tailored to an application area.
Due to their highly specialized syntax, DSLs are sometimes
targeted to end-users with no technical background [4].

Traditionally, modelling has been performed either manually
in paper or whiteboards, or supported by tools via desktop
computers or laptops. More recently, the improvement of
the capabilities in mobile devices (like the computer power,
touch screen size and components like cameras) has promoted
the emergence of environments for modelling on mobile
devices [5]–[7]. These environments can be used in mobility,
which permits modelling close to the SUS and using the
mobile accessories (camera, GPS, gyroscope...). This enables
new modelling scenarios which are not possible in desktops,
especially when DSLs are designed for non-technical end-
users. For example, mobile-enabled DSLs can be used for
modelling and monitoring within the premises of a factory;
for creating models of touristic or hiking routes on-site; or for
modelling the position and configuration of the devices of a
smart home while walking through it.

(a) Interior design:
Virtual table on a
real room.

(b) Inventory: Dis-
playing computer in-
formation.

(c) Leisure: Routes
and tips about points
of interest.

Fig. 1: Examples of AR modelling applications.

This paper goes one step further from current mobile
modelling environments by proposing DSLs enhanced with
augmented reality (AR) [8] for their use within mobile devices.
In our vision, the user will be able to create domain-specific
models using the mobile device, but instead of placing the
objects on a blank canvas, the camera is used to place the
objects (virtually) within the surroundings, using AR. This
leads to a new range of modelling applications, like modelling
environments for interior design, where furniture (elements of
an AR-enabled DSL) can be placed and overlaid over the room
the user is in (cf. Fig. 1a); applications for computer inventory,
where relevant computer information is displayed on top of
the real computer (cf. Fig. 1b); or leisure applications where
tourists can display tips on points of interest by focusing the
camera on them, and get directions towards nearby touristic
spots via arrows on the real-world (cf. Fig. 1c).

AR has become very popular. There are many products
to build AR-based applications, ranging from programming
libraries like ARKit [9] by Apple or ARCore [10] by Google,
to authoring tools like Unity [11]. However, building AR appli-
cations from scratch is challenging as it requires deep expertise
on the AR programming framework [12]. Instead, we propose
the use of Software Language Engineering principles [13],
[14] to reduce the implementation effort to create AR-enabled
DSLs and avoid the need of coding.

This new ideas paper has the following contributions: (i)
we present the concept of AR-based DSL; (ii) we showcase

TABLE I: Categorization of AR-based modelling scenarios.
Legend: Physical Object (PO), Virtual Object (VO).

Purpose Type Scenario examples Capabilities
Inform,
Augment

D Inventory; Logistics;
Museums; Airports;
Train stations

Display static properties of POs
Display relations between POs

Monitor D Smart factories;
Industry 4.0; Digital
twins; Networking
and data-centres

Display static properties of POs
Display relations between POs
Display dynamic properties of POs

Control,
Configure

D Display static properties of POs
Display relations between POs
Display dynamic properties of POs
Set property values of POs
Create relations between POs

Design P Interior and domotic
design; Commercial
planning; Create
hiking/touristic routes

Create VOs
Set property values of VOs
Create relations between VOs

Animate P/D Gaming; Education Create dynamic VOs
Set property values of dynamic VOs

meaningful application scenarios for AR-based DSLs; (iii) we
propose a model-based process to define AR-based modelling
environments; and (iv) we show a working prototype called
ALTER that allows using AR-based DSLs on iOS devices.

II. MOTIVATION AND USAGE SCENARIOS

AR overlays digital elements on the physical world,
making them visible by headset devices (like Microsoft’s
HoloLens [15]) or with the camera displays of mobile devices.
This allows users to perceive the real world and the digital
objects intertwined. In contrast, in immersive virtual reality
(VR) environments, users only perceive the digital world.
According to Azuma [8], AR systems combine real and virtual,
are interactive in real time, and are registered in 3D.

AR opens the door to new modelling scenarios in domains
that can profit from modelling closer to the SUS and its
surrounding context. In these scenarios, the model objects can
be either virtual surrogates of elements that do not exist in
the physical world, or virtual representations of real-world
elements enriched with digital information. AR can support
both descriptive modelling (i.e., describing an existing system)
and prescriptive modelling (i.e., describing a system to be
constructed) [16]. In the former case, existing physical objects
(e.g., machines in a smart factory) can be augmented with
properties stored in the model (e.g., temperature, failure rate).
In the latter case, virtual objects (e.g., furniture) can be
integrated on the real world (e.g., a room being decorated)
and be automatically geolocated based on their position.

Table I classifies AR-modelling scenarios based on their
purpose, modelling type (Prescriptive or Descriptive), and
modelling capabilities required from the environment.

The first scenario of the table aims at augmenting existing
physical objects with interesting information for users. An
example would be an AR system for a museum, which displays
additional data on art works and provides suggestions on
museum tours. Modelling in this case is descriptive. To realise
the scenario, physical objects may need to be tagged (e.g., via
QR codes) to enable its AR augmentation.

Location

Physical Object

Marker

tags

0..1

at

Virtual
Representation

1

Physical Reality

for
Model Object

Property
*

represents

has

Augmented Reality

DSL concrete syntax)
(built with

Model of Reality

DSL abstract syntax)
(built with

Fig. 2: Augmenting the reality using an AR-based DSL.

The following two scenarios extend the previous one by
the ability to display (monitor) or modify (control, configure)
information that is dynamic. For example, in smart factories,
the modelling environment would overlay dynamic machine
data, like failure rates [17]. For this purpose, the model has
to be connected with services able to update the displayed
information and change it through the AR display. Proposals
based on models@runtime [18] might be used as the back-end
of this kind of environments.

The fourth scenario supports designing some system. An
example would be an environment for interior design, to place
virtual furniture objects on a real room, in-place (cf. Fig. 1a).
Such environments should permit placing AR objects in a
physical environment and setting their properties (e.g., weight,
material). This modelling scenario is prescriptive since, once
created, the model will likely be used to build a real system.

In the last category, the virtual objects placed on the real
world may be animated and exhibit dynamic behaviour. Ex-
amples of this scenario include applications for gaming (e.g.,
Pokémon-Go style) and education (e.g., an AR visualization
of the movements of the solar system planets).

While many tools support developing AR applications, a
recent survey [12] providing insights into how AR/VR creators
use authoring tools revealed that they struggled with available
design methods and tools, and felt that most required “too
much coding”, and identified the challenge to support end-
user developers as a growing population of AR/VR creators.
Therefore, the next two sections explain our proposal to define
AR-based modelling applications using Software Language
Engineering principles [13], [14], with no need for coding.

III. DEFINING AUGMENTED REALITY-BASED DSLS

In traditional modelling environments, the user interacts
with a model of the SUS using a DSL. The model and the
SUS are disconnected, in the sense that the model objects are
not intertwined with the real objects, and the physical location
of the modeller is irrelevant. Instead, our proposal takes the
model closer to the SUS by extending the DSL notation with
AR, as Fig. 2 shows. In this setting, the physical reality is
augmented with model-based data, and the modeller location
is used to display the (virtual) model objects positioned nearby.

A DSL is made of an abstract syntax, a concrete syntax and
semantics [14]. The abstract syntax describes the primitives
of interest, their properties and relations. In model-based
approaches, it is defined through a meta-model, commonly a
class diagram. The concrete syntax describes how models are

ARSyntax EPackage
metamodel

ARElement

elements *

EClass

ARNode ARConnection

...

represents

d
is

p
la

ys

*

Node
Visualization

3DObject

name : String
url : URL

2DObject

*

Anchor

Marker Location

Marker
Code

* codes

nodeVersions
*
anchors

«enum»

PlaneType
HORIZONTAL
VERTICAL
ANY

over

Distance
Interval

min : double
max : double

to

distance

minSize : double
maxSize : double
canOverlap : boolean
movX : double
movY : double
movZ : double

Connection
Visualization

*
connectionVersions

Floor Tips Line

name : String

«enum»
Color

BLACK
RED
BLUE
...

colour

«enum»
Decorator

ARROW
CIRCLE
DIAMOND
NONE

src

tar

*

Ecore/EMOF ARRepresentation

eC
la

ss
if

ie
rs

*

«enum»
Pattern

DOTTED
DASHED
CONTINUOUS

pattern

EStructural
Feature EClassifier

EReference

EAttribute

ENamed
Element

Fig. 3: Meta-model for AR-based concrete syntaxes.

represented, typically leading to graphical or textual DSLs.
Finally, the semantics refer to the meaning of the models,
and is usually defined by an interpreter, a transformation into
another language, or a code generator [14].

The construction of an AR-based DSL requires the defini-
tion of an AR-based concrete syntax. We have created the
meta-model of Fig. 3 for this purpose. It permits defining
AR-based syntaxes by annotating the domain meta-models
that describe the abstract syntax. The latter are typically de-
scribed using technologies like the OMG’s meta-object facility
(MOF) [19], and popular implementations like the Eclipse
Modeling Framework (EMF) [20] (cf. right package in Fig. 3).

Our AR-based syntax distinguishes nodes (class ARNode in
Fig. 3) and connections (class ARConnection). Class ARNode
has references to the domain meta-model class it provides a
representation for (EClass), and to the set of class properties
to be displayed (reference displays). It may define several
visualization versions (e.g., to display several types of chairs
in an interior design application) using either 3DObjects or
2DObjects. Visualizations have a name and are referenced via
a URL. They can be built with 3D authoring kits like Blender,
or selected from libraries.

Nodes can be placed at suitable anchors (class Anchor).
Anchors can be markers (e.g., QR codes) or constraints stating
admissible locations, such as in a given plane (horizontal,
vertical) or at a certain distance interval to another node. For
example, a DSL for interior design may require that lamps are
located on horizontal planes, within 1 meter to a socket.

Nodes can also define constraints on how users interact with
them. Specifically, setting attribute canOverlap to false prevents
that two objects are placed one over the other; attributes
minSize and maxSize control the increase or decrease in the size
of a placed node; and moveX, moveY and moveZ establish the
perimeter where a virtual object can be moved once positioned
in the world (if zero, the object cannot be moved).

Regarding AR connections, they are visual representations

of references between instances of classes of the domain meta-
model (class EReference). Similar to nodes, they can have
different versions identified by a name and a colour. The
meta-model supports three types of connections: Line, Floor and
Tip. Lines are displayed as floating lines between two related
objects, with decorations in the source and target ends. Floors
display a reference as a path to follow in the floor from the
source to the target object (cf. Fig 1c). Tips display arrows on
the side of the camera steering the position of the target node,
mimicking some first-person shooter games.

IV. DEPLOYING AUGMENTED REALITY-BASED DSLS

Abstract syntax

Concrete syntax

3D/2D
representations DSL designer

DSL users

Server

Mobile
modelling

environment

Fig. 4: Architecture of ALTER.

We propose the archi-
tecture in Fig. 4 to de-
fine and use AR-based
DSLs on mobile devices.
It is supported by a pro-
totype tool named ALTER
(domAin modeLling using
augmenTEd Reality). This
is a native iOS app that
uses ARKit [9] for creating
and handling AR models.

First, to define the AR-based DSL, the DSL designer uses a
desktop computer to specify the DSL abstract syntax (domain
meta-model) and concrete syntax (an instance of the meta-
model in Fig. 3 and 3D/2D object representations), and upload
them to a web server. We currently serialize the abstract and
concrete syntax in JSON, and the 3D/2D graphics need to
follow Apple’s SceneKit Scene (SCN) format.

Then, the DSL users access the DSLs available in the server
using ALTER on their iPhones/iPads. Upon selecting a DSL,
users can start modelling by placing virtual objects (primitives
of the DSL) in the real world. Every time a modelling session
is started, ALTER/ARKit sets the world origin at the position
of the camera of the device. When a virtual object is created,
an anchor positioned relative to the established world origin
is attached to the object. Models can be saved, which entails
taking a snapshot and storing the world origin and the anchors
of the model objects. When opening a previous model, the
saved anchors are placed at their previous position as soon as
the user points the camera to the same location of the snapshot.

Fig. 5 shows a home networking AR-based DSL being used
in ALTER. Label 1 is a palette with the items (virtual objects)
that can be placed in the real world, named after the classes
of the domain meta-model. Label 2 points to a 3D node and
depicts the available interactions: tap places an item at the
tapped location after selecting one from the palette with label
1; swipe changes between the visualization versions of a node;
pinch resizes a node; long press a node displays the attributes
of the virtual object for their editing, and allows deleting the
node; and pan moves a node to another position in the world.

Label 3 shows the displayed attributes of a node as a key-
value list. Label 4 points at a line connecting two nodes,
which represents a reference between two model objects (cf.
Section III). Finally, there are two buttons at the top to save

1

3

2

56

PinchTap Long pressSwipe Pan

4

Fig. 5: The main canvas of ALTER (running on an iPad).

the model (label 5) and close the modelling session (label 6).
Overall, this DSL enables users quick access to the whole
network configuration, without checking in every device.

V. RELATED WORK

The recent capabilities of mobile devices have enabled their
use for modelling. For example, FlexiSketch [7] and CEL [21]
support conceptual modelling using the touch interface of
tablets. Other works benefit from advanced features of mobile
devices. For example, active DSLs [6] support geolocation and
external interaction for their use in mobility. Our proposal goes
further by providing an AR syntax to DSLs.

AR-based DSLs are displayed in 3D. In this respect,
Devil3D [22] can generate environments for 3D visual mod-
elling languages, but it runs on desktops and does not support
AR. 3D representations combined with VR has been used in
Software Engineering, e.g., to visualize metrics [23].

The advances in mobile devices and the availability of
hardware for head-mounted displays (like HoloLens) have
prompted the proposal of applications that use AR. Examples
include emergency situations [24] (visualising geolocated data
reported during an emergency), quality assurance in industrial
settings [25] (to display extra information over vehicle compo-
nents), to help exploring exhibitions [26] (by displaying an AR
map towards different parts of the exhibition), or for factory
maintenance (to monitor dynamic machine parameters [17],
or to configure IoT devices [27]). These applications were
built ad-hoc using manual programming. However, as several
researchers point out, creating such apps using current tech-
nologies is difficult [12], [28]. Our proposal is a step towards
alleviating this problem for certain kinds of AR applications.

There are many AR tools and platforms (e.g., DART [29],
ARtoolkit [30]). Some of them (AR.js [31], Argon4 [32])
follow a web development style enriched with AR concepts,
resulting in apps that run on special browsers independently of
the device. Some libraries are device-specific (e.g., ARKit for
iOS devices), while others are multi-platform (e.g., ARCore).
Beyond programming libraries, platforms like Unity AR Foun-
dations [11], MAXST AR SDK [33], Wikitude AR SDK [34]
or Vuforia Studio [35] offer dedicated environments for build-
ing multi-platform AR apps. Finally, some approaches, like
ProtoAR [36], target the creation of 3D content and its virtual
placement over markers. While these are all generic tools to
create AR apps, our proposal enables the creation of AR-based
DSLs without resorting to coding.

VI. CONCLUSIONS AND OPEN CHALLENGES

In this paper, we proposed the concept of AR-based DSL
and the use of Software Language Engineering for defining
AR-based modelling environments. Our prototype ALTER
illustrates the viability of our ideas. We are currently working
on some capabilities listed in Table I which ALTER does not
fully support, like QR code anchors for monitoring and control
scenarios. We also plan to provide a cloud environment to
define the abstract and concrete syntax of AR-based DSLs.

We have argued on the potential of AR-based DSLs to tackle
some scenarios, but many challenges remain to fully realize
this vision. First, modelling is inherently collaborative, and
AR-based modelling is no exception. Hence, ways to specify
and realize collaboration are worth exploring [37]. Second,
the usability of DSLs is very important, especially in unusual
domains. While some heuristics for the design of cognitively
effective visual notations have been proposed [38], these may
need to be adapted for AR-based DSLs. Another aspect related
to usability is interaction, i.e., mapping gestures to editing
actions. Our prototype has explored camera-based AR and
screen-based interaction (cf. Fig. 5). However, interaction
via body gestures (e.g., with the hands) are necessary when
using head-set devices such as glasses, contributing to blur
the distinction between the virtual and physical worlds, and
making AR-based modelling more natural. Likewise, we have
proposed object anchoring based on markers or positional
constraints, but other trackers based on advanced image recog-
nition (e.g., hands, faces) could be interesting for some DSLs
(e.g., in fashion). Finally, our approach is no-code, but friendly
ways to define domain meta-models and AR syntaxes by end-
users are required to make the approach accessible to them.

VII. DATA AVAILABILITY

Further details and videos of our tool ALTER are available
at https://alter-ar.github.io.

ACKNOWLEDGMENT

Work funded by EU Horizon 2020 research and innovation
programme under the Marie Skłodowska-Curie grant agree-
ment n◦ 813884, Spanish Ministry of Science (RTI2018-09525
5-B-I00) and R&D programme of Madrid (P2018/TCS-4314).

REFERENCES

[1] OMG, “UML 2.5.1 OMG specification,” http://www.omg.org/spec/
UML/2.5.1/, 2017.

[2] S. Kelly and J. Tolvanen, Domain-specific modeling - Enabling full code
generation. Wiley, 2008.

[3] M. Voelter, S. Benz, C. Dietrich, B. Engelmann, M. Helander, L. C. L.
Kats, E. Visser, and G. Wachsmuth, DSL Engineering - Designing,
Implementing and Using Domain-Specific Languages. dslbook.org,
2013.

[4] M. Mernik, J. Heering, and A. M. Sloane, “When and how to develop
domain-specific languages,” ACM Comput. Surv., vol. 37, no. 4, pp.
316–344, 2005.

[5] A. Sebastian-Lombraña, E. Guerra, and J. de Lara, “Positioning-
based domain-specific modelling through mobile devices,” in EUROMI-
CRO conference on Software Engineering and Advanced Applications
(SEAA’2020), ser. IEEE Computer Society, 2020, pp. 150–157.

[6] D. Vaquero-Melchor, J. Palomares, E. Guerra, and J. de Lara, “Active
domain-specific languages: Making every mobile user a modeller,” in
20th ACM/IEEE International Conference on Model Driven Engineering
Languages and Systems, MODELS. IEEE Computer Society, 2017, pp.
75–82.

[7] D. Wüest, N. Seyff, and M. Glinz, “Flexisketch: a lightweight sketching
and metamodeling approach for end-users,” Softw. Syst. Model., vol. 18,
no. 2, pp. 1513–1541, 2019.

[8] R. T. Azuma, “A survey of augmented reality,” Presence Teleoperators
Virtual Environ., vol. 6, no. 4, pp. 355–385, 1997.

[9] ARKit, https://developer.apple.com/augmented-reality/, 2020.
[10] ARCore, https://developers.google.com/ar, 2020.
[11] Unity, https://unity.com/unity/features/ar, 2020.
[12] N. Ashtari, A. Bunt, J. McGrenere, M. Nebeling, and P. K. Chilana,

“Creating augmented and virtual reality applications: Current practices,
challenges, and opportunities,” in CHI ’20: CHI Conference on Human
Factors in Computing Systems. ACM, 2020, pp. 1–13.

[13] R. Lämmel, Software Languages: Syntax, Semantics, and Metaprogram-
ming. Springer, 2018.

[14] M. Brambilla, J. Cabot, and M. Wimmer, Model-Driven Software
Engineering in Practice, Second Edition, ser. Synthesis Lectures on
Software Engineering. San Rafael, California (USA): Morgan &
Claypool Publishers, 2017.

[15] HoloLens, https://www.microsoft.com/en-us/hololens, 2020.
[16] R. Salay, “Using modeler intent in software engineering,” Ph.D. disser-

tation, Department of Computer Science, University of Toronto, 2010.
[17] S. Coscetti, D. Moroni, G. Pieri, and M. Tampucci, “Factory main-

tenance application using augmented reality,” in APPIS 2020: 3rd
International Conference on Applications of Intelligent Systems. ACM,
2020, pp. 22:1–22:6.

[18] G. S. Blair, N. Bencomo, and R. B. France, “Models@run.time,” IEEE
Computer, vol. 42, no. 10, pp. 22–27, 2009.

[19] MOF, http://www.omg.org/spec/MOF, 2016.
[26] N. Hube, M. Müller, and R. Groh, “Facilitating exploration on exhibi-

tions with augmented reality,” in Proc. AVI. ACM, 2018, pp. 64:1–64:3.

[20] D. Steinberg, F. Budinsky, M. Paternostro, and E. Merks, EMF: Eclipse
Modeling Framework, 2nd Edition. Upper Saddle River, NJ: Addison-
Wesley Professional, 2008.

[21] R. Lemma, M. Lanza, and A. Mocci, “CEL: touching software modeling
in essence,” in 22nd IEEE International Conference on Software Anal-
ysis, Evolution, and Reengineering, SANER. IEEE Computer Society,
2015, pp. 439–448.

[22] J. Wolter, “Devil3d - A generator framework for three-dimensional vi-
sual languages,” in Proceedings of the 18th International Conference on
Distributed Multimedia Systems, DMS. Knowledge Systems Institute,
2012, pp. 171–176.

[23] S. Romano, N. Capece, U. Erra, G. Scanniello, and M. Lanza, “On
the use of virtual reality in software visualization: The case of the city
metaphor,” Inf. Softw. Technol., vol. 114, pp. 92–106, 2019.

[24] A. Campos, N. Correia, T. Romão, I. L. Nunes, and M. Simões-Marques,
“Mobile augmented reality techniques for emergency response,” in
Proceedings of the 16th EAI International Conference on Mobile and
Ubiquitous Systems: Computing, Networking and Services (MobiQuitous
). ACM, 2019, pp. 31–39.

[25] N. Hube, M. Müller, J. Wojdziak, F. Hannß, and R. Groh, “Towards
augmented reality in quality assurance processes,” in Proceedings
MMVE@MMSys. ACM, 2018, pp. 16–21.

[27] R. Seiger, M. Gohlke, and U. Aßmann, “Augmented reality-based pro-
cess modelling for the internet of things with holoflows,” in Enterprise,
Business-Process and Information Systems Modeling - 20th Interna-
tional Conference, BPMDS, ser. Lecture Notes in Business Information
Processing, vol. 352. Springer, 2019, pp. 115–129.

[28] M. Nebeling and M. Speicher, “The trouble with augmented real-
ity/virtual reality authoring tools,” in IEEE International Symposium on
Mixed and Augmented Reality, ISMAR. IEEE, 2018, pp. 333–337.

[29] B. MacIntyre, M. Gandy, S. Dow, and J. D. Bolter, “DART: a toolkit for
rapid design exploration of augmented reality experiences,” ACM Trans.
Graph., vol. 24, no. 3, p. 932, 2005.

[30] H. Kato and M. Billinghurst, “Developing AR applications with ar-
toolkit,” in 3rd IEEE and ACM International Symposium on Mixed and
Augmented Reality (ISMAR), 2004, p. 305.

[31] AR.js, https://ar-js-org.github.io/AR.js-Docs/, 2020.
[32] Argon4, https://app.argonjs.io, 2020.
[33] MAXST AR SDK, http://maxst.com#/en/arsdk, 2020.
[34] Wikitude AR SDK, https://www.wikitude.com, 2020.
[35] Vuforia Studio, https://www.ptc.com/en/products/vuforia, 2020.
[36] M. Nebeling, J. Nebeling, A. Yu, and R. Rumble, “Protoar: Rapid

physical-digital prototyping of mobile augmented reality applications,”
in Proceedings of the 2018 CHI Conference on Human Factors in
Computing Systems, CHI. ACM, 2018, p. 353.

[37] M. Billinghurst and H. Kato, “Collaborative augmented reality,” Com-
mun. ACM, vol. 45, no. 7, pp. 64–70, 2002.

[38] D. L. Moody, “The “physics” of notations: Toward a scientific basis
for constructing visual notations in software engineering,” IEEE Trans.
Software Eng., vol. 35, no. 6, pp. 756–779, 2009.

