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Abstract

The development of artificial personalities requires that we
develop a further understanding of how personality is com-
municated. This can be done through developing human-
robot interaction (HRI). In this paper we report on the de-
velopment of the SpiderCrab robot. This uses an interlingua
based on Laban Movement Analysis (LMA) to intermediate
a human-robot dance. Specifically, we developed measure-
ments to analyse data in real time from a simple vision system
and implemented a simple stochastic dancing algorithm on a
custom built robot. This shows how, through some simple
rules, a personality can emerge by biasing random behaviour.
The system was tested with professional dancers and mem-
bers of the public and the results (formal and anecdotal) are
presented herein.

Introduction
Can the study of human-robot interaction lead to the devel-
opment of embodied agents with emergent artificial person-
alities? We define an artificial personality as a machine that
is (and was been intentionally built to be) socially interac-
tive. Socially interactive robots should:

“express and/or perceive emotions; communicate
with high-level dialogue; learn models of or recog-
nize other agents; establish and/or maintain social re-
lationships; use natural cues (gaze, gestures, etc.); ex-
hibit distinctive personality and character; and may
learn and/or develop social competencies.” (Fong et al.,
2003; Dautenhahn, 2007)

Focusing on studying systems that express and perceive
emotion, we must understand the principles of emotional
communication. We focus here on non-verbal commu-
nication as much human-human communication is done
through body language (Mehrabian, 1981): i.e., communi-
cation which is expressive in its nature. In the spirit of AL-
ife research, we look for simple models that are hopefully
applicable across a broad range of systems.
Considering expressive human movement, we take our

inspiration from analysis of dance—an art-form of expres-
sive human movement. Dance, and specifically expressive

Attribute Description
Simple The protocol for communication between

agents should use a tractable mechanism
Expressive The protocol should be identifiable by hu-

mans as containing emotive human content
Embodied The protocol should work in an embodied

system—we use an improvisational dance

Table 1: The attributes required for our development of com-
munication channels for an embodied artificial personality

movement quality in dance, has been studied in detail (La-
ban, 1971; Laban and Lawrence, 1974). We therefore both
explore the principles of dance to outline potential models
of expressive communication and also test those models by
embodying them in a dance context.
We specify the important attributes for our models of

communication channels in Table 1. These three attributes
(Simple, Expressive and Embodied) are important in the pro-
duction of an artificial personality. We outline three commu-
nication channels in this work and discuss them in light of
the attributes given in the table.
From a broader scope, we also consider the relevance

of the communication channels we have identified to an
evolutionary or ALife perspective. Many artificial life
projects look for emergent communication [see work by
Quinn (2001), Marocco et al. (2003) and Nolfi (2005) for
examples], where a new communication channel emerges
in a system without any prior specification. Such emergent
communication channels are interesting from an evolution-
ary perspective as they can define simple mechanisms by
which communication can occur with very little extra func-
tion being developed. A sociobioligical definition of com-
munication (Wilson, 1975) sheds further light on the topic:

“Communication occurs when the action or cue
given by one organism is perceived by and thus alters
the probability pattern of behavior in another organism
in a fashion adaptive to either one or both of the partic-
ipants.” (p. 111)
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Category Description
Body Studies the way an individual uses their

body joints to generate movements
Space Studies the way an individual interacts with

space outside the body
Shape Studies the sorts of shapes made by individ-

uals as they move
Effort Studies the way an individual moves

Table 2: The four LMA categories.

Subcategory Description
Space Is the movement direct or indirect
Weight Is the movement strong or light
Time Are the movements quick or sustained
Flow Are the movements under body control

(bound) or are they allowed to flow

Table 3: The four subcategories of the LMA effort category.

Given this definition there need be no intentionality on the
behalf of the sender to transmit a signal—thus a commu-
nication channel may emerge just from observations of an-
other’s behaviour. We consider whether the expressive chan-
nels of communication developed here are relevant as forms
of emergent communication.

Dance background
The field of postmodern dance stands out as being particu-
larly relevant to the direction of study outlined in the pre-
vious section. Other dance forms, such as ballet, focus on
structured movements. Ballet dances are commonly formed
from a grammar of dance positions called Key Aesthetic
Poses. Expression is conveyed through changing the style
of movement between each dance position. Alternatively,
postmodern dance seeks to remove all syntax and structure
from dancers movements (Banes, 2003). Dancers are taught
to unlearn their usual movement vocabulary so they can
move on a purely expressionistic level. Commonly, dancers
improvise in pairs (or greater numbers) where they each
either copy, oppose or innovate qualities from the other’s
movements. Since their movements are no longer con-
sciously motivated they therefore become examples of emer-
gent communication.
We look here at a method which is widely used for in-

terpreting and understanding expression qualities in dance
(Laban, 1971; Laban and Lawrence, 1974): Laban Move-
ment Analysis (LMA). This has four main categories which
are outlined in Table 2. As we are focused on movement
quality, we looked more closely at the effort category, which
has four subcategories outlined in Table 3.
In a modern improvisational dance context, the dancers

make offers to each other through their movement quality.
From an LMA perspective, movements can be classified and

dances can be interpreted through this language. In impro-
visation, movement quality is often copied with occasional
innovations and oppositions—this gives the dancers a sense
of performative merging.

Other work
Previous work for generating expressive movements has fo-
cused on a computer model of the human arm and torso
(Chi et al., 2000) and a computer model of a ballet dancer
(Neagle et al., 2004). In both systems, key positions and
times were defined for body parts and heuristics, inspired
by LMA, were specified for movement between positions.
An important factor was found to be the velocity profiles of
movement (Neagle et al., 2004).
The analysis of expressive qualities of human movements

has been attempted before (Castellano et al., 2007). This ap-
proach used features generated from many different move-
ment characteristics (Acceleration, Contraction Index, Flu-
idity, Quantity of Movement and Velocity) taken from ac-
tors making gestures expressing one of four emotions (Joy,
Anger, Pleasure and Sadness). Various classifiers were
tested with the data in order to generate models which would
identify the correct emotion using the features available. The
most significant feature was found to be Quantity of Move-
ment with the Contraction Index (the degree of contraction
and expansion of the body) playing a minor role. However,
the system was not able to classify all emotions accurately.
The complexity of this approach is not compatible with our
requirement that models be tractable (Table 1) because of
the large number of features used by the classifiers.

The SpiderCrab system
Given analogues between LMA (see the Dance background
section) and mathematical analysis, and success using it in
the past, LMA was chosen to act as an interlingua for an im-
provisational human/robot dance. The SpiderCrab robot was
chosen to embody an artificial personality developed within
the requirements of Table 1. The design phase of the robot
was done through embodying it (into human form) at dance
workshops. This was, in part, to study the application of per-
formance arts methodology to the design process (Bayliss
et al., 2007). It was also useful to form a picture of how the
robot may be capable of expressive behaviour. In this project
we focused specifically on the development of a controller
for the robot to explore its potential as an improvisational
dance partner.
An overview of the system we developed is presented in

Fig. 1. The Robot system has three subsystems: the sen-
sory input, robot controller and improvisation subsystems.
Both the sensory input and robot controller subsystems use
the expressive communication model, which is a common
framework, based on LMA, for classifying both input from
the dancer and output to the robot. Decisions about how
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the robot should react to different sensory inputs from the
dancer were made by the improvisation subsystem.

Dancer

rod

joint

Robot

Figure 1: An overview of the SpiderCrab system showing
expression flowing within a closed loop between the dancer
and the robot. The robot system controls the robot, respond-
ing to the quality of the dancer’s movement by biasing the
robot’s random movements. The dancer responds to the
robot’s movement.

The expressive communication model
The expressive communication model uses LMA to provide
a common language for dancer and robot movement. For
simplicity we focus on only one primary subcategory of
LMA and analyse its role in the expression and communi-
cation of emotion. We chose the weight subcategory in the
effort (see Table 3) category for several reasons. Previous
work (Neagle et al., 2004) has shown that it is possible to
generate movement in a virtual dancer in which humans can
distinguish three emotions: Sadness, Happiness and Anger.
These same emotions can also be distinguished when hu-
man dancers perform movements on different regions of the
weight subcategory spectrum.
Two secondary subcategories of LMA were also consid-

ered, to try and understand their roles in the expression of
emotion. These were the space subcategory (see Table 3)
which is in the effort category and the kinesphere subcat-
egory in the space category. The kinesphere subcategory
relates to the area the dancer is moving within and how that
relates to other dancers.
The two Effort subcategories were modelled as three dis-

crete nouns (see Table 4). The kinesphere subcategory was
modelled as a 3D coordinate which represented the position
of the armband, and the 3D locations of the joints and rods
of the robot limb.

Sensory input subsystem
A simple vision subsystem was used to generate real time
data for our system. Some bright green material was fixed to
the dancer (often as an armband) and its location was tracked

LMA subcategory Settings
Weight Strong; Medium; Light
Space Direct; Indirect

Table 4: The two subcategories of the LMA Effort category
can have different settings in the expressive communication
model. An LMA noun can be formed by choosing a set-
ting from each subcategory, e.g., Strong+Direct would mean
strong, direct movements.

by digital cameras. We recorded the centre of the green pix-
els at each timestep on each camera’s image and this coor-
dinate [x(t), y(t)] was used to generate measurements for
each camera.
Measurements were taken using the values of x(t), y(t)

to model the two LMA effort subcategories, weight and
space. First, we propose that the LMA subcategory weight
of movement may be modelled by the power delivered to the
armband over a period of time of length T . This is approx-
imated by assuming the mass of the armband is 1.0 (we do
not use standard units). The force on the armband is thus
equal to the absolute value of the acceleration of the arm-
band at the camera frame. The power over time T is given
by,

power(t) =
1

T

t
∑

t−(T−1)

Fl , (1)

where F is the force on the armband at t and l is the distance
travelled by the armband over the timestep at t. An alterna-
tive measurement was also considered, the average absolute
speed over time T ,

speed(t) =
1

T

t
∑

t−(T−1)

|s| , (2)

where s is the speed of movement of the armband at time t.
The indirectness of movement was also considered to

model the space subcategory. To do this, the direction of
movement θ was calculated at each timestep. The rate of
change of direction can be approximated by taking dθ/dt =
θ(t) − θ(t − 1). We introduce an indirectness measure over
a period of time T which is given by,

indirectness(t) =
1

T

t
∑

t−(T−1)

∣

∣

∣

∣

dθ

dt
s

∣

∣

∣

∣

. (3)

Our indirectness measurement is greater when the arm-
band changes direction while moving quickly.
When the robot was in improvisational dance mode, the

time period was set to two seconds for the power measure-
ment and one second for the indirectness measurement.
For evaluations of the Sensory input subsystem, movements
of the dancers were broken down into gestures and the mea-
surements were calculated for each gesture. Gestures were
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Joint Degrees of Rod
freedom length (m)

Shoulder 2 2.10
Elbow 2 1.30
Wrist 2 0.80
Finger 1 0.53

Table 5: The four joints of the SpiderCrab robot. The joints
are connected in sequence. The Shoulder joint is fixed to the
environment with each following joint connected by a sturdy
rod.

identified by looking at the acceleration time trace: gesture
start and end points were taken from when the acceleration
moved from negative to positive values. Very short gestures
(< 0.6 seconds) were combined together into longer ges-
tures.
Tests with a simple 2 camera setup did not produce ac-

curate enough 3-dimensional locations for the power and
indirectness measurements. So we estimated motion or-
thogonal to the viewing direction of each camera using
position in the image and assuming a fixed depth. This
is a reasonable approximation assuming the dancer would
stay roughly the same distance away from the cameras and
face the cameras, although it will not include contribu-
tions to power and indirectness that arise from motion in
depth. Course grained 3-dimensional location information
was generated for the kinesphere aspect of the Expression
communication model by using a second camera and trian-
gulating the position.

The robot and the robot controller subsystem
The robot1 is a single limb with four joints, see Table 5. The
robot was designed to interact with the public, so needed
to be as light and flexible as possible. The four joints of
the limb are thus moved using air muscles with each axis of
rotation having a pair of air muscles—a flexion muscle and
an extension muscle. Valves connected to the air muscles
are computer controlled, letting air in or out and contracting
or extending the muscle respectively. Sensors on each joint
return its angle(s) to the controller.
The quality of movement of the robot is defined by one of

the six LMA nouns given in Table 4. The current LMA noun
is received from the Improvisation subsystem (see the next
section for more details on the Improvisation subsystem).
To control the robot’s quality of movement,

three variables are changed according to the LMA
noun received from the Improvisation subsystem:
joint instruction length, robot movement power
and joint direction consistency. A pair of air muscles
rotate the joint around an axis of rotation for a random

1The robot was designed in partnership with, and built by, the
Shadow Robot Company. See http://www.shadowrobot.
com for further technical information.

period of time (selected from a flat distribution between 0
and 1) multiplied by the joint instruction length. The
amount of air fed to the muscles (per second) is sampled
randomly from a uniform distribution between 0.5 and 1.5
and multiplied by the robot movement power. At the end
of each movement the joint either continues its rotation in
the same direction or will reverse direction with a prob-
ability depending on the joint direction consistency.
If at any time a joint rotates past a limit (commonly the
maximum rotation of a joint), the rotation direction will be
reversed.
The three variables were set by hand for each of the

six LMA nouns. They were tuned by assessing the
robot’s movement by eye. The robot movement power
variable corresponded with the weight subcat-
egory, and the joint instruction length and
joint direction consistency variables corresponded
with the space subcategory.
The other important aspect of the robot’s movement is de-

termined by the kinesphere subcategory of the LMA space
category. Here the robot will either point the elbow joint
toward the dancer’s general location, or ignore the dancer’s
general location and move the elbow freely. When the elbow
must point, it rotates toward the target with an angular ve-
locity proportional to the target’s angular distance from the
rod extending from the joint.

Improvisation subsystem
The robot was designed to perform within a postmodern
dance improvisation context. This means that the robot will
embody the expressive communication model by interfac-
ing between the sensory input module and the robot con-
troller. The improvisation subsystem implements an im-
provisational dance by switching between three different
modes: Copy, Follow-copy and Oppose. Table 6 describes
the three modes.

Improvisation
mode

Description

Copy The robot movement quality directly
copies the movement quality of the
dancer (using the effort and space subcat-
egories of the LMA effort category)

Follow-
copy

As Copy but with the elbow joint point-
ing at the dancer (using the kinesphere
subcategory of the LMA space category)

Oppose The robot movement quality is the oppo-
site to that of the dancer (using the effort
and space subcategories of the LMA ef-
fort category)

Table 6: The robot responds to the quality of movement of
the dancer by selecting an LMA noun depending on its im-
provisation mode.
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The power and indirectness measurements were used
to identify which LMA noun the dancer was using. When in
copy mode the dancer’s noun was output to the robot con-
troller, when in oppose mode, the opposite noun (i.e., Strong
→ Light, Light → Strong and Direct → Indirect) was out-
put to the robot controller. The robot cycled through the 3
modes spending 30 seconds in Copy mode, 30 seconds in
Follow-copy mode and then a random number of seconds
(between 5 and 15) in Oppose mode.
Essentially, the robot responds to three key elements mea-

sured from the dancer’s movement: the weight of move-
ment, the directness of movement and the location of the
dancer. It responds by either producing movements with a
similar quality, or by producing movements with an oppos-
ing quality.

Evaluation
The SpiderCrab system was evaluated from two perspec-
tives. First, we focused on the sensory input subsystem to
evaluate its capabilities of perceiving emotional quality in
movements. Second, the full system was evaluated by mem-
bers of the public and dancers from the Salamanda Tandem
dance company.

Sensory input subsystem evaluation
We tested the Sensory input subsystem over two dance ses-
sions. In the first session the dancer was asked to make
the same gesture with different qualities of movement. In
the second session the dancer moved freely making varying
gestures to different qualities of movement. Evaluations are
made with reference to the attributes required by Table 1.
In both sessions the dancer stood at a fixed distance from

a single camera. Approximately 20 gestures were made for
each movement class by both dancers.
In the first session, we considered whether the sensory in-

put subsystem was capable of assessing the emotional con-
tent of a dancer’s movement (the Expressive attribute in Ta-
ble 1). Dance movements were taken from three different
movement classes expressing the three different emotions:
Sadness, Happiness and Anger. For each individual gesture,
the power and speed measurements (see Eqs. 1 and 2) were
calculated using the Sensory Input subsystem. Box plots
of the power data, collected within each movement class,
are shown in Fig. 2. Box plots of the speed data, collected
within each movement class, are shown in Fig. 3.
Figure 2 shows that the power measurement is a good

choice for the Sensory Input subsystem to distinguish be-
tween the three emotions expressed by the dancer. In
fact, the mean absolute acceleration also worked well (not
shown). We decided to work with the power measurement
as it relates more closely to our sensations of moving in the
three movement classes: in an ad hoc experiment, the per-
ceived work done by our muscles when expressing the emo-
tions correlated with the power recordings of Fig. 2. An
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Figure 2: The same gesture made with movement quality
expressing different emotions. The Sensory Input subsys-
tem can distinguish between different emotional qualities of
movement by calculating the power (see Eq. 1) delivered to
the armband. Two-sample t-test comparisons between the
three movement classes all give p < 7.7 × 10−05.
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Figure 3: The same gesture made with movement quality
expressing different emotions. The Sensory Input subsys-
tem is unable to distinguish between the Happy and Angry
gestures when calculating the average absolute speed (see
Eq. 2) of the armband. A two-sample t-test comparison be-
tween Happy and Angry gestures gives p = 0.82
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alternative measure of considering the average speed (or, by
extension, momentum) of the armband did not distinguish
between the Happy and Angry gestures (Fig. 3).
In the second dance session, a dancer was asked to per-

form gestures freely with relevant LMA nouns of the weight
and space subcategories of the effort category. This formed
four classes of movement: Strong+Direct, Strong+Indirect,
Light+Direct and Light+Indirect. The output of the power
measurement for the strong and light movements is shown
in a box plot in Fig. 4. The output of the indirectness mea-
surement for the direct and indirect movements is shown in
a box plot in Fig. 5.
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Figure 4: Varying gestures made with strong and light LMA
movement qualities. The Sensory Input subsystem can dis-
tinguish the quality of movement by calculating the power
delivered to the armband. A two-sample t-test comparison
between the two movement classes gives p = 0.018.

The Sensory Input subsystem was able to distinguish be-
tween strong and light movements (see Fig. 4). In compari-
son to Fig. 2, some gestures were of a much greater power.
Greater power can be delivered to the armband when the in-
dividual moves their body as well as their arm, rather than
just the arm on its own. While the system had some success
in distinguishing direct and indirect movements, the results
were not significant. This was because it could not distin-
guish between an individual moving to start a new gesture
(not relevant within and LMA context) and an individual
moving within a gesture).

Full system evaluation
We evaluated the full system based on an embodiment test
for an artificial dancer partner proposed by Wallis et al.
(2007). This argues that “success will be measured by
whether or not the human dancer feels that he/she is danc-
ing with a true partner”. With this in mind, we evaluated the
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Figure 5: Varying gestures made with direct and indirect
LMA movement qualities. The Sensory Input subsystem is
unable to distinguish between the two movement classes. A
two-sample t-test comparison between the two movement
classes gives p = 0.32.

robot using a professional and independent dance company
that focuses on improvisational dance. The company, Sala-
manda Tandem, use dance as a means of studying and devel-
oping social interaction—particularly with disabled people
including those on the autistic spectrum.
Dancers from the company danced with the robot (see

Figure 6) over a period of two days and wrote a report (Jones
and Hood, 2008) on their interaction with the robot. So that
their experience was not biased in any way, the dancers were
told as little as possible about the way the system worked
before starting to dance, just that it would respond to move-
ments with the green armband.
Their responses to dancing with the robot indicate that it

had passed the embodiment test: the robot did feel like a true
partner. One of the assessors stated that

“I felt apprehensive when approaching to move with
the robot but it’s amazing how quickly I forgot it was a
robot and was just dancing with another, it felt friendly”
(Julie Hood).

Another dancer felt that

“[a]t first it’s like a robot, then you forget and you
are having a duet, getting to know someone—shaking
hands... You can build a connection in play and
be imaginative with it... It becomes a human limb”
(Mickel Smithen).

In general, when the robot was in the copy mode people
dancing with the robot (both professional dancers and mem-
bers of the public) felt that it was responsive to their ex-
pressive offers. This meant that there was a bi-directional

Artificial Life XI 2008  85 



Figure 6: A dance student dances with the robot.

expressive communication channel. When noise was intro-
duced so that the system responded erratically (detecting
movement when none was there), dancers felt it was less
responsive.
Some comments picked up on how we might develop the

robot’s personality:

“I’ve noticed in my work with people that there needs
to be a pace, a sense of timing to encourage interaction
to take place...I believe that SpiderCrab would need to
be able to vary [its timing] in response to different sorts
of people” (Isabel Jones).

Development along these lines could mean that the Spider-
Crab system could become

“a fantastic tool to deconstruct and analyse human in-
teraction” (Isabel Jones).

After a while, the dancers started to feel that the robot’s be-
haviour was becoming a little predictable and that its qual-
ity of movement was limited when compared with a human
dancer.

The Sensory Input subsystem was shown, in the previous
section, to be able to distinguish between movements ex-
pressing different emotions. When the robot was placed in
an environment with real dancers, the robot was clearly able
to pick up on the weight of the dancer’s movement of the
armband.
While there is a long way to go before the robot can

fully identify the dancers’ movement qualities, the six dif-
ferent qualities of robot movements were, however, quali-
tatively identifiable from each other. Reports from dancers
were that robot movements could range from “menacing” to
“smooth”.
When the robot’s elbow joint pointed toward the dancer’s

location, we had mixed responses. For safety reasons we
had to slow the movement of the elbow. This meant that
the robot was slow to copy the dancers’ movements. Some
dancers did not notice the difference between the copy mode
and the follow-copy mode. However, when the follow-copy
mode was observed, some dancers felt that the robot was
crowding them whereas others felt that the robot was being
more friendly.

Discussion
In this project, we have developed a robot system that,
through improvisational dance, is capable of bidirectional
expressive communication. The SpiderCrab system can dis-
tinguish between different human emotions, based on the
quality of movement. Furthermore, the robot’s movements
were responsive to the dancers’ movements and interpreted
as such by the dancers. This meant that the robot was suc-
cessful as an improvisational dance partner and was able to
achieve social interaction [as specified by Fong et al. (2003);
Dautenhahn (2007)] through the embodied expression and
perception of emotions.
To consider the robot’s potential as an artificial person-

ality, we review the communication channels used by the
system in light of the attributes outlined in Table 1. Starting
with the primary communication channel, the power mea-
surement (see Eq. 1) does indeed satisfy all the required at-
tributes for use in an artificial personality. This measurement
was both simple in that it can easily be calculated and used,
but it is also simple in that it is clear how expression can be
transmitted through the channel—it can map neatly onto hu-
man emotions (see Fig. 2). The success of the channel in the
full system evaluation (including the fact that perception of
the responsiveness of the system was impaired when noise
was introduced) also means that it is successful as both an
expressive and embodied channel.
The indirectness measurement (see Eq. 3) was less suc-

cessful than the power measurement. While simple to cal-
culate, the measurement did not map neatly onto human ex-
pression or emotions. However, when the robot generated
movements within its more limited movement vocabulary,
they were distinguishable to our eyes.
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The pointing or following behaviour of the robot (based
on the kinesphere LMA subcategory) showed some poten-
tial. This is simple to implement, is tractable, and maps
neatly onto behaviour. The expressive quality of this com-
munication channel relates to attention. The robot can use its
physical location to pay attention to the dancer, or to move
away to dance in a different space. It was difficult to imple-
ment in the full system due to the inaccuracies in our mea-
suring systems.
As far as the production of artificial personalities is con-

cerned, there is potential to build more sophisticated mod-
els into the robot’s Improvisation subsystem. This could al-
low us to experiment more closely with different personality
models and explore the system as a tool for analysis of hu-
man interaction. The development of a methodological ap-
proach for studying this in more detail is an exciting project.
Insights into emergent communication channels can also

be gained from studying the communication channels we
have outlined. Put simply, the power measurement measures
the amount of energy being expended by an agent during its
movement. Observers can quickly make judgements as to
an agent’s internal state based on this measurement and any
other measurement that measures energy usage (e.g., sound
volume, metabolic output, etc). It should be noted that it is
also difficult for an agent to hide or fake its energy consump-
tion so this forms the basis of a communication channel that
is unintentional and emergent and therefore likely to be an
early channel to evolve. Looking for other, unintentional,
movement channels may well be productive.
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