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Abstract 
Iterated cooperation games (e.g. Prisoner’s Dilemma) are used 
to analyze the emergence and evolution of cooperation among 
selfish individuals. Uncertainty of outcomes of games is an 
important factor that influences the level of cooperation. 
Communication of intentions also has a major impact on the 
outcome of situations that may lead to cooperation. Here we 
present an agent-based simulation that implements the 
uncertainty of outcomes together with the communication of 
intentions between agents. This simulation is used to analyze 
the relationship between uncertainty and the complexity of the 
language that the agents use to communicate about their 
intentions. The complexity of the language is measured in 
terms of variability of its usage among agents. The results show 
that more outcome uncertainty implies lower complexity of the 
agent language.  

Introduction 
 
Iterated cooperation games are commonly used to study the 
emergence and evolution of cooperative behaviour in 
communities of selfish individuals (Axelrod, 1997). Such 
games, especially ones that have a non-cooperative single play 
equilibrium (e.g. Prisoner’s Dilemma game (Axelrod, 1997)) 
can simulate the selfish drive of individuals and offer a natural 
experimental environment to analyse the effects of various 
factors on cooperative behaviour. 
 The main theories about the emergence of cooperation 
consider as key factors the similarity (relatedness, kinship, 
joint interest) of individuals and the direct/indirect reciprocity 
of their behaviour (Axelrod and Hamilton, 1981; Leimar and 
Hammerstein, 2001; Nowak and Sigmund, 1998; Riolo et al., 
2001; Rockenbach and Milinski, 2006; Roberts and Sherratt, 
1998; Trivers, 1971). Other important factors include 
commitment inertia (Roberts and Sherratt, 1998) and 
segregation of cooperators (Pepper, 2007). Most of these 
theories assume repeated interactions between the same 
individuals and/or interactions between all possible pairs of 
individuals (Axelrod, 1997). These theories also assume well 
defined outcomes of the played games and usually pay little 
attention to communicative behaviour of individuals 
participating in game playing (Axelrod, 1997). 
 In real life situations the outcomes of cooperation or 
defection usually are uncertain and depend on many other 
factors outside of the control of the interacting individuals 
(Callaway et al., 2002; Pulford and Coleman, 2007; Seghers, 
1974; Spinks et al., 2000). Communication between 

individuals is an integral part of the action selection and 
decision making process and consequently may matter very 
much during the interaction process (Dugatking, 1997; 
Dunbar, 1988). Individuals may try increase cooperation 
willingness in their partner through communication. They may 
also use communications to hide their true intentions. Earlier 
works show that indeed uncertainty of outcomes and 
communicated intentions may play an important role in 
determining the level of cooperation in communities of selfish 
individuals (Andras et al., 2007; Andras et al., 2006; Andras 
et al., 2003). 
 Anecdotal evidence suggests that experienced uncertainty, 
due to the environmental context, has the effect of reducing 
the complexity of the communication of intentions. For 
example, surgeons use very restricted language to 
communicate during operations, the restrictions of the 
language being aimed to reduce uncertainty and the possibility 
of misunderstandings in a very uncertain environment (i.e. 
there may be many unexpected complications during the 
surgical operation). Another example is the army, where again 
the communication of orders is done in a highly simplified 
language, again aimed to reduce uncertainty in the 
interpretation of orders in the context of a highly uncertain 
environment (where the soldiers may encounter many 
unexpected situations created by their enemy). 
 Here we describe a simulation study aimed to analyse and 
quantify the effects of uncertainty on communication 
complexity in the context of situation where cooperation 
emerges and is maintained in a community of agents. In the 
agent-based simulation study the agents played Prisoner’s 
Dilemma games. The study confirms the expectation based on 
the anecdotal evidence, i.e. that more experienced uncertainty 
implies more reduction in the complexity of the 
communication language that agents use to communicate their 
intentions during their interactions. This result helps the 
understanding of the evolution of the language that is used as 
medium of interactions between individuals in the context of 
potentially cooperative social interactions. 
 The rest of the paper is structured as follows. First we 
discuss the concept of uncertainty in the context of 
cooperation games. Next we consider the role of 
communication of intentions between individuals playing 
cooperation games. This is followed by the discussion of 
communication complexity. Next we describe the agent-based 
simulation environment that we used for our study. This is 
followed by the presentation of the results of the simulation 
study. Finally, we end the paper with our conclusions. 
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Uncertainty in cooperation games 
The usual setting of agent-based simulations with iterated 
cooperation games assumes that the possible outcomes of 
games are known and fixed across all games played during the 
simulation (Axelrod, 1997). This assumption is useful to keep 
the games and the simulations analytically tractable. However, 
this assumption is frequently not satisfied in real life situations 
that are modelled by such games and simulations. 
 In real life situations the more usual is that the outcomes of 
games vary around some expected outcome. The amount of 
variation differs from case to case. If the variation is small the 
situation and its possible outcomes are relatively certain, for 
example in case of interactions which lead to a contract 
defining obligations of the parties that determine the outcomes 
of the interaction (or game). If the variation of outcomes is 
high the situation and its outcomes are uncertain, for example 
when army troops are advancing on unknown enemy territory, 
interactions between soldiers may have widely varying 
effects. 
 Uncertainty of outcomes can be represented in a 
straightforward way in cooperation games by replacing the 
fixed outcomes by outcome distributions (Andras et al 2007). 
For example, Table 1 represents a fixed outcome cooperation 
game. 
 

  Player 1 
  Cooperate Defect 

Cooperate R,r s,t 

Pl
ay

er
 2

 

Defect T,s p,p 

 
Table 1: A fixed income cooperation game 
 
 The letters r, t, s, p stand for: ‘reward for cooperation’, 
‘temptation to defect’, ‘punishment for joint defection’ and 
‘sucker’s payoff’. To include the representation of outcome 
uncertainty the values r, t, s, p are replaced by (normal or 
exponential) distributions R, T, S, P such that the mean value 
of these distributions is the corresponding fixed outcome, 
while the variance of the distributions represents the 
uncertainty of the game outcomes. When players play the 
game they pick first their distribution according to their game 
playing choice and then they pick their actual outcome from 
this distribution by taking a random sample from the 
distribution. In average the outcomes of many games will be 
close to the fixed outcome approximation of the game, but 
considering outcomes of individual games they will be 
distributed according to the adopted distributions with a 
variance corresponding to the uncertainty of the game. 
 It has been shown that uncertainty in the outcomes of 
games (due to environmental factors) influences the level of 
cooperation in the context of agent-based simulations of 
iterated cooperation games with uncertain outcomes (Andras 
et al., 2007; Andras et al., 2006; Andras et al., 2003). The 
stable level of cooperation within a population of agents 
increases as the uncertainty of the outcomes of the games 
played by agents increases (Andras et al., 2007). This is 
consistent with a range of observations of natural situations 

where the uncertainty imposed by the environments induces 
more cooperative behaviour among bacteria (Drenkard and 
Ausubel, 2002; Mehdiabadi et al., 2006), plants (Callaway et 
al., 2002), and animals (Seghers, 1974; Spinks et al., 2000; 
Kameda et al., 2002). 

Communication of intentions 
Commonly agent-based simulations of emergence and 
evolution of cooperation use cooperation games where the 
communication between agents is compressed into a single-
shot communication expressed by the game playing choice of 
the agent (Axelrod, 1997). This excludes the communication 
of intentions or provision of cues about intentions that may 
influence the other player. However, in real world situations 
such communications play a critical role in the development 
of interactions between individuals (Drenkard and Ausubel, 
2002; Dugatking, 1997; Dunbar, 1988). (Note, that while in 
the literally understood Prisoner’s dilemma situation there is 
no possibility of communications, in many situations analysed 
using this model of interaction there is an important role for 
communication of intentions.) 
 It is crucial to include into agent-based simulations the 
communication of intentions to understand how real world 
cooperation works. Including communications about 
intentions may also allow the study of the role of trust and 
deception in the emergence and evolution of cooperation. 
 Representing communication of intentions is not trivial in 
the context of agent-based simulations. To do this the agents 
have to be equipped with some form of communication 
language which relates to intentions of the agents and allows 
the communication about these intentions (exposing or hiding 
them) in a consistent manner. One way to achieve this is to 
define the language of agents in the form of a probabilistic 
grammar with two parallel inputs (Andras, 2003). This 
grammar can be described using production rules of the form 

}:,,:{', 1
1

k
k
nextnextcurrentcurrent pupuuu !→  (1) 

Where ucurrent is the last communication symbol produced by 
an agent, u’current is last communication symbol produced by 
the interaction partner of the agent, u1

next, …, uk
next are the next 

communication symbols that can be produced by the agent, 
and p1, …, pk are the probabilities of production of these 
communication symbols,  

1
1

=!
=

k

j
jp  

 
(2) 

 The grammar should include communication symbols 
representing the start of the communication and symbols 
representing the play choice of the agents (cooperate or 
defect). Other symbols may have various semantics depending 
on the intended semantic extent of the language (e.g. the aim 
may be inclusion of modeling of trust). 
 The rules of the language should be such that they are 
consistent with the practice of communication of intentions in 
the case of biological organisms. In particular, signs of 
positive intentions are usually followed by signs of similarly 
or more positive intentions. Such consistency rules should be 
implemented in the language of agent communications by 
imposing consistency constraints on the transition 
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probabilities. The positivity of a communication symbol is 
given by the level of pro-cooperation intention (positiveness) 
indicated by the symbol when it is produced during 
communication. To express the above rules more formally, if 
u0, u1, u2, u3 are communication symbols, such that their 
positivity ranking is  

321 uuu ≤≤  (3) 

and u3 can be produced according to production rules  

1301 :, puuu →  (4) 

and  

2302 :, puuu →  (5) 

where p1, p2 are the probabilities of application of these rules 
then 

21 pp ≤  (6) 

In other words, more positive symbols are more likely to be 
followed by even more positive symbols than less positive 
symbols. Similarly, if the production rules are  

1310 :, puuu →  (7) 

and  

2320 :, puuu →  (8) 

and (3) holds, then again (6) holds, i.e. the same rule applies if 
the symbols with different positiveness are produced by the 
communication partner.  

Communication complexity 
Communication complexity can be defined using the concepts 
of Kolmogorov complexity (Li and Vitanyi, 1997). The 
complexity of a description is given by the length of the 
description. The complexity of a language can be considered 
in terms of the average length of non-interrupted 
communications in that language. Of course, this is a 
relatively rough measure of description and language 
complexity, but it can be used reliably, assuming no intention 
aimed to distort the measured complexity. A better 
approximation of description or language complexity, 
perhaps, is to consider the description length after the 
elimination of redundant and irrelevant components from the 
description or communications. Of course, this may inject 
some subjective bias into the measurement. In the case of an 
agent-based simulation with communication of intentions the 
above defined complexity of the agent language can be 
measured as the average length of communications between 
agents that last from the start of the interaction until the 
decision about the game choice. 

An alternative way to measure the complexity of the 
language is to look at the variability of the language rules used 
by various individuals. If the rules contain high variability, i.e. 
there are relatively large differences in the way language rules 
are used, that indicates high complexity of the language 
(indirectly indicates high dependence of the rule use on the 
context of the use). Consistent regular application of language 
rules without much variation implies lower complexity of the 
language (i.e. less context-dependence). This alternative 
approach of measuring complexity of the language fits with 
the concept of Kolmogorov complexity in the sense that low 

variation of language rules means that the language can be 
described listing its rules and relatively few additional meta 
rules about the context-dependent application of the listed 
basic rules – i.e. the description of the language is relatively 
short. In the case of high variation of rule application, the 
language can be described by listing its basic rules and adding 
many meta rules about the context-dependent application of 
basic rules – i.e. the description of the language becomes 
relatively long. In the case of an agent-based simulation with 
communication language the measurement of complexity of 
the language according to this method involves the 
measurement of the variance of distributions of probabilities 
of grammar production rules. Higher variance in average 
across all rules means more variable application of the 
language and a more complex language. On the other end, 
lower variance in average means lower variability in language 
use and lower language complexity. 

In the real world high uncertainty situations appear to be 
associated with low complexity communication languages 
(e.g. surgical theatre, army – see examples in the 
Introduction). Generally, the higher lexical complexity and 
higher complexity of application of rules of a language 
implies more uncertainty about what is communicated using 
the language. The uncertainty implied by the complexity of 
the language adds to the uncertainty imposed by the 
environment.  

On the basis of observation of the link between experienced 
uncertainty and level of cooperation in communities of selfish 
individuals we expect that if the community experiences high 
uncertainty then the possible ways to deal with this is either to 
have high level of cooperation or to have low level complexity 
of the communication language, or some combination of 
these. Earlier work shows that the level of cooperation 
increases with the level of experienced uncertainty. Similarly 
we expect that in accordance with anecdotal evidence, the 
level of complexity of the language should decrease as the 
experienced level of uncertainty increases. 

Simulation implementation 
The agents ‘live’ in a two-dimensional rectangular world, 
which is wrapped on both pairs of edges (up and down, right 
and left). A position in the world may be occupied by more 
than one agent, and positions of agents can be arbitrarily close 
(i.e. the world is not divided into a grid of disjoint places). 
The dimensions of the world are set to be 100 x 100. 

The agents in the simulation own resources, which are used 
to maintain themselves and to generate new resources alone or 
through interaction with another agent. In each time turn each 
agent tries to choose an interaction partner. The partner is 
chosen from those agents, which are located close enough (i.e. 
in the neighbourhood) to the agent which is looking for a 
partner. An agent may be chosen as a partner if the agent is 
not already partnered up with another agent. An agent may 
remain without a partner in a time turn if it cannot find any 
agent in its neighbourhood which could become its partner. 
The neighbourhood of an agent is defined as the set of ten 
closest agents, where the distance between agents is measured 
in the two-dimensional world populated by the agents.  

After finding a partner the agents play a Prisoner’s 
Dilemma type game with uncertain outcomes. The uncertainty 
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of outcomes represents all uncertainties that may influence the 
interaction between the agents. The outcome uncertainty is 
implemented as described in the section ‘Uncertainty in 
cooperation games’. For the sake of simplicity we use normal 
distributions characterized by a mean value and a variance. 
Playing the game determines the mean value of the 
distribution, while the variance of the distribution (σ) is a set 
value that characterizes the outcome uncertainty of the game. 
Note that our simulation implements iterated game playing 
without the requirement that the repeated games should be 
between the same agents, and in fact it is more likely that 
agents will play with many other agents during their 
‘lifetime’. 

The agents participate in the game with their available 
resources, which determine the mean value of the outcome 
distribution. The function determining this mean value is 

01
1)( RRe

aRf +−+
⋅=  

(9) 

where a and R0 are parameters and Ris the amount of available 
resources. The parameters are set such that the game operates 
on the convex diminishing return part of the function where  

)(2)2( xfxf ≥  
(10) 

In order to preserve the Prisoner’s Dilemma conditions (i.e. 
t>r>p>s and 2r>t+s) the game matrix determining the mean 
values of outcome distributions are set as in section 
‘Uncertainty in cooperation games’ with the values 

( )
2
∆+= Rfr  

(11) 

( ) ∆+= Rft  (12) 

( )Rfs ⋅= α  (13) 

( )Rfp =  (14) 

where 
∆ = f (R1 + R2) − f (R1) − f (R2)[ ]+  (15) 

(i.e., it takes only the positive values of the expression in 
brackets and it is zero if the value of the expression is 
negative), 0<α<1 is a parameter. 

After determining the mean values of the outcome 
distributions for both agents, they pick an actual outcome 
value from the normal distribution determined by this mean 
value and the variance σ that characterizes the outcome 
uncertainty of the world of the agents. The actual outcome 
values will be the new amount of resources available for the 
agents. Note that the actual outcome value may be below or 
above the mean value given by the game matrix. If the 
outcome uncertainty is high (i.e. σ is large) the likelihood of 
getting much more or much less than the mean value is 
relatively large. If the outcome uncertainty is low (i.e. σ is 
small) in most cases the actual outcome value will be close to 
the mean value determined by the game matrix. 

The agents communicate using a simple language. The aim 
of this communication is to decide how to play the game. The 
lexicon of the language consists of the symbols: 
‘0’,’s’,’i’,’y’,’n’,’h’ and ‘t’. These symbols have the following 
meanings: ‘0’ – no intention of communication, ‘s’ – start of 
communication, ‘i’ – maintaining the communication, ‘y’ – 
indication of the willingness to engage into possible 

cooperation, ‘n’ – indication of no further interest in 
communication, ‘h’ – cooperation (ready to share the benefits 
of joint use of resources), ‘t’ – cheating (ready to steal the 
benefits of possible joint use of resources). The last two 
symbols, ‘h’ and ‘t’ represent the actual cooperation and 
defection game choices. The first four symbols are ranked 
according to their positive contribution towards engagement 
in cooperation (the least positive is the ‘0’ and the most 
positive is ‘y’, ‘0’≤’s’ ≤’i’≤’y’). 

Each agent has its own realization of the language. The 
language is represented in the form of a two-input 
probabilistic production rules according to equations (1) and 
(2). The implemented simple language contains 22 production 
rules. The probabilities associated with the production rules 
may differ between agents, representing the individual 
realization of the language. For example a probabilistic 
production rule is 

}2.0:,5.0:,3.0:{', niyii →  (16) 
that means that after producing the symbol ‘i’, and receiving a 
symbol ‘i’ from the communication partner, the agent will 
produce the symbol ‘y’ with probability 0.3, the symbol ‘i’ 
with probability 0.5, and the symbol ‘n’ with probability 0.2. 
The probability of the symbol pair (‘y’,’y’) being followed by 
the generation of the symbol ‘h’ is given by the intention to 
cooperate of the agent – Icoop. The individual realizations of 
language rules always satisfy the consistency constraints 
defined by equations (3) – (8). 

After selecting an interaction partner the agents may engage 
in a communication process. The communication process 
starts properly after both agents communicated the ‘s’ symbol. 
We set a limit (L1) for the preliminary communication (i.e. 
before communicating ‘s’ from both sides). If two agents do 
not reach the proper start of the communication in a 
communication of length L1 they stop further communication 
and decide to choose play defection in their current game. 

The agents use their own realization of the common 
language to produce communication symbols. The 
communication process ends either with the communication of 
an ‘n’ symbol (i.e., signaling no further interest), or with the 
communication of the ‘y’ symbol by both partners (or by 
automatically stopping the communication according to the set 
rules). After this each agent decides whether to cooperate or 
defect by producing the symbol ‘h’ or ‘t’. We impose a 
communication length limit (L2) on this second stage of 
communication. If the agents do not reach the communication 
of ‘y’ symbols in L2 steps, they stop their communication and 
decide to play defection in the current game. 

During each communication process, as an agent produces 
equally or more positive symbols their intention to cooperate 
increases. The intention to cooperate of the agent increases 
temporarily and the increased intention of cooperation is valid 
only for the current communication process. The upgrade 
equation of the intention to cooperate is 

))(1()1(1)1( tItI coopcoop −⋅−−=+ δ  (17) 

where Icoop(0)=Icoop, t is the counter of communication symbols 
produced by the agent so far within the current 
communication process, and δ is a parameter (δ=0.025). 

At the end of each time turn the agents make a random 
move, i.e. their position is updated according to the equation 
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),(),(),( yxnewnew yxyx ξξ+=  (18) 

where (x,y) is the old position of the agent, (xnew, ynew) is the 
new position of the agent, and (ξ1, ξ2) are random values from 
a uniform distribution over [-5,5]. 

The agents ‘live’ at most for 60 time turns. The agents may 
die earlier if they run out of resources. When they reach the 
end of their life they may produce a number of offspring 
agents. The number of these depends on the amount of 
resources owned by the agent, more resources implying larger 
number of offspring. If a dying agent has R amount of 
resources, and the mean amount of the resources in the agent 
community at that moment is Rm, and the standard deviation 
of resources is RS, then the number of offspring of the agent is 
calculated as 

0
)( n

R
RRRn

s

sm +⋅−−⋅= βα  (19) 

where α, β, n0 are parameters of the simulation environment. 
If n is negative or R=0 this means that the agent has no 
offspring. If n>nmax, where nmax is the allowed upper limit of 
offspring, the number of offspring is set to be nmax. The 
offspring of an agent inherit its resources divided equally 
between them. The locations of the offspring are set by a 
small random modification of the position of the parent agent. 

When agents reproduce at the end of their life, their 
offspring inherits the language of the parent agent, possibly 
with some small random modifications of the language rule 
probabilities. This means that the offspring of an agent will 
speak the agent language in a very similar manner (using 
production rules with similar probabilities), which may 
facilitate cooperation interactions between them. 

We ran 20 simulations for each level of outcome 
uncertainty. Each simulation ran for 400 time turns each time. 
Each simulation was initialized with 1500 agents with 
randomly set positions, initial resource amounts, and language 
transition probabilities.  

To summarize, in each time turn the agents search for an 
interaction partner, and if they find one, they communicate 
about their intentions and play the above described game to 
generate their new resource amount. If an agent cannot find a 
partner it generates its new amount of resources as if it would 
be playing a defection/ defection game with another agent (i.e. 
the mean value of the resource value distribution from which 
it picks its new resource amount is set to be f(R), where R is 
the amount of its current resources). Agents move randomly at 
the end of each time turn and deduct from their resource 
amount a fixed amount of living costs. Agents may die 
because they run out of resources, or because they reach the 
end of their life (at most 60 time turns). When an agent dies 
and still has available resources, it may generate offspring, 
which will inherit its language with small variation. The 
offspring initially form a cluster around the place of their 
parent and gradually move away by random movements. (For 
more details about the simulation see Andras et al. (2003) and 
Andras et al. (2006). A version of the simulation code is 
available as online supplementary information for Andras et 
al. (2006). For further details and simulation code please 
contact the author.) 

Uncertainty and communication complexity 
In earlier work (Andras et al., 2007; Andras et al., 2006; 
Andras et al., 2003) we have shown that higher outcome 
uncertainty implies higher level of cooperation in agent 
populations. This is because the agents share their experienced 
uncertainty through cooperation, averaging the effective 
uncertainty that applies to their outcome. This means that 
through cooperation the effective uncertainty experienced by 
agents within the agent community is reduced compared to the 
individually experienced uncertainty that would apply to them 
without involvement in cooperative interactions (Andras et al., 
2006). In order for the agent population to reproduce there is a 
critical level of outcome uncertainty, above which the 
population shrinks until it goes extinct. If the outcome 
uncertainty imposed by the environment is high, high level of 
cooperation is required to bring down the effective uncertainty 
to or below the critical level (Andras et al., 2006). 
Consequently, higher outcome uncertainty implies higher 
level of cooperation that is required to keep the population 
away from extinction. The current simulation confirms this 
earlier finding (see Figure 1). Note that this relationship 
between outcome uncertainty and the level of cooperation is 
valid even if there is no communication of intentions (Andras 
et al., 2007). 
 

 
 
Figure 1: The relationship between outcome uncertainty and 
level of cooperation. The three lines show the evolution of the 
average level of cooperation across 20 populations of agents 
for three levels of outcome uncertainty (σ=0.3, σ=0.5, σ=0.7 
– the box on the right indicates the corresponding lines). The 
level of cooperation is measured as the percentage of joint 
cooperation decisions among all game decisions made by 
agents in a given time turn. (Error bars are omitted as standard 
deviations are relatively small) 
 
 Here we investigate the relationship between the outcome 
uncertainty and the complexity of the language that the agents 
use. Our expectation is that higher outcome uncertainty 
implies lower language complexity. To measure the 
complexity of the language used by agents we adopt the 
approach introduced earlier based on the measurement of the 
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variation of the use of the language rules. In other words, we 
measure the complexity of the language used within an agent 
population as the average of the variances of probabilities 
characterizing the production rules of the agent language. For 
each language production rule 
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(20) 

we consider all realizations of this rule (i.e. each realization is 
a realization of the rule in a ‘living’ agent) and calculate the 
variance for each involved probability p1

i, …, pk
i. Let us 

denote these variances as 
i
k

i
i

σσ ,,1 !  (21) 

then the complexity of the language is defined as 
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where L is the number of language rules (in the simulation we 
have 22 such production rules), and  
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(23) 

 Using this measurement of language complexity we found 
that indeed higher level of outcome uncertainty implies lower 
level of language complexity in the context of our simulated 
agent communities. This result is presented in Figure 2. This 
confirms our expectation. 
 

 
 
Figure 2: The relationship between outcome uncertainty and 
language complexity. The lines show the evolution of average 
language complexity across 20 populations of agents for three 
levels of outcome uncertainty (σ=0.3, σ=0.5, σ=0.7 – the box 
on the right indicates the corresponding lines)). The language 
complexity is measured according to equation (22). (Error 
bars are omitted as standard deviations are relatively small) 
 
 We also considered the alternative measure of the language 
complexity, i.e. the average length of communication 
processes that lead to the reaching of the cooperation / 
defection decisions. However this measure gives much less 

clear results, as the length of communication processes drops 
to around the same level (in average) at all considered levels 
of outcome uncertainty. The most likely reason for this is that 
the language is very simple and has very few communication 
symbols. Consequently, there is little variation that could exist 
in terms of communication process length between surviving 
agent communities ‘living’ in environments characterized by 
different outcome uncertainty. The language use variation 
based measure (the cx measure defined above) appears to be 
more sensitive to detect differences in language complexity 
between agent communities dealing with different levels of 
uncertainty. 
 The principial reason behind the observation of the lower 
language complexity in agent communities dealing with more 
outcome uncertainty is that lower language complexity adds 
less to the uncertainty of the world than higher language 
complexity, and consequently the lower language complexity 
is preferred in more uncertain environments. In practical 
terms, analyzing the evolution of simulated agent populations, 
we note that an important aspect is that surviving offspring of 
successful agents are clustered at the time of their creation. 
Having very similar language facilitates their continual 
success, especially if they inherited sufficiently cooperative 
inclinations from their parent. A more uncertain environment 
means stronger selection for successful individuals with 
relatively high cooperative inclination, which means that 
clusters of related agents have increased selection advantage 
in such environments. This is likely to contribute significantly 
to the reduction in the variability of the language usage that 
we adopted as a complexity measure of the language.  
 The presented results are about agent-based simulations. 
They confirm our expectation about the relationship between 
outcome uncertainty and language complexity and provide 
some explanation about why this is the case. However, to fully 
confirm our theoretical expectation about the effect of 
uncertainty on language complexity ideally we would need to 
consider real-world data. While it is not easy to find or collect 
relevant real-world data, we note that measurements of 
language diversity in naturally more and less uncertain areas 
of Africa (semi-desert in Northern Nigeria and rainforest in 
Burkina Faso) indicate that natural experimental confirmation 
of the presented results may be within reach (Nettle 1998; 
Nettle 1996). Nettle (1996, 1998) has shown that in the more 
arid and hostile semi-desert are the number of languages is 
much smaller than in comparable much less uncertain (in 
terms of availability of food) areas of rainforest. This appears 
to be in good agreement with our expectation and simulation 
results. 
 Measuring complexity of natural languages is not very 
obvious. We considered in this paper two measures and have 
shown that the one based on variability of language use seems 
to be more sensitive to measure complexity differences 
between agent languages. Applying similar measures to 
natural languages may lead to robust measures of language 
complexity. Our results indicate that language complexity is 
likely to be linked to the level of cooperativeness within a 
community. Consequently, analysis of complexity of language 
used for example in companies may help the understanding of 
the potential of the analyzed organization to deal with their 
experienced uncertain environment and to harness 
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organizational resources that can be mobilized through 
cooperation. 
 Finally, we underline that our analysis and simulation is 
focused on the lexical complexity of the language used to 
inform about intentions (i.e. complexity in the sense of the 
variability of use of lexical components – communication 
symbols in the context of the simulations).  We did not 
consider grammatical complexity (i.e. the number and 
combinatorial variability of rules), as in our case the number 
of rules is always fixed. A more extensive analysis of 
language complexity and more complicated simulation would 
be needed to consider aspects of grammatical complexity. We 
expect that losses suffered in terms of lexical complexity, 
imposed by the necessity of dealing with an uncertain 
environment, are compensated by increased complexity at the 
level of grammar in the longer run. The reason of this is that 
having more complex grammar increases the computational 
capacity of the language which may be beneficial in a more 
uncertain environment. This increase in grammatical 
complexity is supported by the decrease in lexical complexity 
in the sense that less ambiguity in the lexicon reduces the 
likelihood of inappropriate application of grammatical rules. 
The investigation of this conjecture is not the subject of this 
paper. 

Conclusions 
We have shown in this paper that higher outcome uncertainty 
implies lower level of language complexity in the context of 
agent-based simulations of social interactions conceptualized 
as playing iterated Prisoner’s Dilemma games. The 
complexity of the language was measured in terms of 
variability of the use of the language, and in particular in 
terms of variability of ‘meanings’ of lexical units of the 
language.  
Considering that we modeled repeated social interactions 
through the iterated game playing, our result implies that in 
the case of social situations with high outcome uncertainty we 
expect a reduction in complexity of the language usage. More 
specifically, we expect a reduction in the range of 
possible/acceptable ways of usage (‘meanings’) of words, and 
possibly also an effective reduction of the size of the lexicon 
of used words. This matches well with the anecdotal evidence 
about very high outcome uncertainty environments like a 
surgical theatre or an army. 
Data about variability of languages over larger geographical 
territories also suggests that our finding about the link 
between uncertainty induced by the environment and the 
(lexical) complexity of the language used by humans to live in 
these geographical areas is valid. Of course, this needs to be 
checked further and confirmed numerically on the basis of the 
data. 
Our result indicates that environment induced uncertainty 
(represented as outcome uncertainty in our agent-based 
simulation study) plays an important role in the evolution of 
languages. This uncertainty implies complexity constraints on 
the language, which limit the lexical variability of the 
language. Such constraints may explain simplification of a 
language used in high uncertainty context and may also 
explain the variability of human languages in geographical 

areas characterized by high or low uncertainty implied by 
available resources (e.g. food, shelter, etc.). 
Our analysis did not extend to cover the grammatical 
complexity of languages. This would need more complicated 
simulations allowing the change of the grammar (and symbol 
set of the lexicon) of the language used by agents. However, 
we conjecture that less lexical complexity may be 
compensated by more grammatical complexity in languages 
used in more uncertain environments. 
Finally, our investigation of the link between outcome 
uncertainty and language complexity shows that the approach 
to measure language complexity as the average length of 
communication processes may not be sensitive enough to 
measure the effects of environment induced uncertainty. The 
proposed and used complexity measure which measures the 
variability of the usage of lexical elements is a more 
appropriate measure for this task, and possibly it is generally a 
more appropriate measure to measure lexical complexity of 
natural languages. 
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