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Abstract

Measures of complexity are of immediate interest for the field
of autonomous robots both as a means to classify the behav-
ior and as an objective function for the autonomous devel-
opment of robot behavior. In the present paper we consider
predictive information in sensor space as a measure for the
behavioral complexity of a chain of two-wheel robots which
are passively coupled and controlled by a closed-loop reac-
tive controller for each of the individual robots. The predic-
tive information, the mutual information between the past and
the future of a time series, is approximated by restricting the
time horizons to a single time step. This is exact for Marko-
vian systems but seems to work well also for our robotic sys-
tem which is strongly non-Markovian.When in a maze with
many obstacles, the approximated predictive information of
the sensor values of an individual robot is found to have a
clear maximum for a controller which realizes the sponta-
neous cooperation of the robots in the chain so that large areas
of the maze can be visited.

Introduction
Despite much progress in biologically inspired robotics, bi-
ological systems are still singled out by a high degree of
self-actualisation. This phenomenon is approached by the
scientific community on different levels. Concepts like
autopoiesis (Maturana and Varela, 1980) try to provide a
general theoretical framework for the phenomena of self-
creation and self-maintenance of living beings. On the other
hand, concrete modes of action are formulated by mecha-
nisms like homeostasis as a general theory of self-regulation
(Ashby, 1954). It is widely believed that the integration of
self-phenomena into artificial beings would not only lead to
a better understanding of living beings but also to robots
with internal motivation, curiosity, the self-exploration of
bodily and environmental affordances, and quite generally
to creative behaviors.

There are many different approaches towards the self-
actualisation of behavior in autonomous robots. Relevant
for this paper is the attitude that behavior is less a sequence
of actions in order to reach a prespecified goal but instead a
means for (i) structuring the input information (creating sta-
tistical correlations) the robot gathers with its sensors (Lun-

garella and Sporns, 2005); (ii) the maximization of the infor-
mation flow in the sensorimotor loop (empowerment) (Klyu-
bin et al., 2007); (iii) the maximization of the sensorimotor
coordination (Lungarella and Sporns, 2006), and others. The
main question is how this can be realized. There are interest-
ing approaches of realizing systems on the basis of concrete
modes of action like homeostasis, see for instance (di Paolo,
2003), but a more systematic way is by convenient measures
for the information contained in or the complexity of the
sensor stream. Of methodological interest are approaches
of formulating general measures for the realisation of self-
organisation (Shalizi et al., 2004).

This paper tries to further develop this direction in a con-
crete embodied robotic system. In order to further system-
atize the field we introduce the notion of self-referential
robotic systems – adaptive, embodied systems where the ob-
jective of adaptation is a function of the robot’s sensor val-
ues alone. In particular, there is no domain specific goal or
externally specified aim formulated into this function. We
favor predictive information measuring the complexity in
sensor space as such an objective function. The predictive
information of a process quantifies the total information of
past experience that can be used for predicting future events.
Technically, it is defined as the mutual information between
the future and the past (Bialek et al., 2001). It has been ar-
gued that predictive information, also termed excess entropy
(Crutchfield and Young, 1989) and effective measure com-
plexity (Grassberger, 1986), is the most natural complexity
measure for time series. The behaviors emerging from max-
imizing the PI are qualified by the fact that predictive in-
formation is high if – by its behavior – the robot manages
to produce a stream of sensor values with high information
content under the constraint that the consequences of the ac-
tions of the robot remain still predictable. This is why we
favor predictive information as an objective function.

Under this paradigm, behaviors are entirely contingent,
depending on the physical embodiment of the robot and the
starting and environmental conditions. From the point of
view of applications, the question of central interest is what
kind of behaviors may be expected to arise with a given em-
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bodiment and as a next step whether these behaviors are of
any interest as behavioral primitives for the construction of
higher-level goal-oriented strategies. It is in the nature of the
question that there is not a unique answer but we are con-
vinced that a certain systematics can be found at the level
of phenomena. This paper considers the case of a chain of
passively coupled two-wheel robots, each robot being con-
trolled independently by a simple neural network under the
closed-loop control paradigm. There is no central control
so that a coherent motion of the chain is an emerging phe-
nomenon based on a synchronisation of the wheels of the
individual robots, the task being aggravated by the fact that
the robots are moving in a maze with only narrow passages
between obstacles. Nevertheless, we show that the predic-
tive information of a single sensor value (the wheel velocity)
of an individual robot is in close relationship to the ability
of the chain to spontaneously self-organize into a coherent
mode. In this mode, the chain may successfully navigate in
the maze. This result extends the earlier finding (Ay et al.,
2008) that the maximum MI in the sensor channels defines a
working regime where the controller reacts in a specific way
to the sensor values.

Our approach relates to other approaches of using statisti-
cal measures for robotics, a good introduction is (Lungarella
et al., 2005) where a set of univariate and multivariate statis-
tical measures are used in order to quantify the information
structure in sensory and motor channels, see also (Klyubin
et al., 2007) and (Klyubin et al., 2005). In particular we
consider the predictive information as a prospective tool for
concepts like internal motivation. Potential applications of
this approach are expected in developmental robotics which
has found some interest recently (Lungarella et al., 2003).
There is a close relationship to the attempts of guiding au-
tonomous learning by internal reinforcement signals (Stout
et al., 2005) and to task independent learning (Oudeyer et al.,
2005), (Schmidhuber, 2005), (Still, 2007). Quite generally,
using a complexity measure as the objective function for the
development of a robot corresponds to giving the robot an
internal, task independent motivation for the development
of its behavior.

The robot
In the present paper we are considering a chain of pas-
sively coupled two-wheel robots, Fig. 1, simulated in the
lpzrobots simulation tool (Martius and Der, 2007) based on
the physics engine ODE (Smith, 2005), which simulates in
a realistic way effects due to the inertia of the robot, slip and
friction the effects of the wheels with the ground and the
effects of both the couplings and collisions. Each individ-
ual robot has a controller consisting of two neurons with the
vector x ∈ R2 of the measured wheel rotation velocities as
input and the vector y ∈ R2 of nominal motor activities as
output, i.e.

yi = g (Ci1x1 + Ci2x2) (1)

Figure 1: In the arena the chain of passively coupled two-
wheel robots is simulated in the lpzrobots simulation tool.
Each robot is ”blind” and feels the environment only by the
reactions of its wheel counters on collissions with the obsta-
cles.

where g (z) = tanh z, the controller matrix C defining the
behavior of the system. In the present paper we want to de-
termine empirically the predictive information over the con-
troller parameters Cij which parameterize the behavior of
the robot.

The sensorimotor loop
If the wheels are moving freely we may assume that the
nominal velocity y and the measured true velocity x are
equal. In a realistic situation there will be perturbations so
that we write the sensorimotor dynamics

xt+1 = yt + ξt+1 (2)

where xt = (xt1, xt2)
T ∈ R2 and ξ contains all the effects

due to friction, slip, inertia and so on which make the re-
sponse of the robot to its controls uncertain. In particular, if
the robot hits an obstacle, the wheels may get totally or par-
tially blocked so that in this case ξ may be large, possibly
fluctuating with a large amplitude if the wheels are not to-
tally blocked. Moreover ξ will also reveal whether the robot
hits a movable or a static object. Additional strong effects
result from the couplings between the robots which exert
strong forces if the robots are not in complete synchrony.

In order to discuss the nature of the spontaneous cooper-
ation phenomena observed we consider the trivial (but rel-
evant, see below) case of a diagonal matrix C with C11 =
C22 = c so that the sensorimotor loop of each wheel is de-
scribed by the one-dimensional system (xt ∈ R1)

xt+1 = g (cxt) + ξt+1
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the properties of which are obtained by analysing the fixed
points obtained from

x = g (cx)

As discussed in earlier papers (Ay et al., 2008), the system
has one stable FP for 0 < c < 1 which becomes unsta-
ble at the bifurcation point c = 1 so that for c > 1 we
have a bistable system with FPs x = ±q with q increas-
ing for increasing c. The noise causes fluctuations around
the FPs with occasional switching of the FPs, the proba-
bility of switching decreasing exponentially with increasing
c > 1. There is however a subtlety in the fact that, under the
noise, the bifurcation is effectively taking place only at the
so called effective bifurcation point which is at c = 1 + δ
with 0 < δ " 1 and δ increasing with the noise. This re-
gion is of particular interest since it is there that the wheel
velocities are already quite large but can easily be switched
by noise events caused for instance by collisions with ob-
stacles or by the influence of the forces exerted by the other
robots in the chain. In fact, due to the effect described, the
wheel velocity will feel a tendency to switch sign if a torque
in the opposite direction is exerted on it by the other robots
in the chain. By switching the velocity, the wheel is now
acting in the direction of the force exerted on it and this is
the self-amplification effect necessary for the occurrence of
self-organization.

The videos at (Martius and Der, 2007) demonstrate quite
clearly the strength of this self-organized synchronization
effect which not only makes the robot chain move into one
direction but also keeps it still explorative in the sense that
after some time it also inverts its direction of motion. More-
over, when colliding with a wall the chain of robots often
will change velocity in an integrated manner. Finally and
most importantly for the topic of the present paper, it will
also effectively explore the spatial extensions of a maze the
chain is put into.

Information theoretic measures
The central aim of this paper is the relation between the in-
ternal world of the robot, based on a complexity measure of
its sensor values, and its relation to the external world. As
motivated above, a convenient complexity measure is pre-
dictive information in sensor space, i.e. we consider the time
series S = {Xt|t = 0, 1, 2, . . .} of the sensor values of the
behaving robot.

Predictive information
The predictive information is the mutual information be-
tween the future and the past, relative to some instant of time
t, of the time series S

I (Xpast;Xfuture) =
〈

log2
p (Xpast, Xfuture)

p (Xpast) p (Xfuture)

〉

where the averaging is over the joint probability
p (Xpast, Xfuture), time horizons of both past and fu-
ture extending to infinity. This expression simplifies
considerably if X is a Gauss-Markov process, see (Ay
et al., 2008). In this case the time horizon can be restricted
to just a single step so that the PI is given by the mutual
information (MI) between two successive time steps, i.e.

I (Xpast;Xfuture) =
〈

log2
p (Xt−1, Xt)

p (Xt−1) p (Xt)

〉
(3)

which simplifies the sampling process considerably. More-
over, in the experiments we observed that it is sufficient to
study the MI of just a single sensor, one of the wheel coun-
ters of an individual robot, and still get the full information
on the behavior of the robot chain.

Of course our time series of sensor values is far from be-
ing a Gauss-Markov process. However, as shown in (Ay
et al., 2008) in specific cases the full PI can very well be ap-
proximated by that of a process with white Gaussian noise of
conveniently chosen strength. The reason for this agreement
probably is in the fact that both in linear and in weak noise
nonlinear dynamical systems the PI does not depend on the
noise at all. The PI however was found to depend very sen-
sitively on the parameters of the controller which define the
behavior of the robot.

This result is very important for the practical use of the PI.
In fact, it tells us that in many cases the actually infinite time
horizons may be restricted to just a few steps without losing
much of the information on the behavior of the system as a
function of the controller parameter.

The self-referential robotic system
The PI is given in terms of the sensor values the robot pro-
duce in the course of time alone. There is no domain spe-
cific knowledge invoked into this function. We obtain a self
referential robotic system when using the PI as the objec-
tive function for the adaptation of the parameters of the con-
troller. In particular we may consider the gradient ascent on
the MI as given by eq. 3

∆mt = ε
∂I (Xt;Xt−1)

∂mt

where m is any parameter of the controller of the robot. The
properties of the self-referential robotic system depends also
on the choice of the learning rate ε which actually has to be
chosen small enough so that the time scales are well sepa-
rated.

The learning rule has been substantiated earlier (Ay et al.,
2008) for the case of a simple sensorimotor loop and was
shown to reduce to a simple synaptic dynamics consisting
of a general driving term plus an anti-Hebbian learning term.
The example shows that the sampling problem with the PI
can be partially avoided and the gradient obtained explicitly
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if convenient approximations are made. We do, however, not
aim to derive concrete learning rules in this paper but instead
try to further elucidate the role of the PI with restricted time
horizons.

The experiment
In order to keep the sampling effort manageable we use,
based on symmetry arguments, two different parametriza-
tions of the matrix C chosen such that there are only two
parameters to be varied. The experiments have been carried
through on a LINUX cluster of the Max Planck Institute for
the Mathematics in the Sciences with about 100 nodes and
have been run for 500, 000 time steps each. Results are av-
erages over three runs for each pair of parameter values, see
below.

Symmetric cross channel couplings
The first parametrization of the matrix C is given by

C =
(

c b
b c

)
(4)

We may extend the FP analysis of a single robot given above
to the present case by assuming that the wheel velocities are
x1 = x2 = v (straight on motion) or x1 = −x2 = v (on-site
rotation) so that the FP is now obtained from the solution of

v = g (rv)

where r = c + b or r = c − b plays now the role of the
feed-back strength in the loop for the straight or rotational
motion, respectively. Obviously, with b > 0 we find that in
the bifurcated region (r > 1) FPs are more stable for the
straight on motion whereas with b < 0 the rotational motion
is favored.

The central questions of our investigation is the behavior
of the MI as a function of the behavior parameters of the
robot and its relation to the behavior in physical space. Our
robot chain has complicated physical properties, the videos
might give an impression of the range of behavioral possi-
bilities. When in the maze, the information transmission be-
tween the individual robots, which takes place by the phys-
ical forces transmitted via the passive coupling elements in
a rather intricate way, is further corrupted by the collisions
of the robots with the obstacles and the bumpers of adjacent
robots in the chain, see the videos. Nevertheless, we observe
for certain parameter combinations of the controller that the
robot chain covers a wide area of the maze which is a clear
indication of successful cooperation between the individual
robots.

Figure 2 shows the MI as a landscape over the parameters
c and b of the controller. We find a clear ridge structure the
ridge running along the curves given by

c + |b| ≈ 1.1

which means that the MI has a relative maximum close to
the effective bifurcation point (now realized in the coupled
system) be it either in the rotational (b < 0) or straight on
(b > 0) mode. The rotation mode seems a little surprising
at this point since in the chain the individual robot can not
rotate. Most probably this is explained by the fact that we
evaluated the MI for the first robot in the chain, which would
execute an oscillatory motion by switching between the two
rotational modes repeatedly. In further experiments we will
evaluate the MI for the inner robots as well. The landscape
moreover displays a clear local maximum which is at b = 0
and c ≈ 1.1 meaning that the two channels are decoupled
so that the best cooperation in the chain is if each wheel
is controlled individually such that its single channel MI is
maximal. This is also a little surprising since one would have
expected that cooperation in the chain is best if the straight
on motion is supported.

Figure 2: Th average mutual information of the sensor value
for the case of symmetric cross channel couplings where c =
C11 = C22 and b = C12 = C21.

The diversity of sites visited by the robot in the course of a
fixed time is measured by the entropy of the probability dis-
tribution over the sites. As seen from Fig. 3, the landscape
is very similar to the that of the MI. We have the absolute
maximum at the same position so that the main message of
the MI (individual control of the wheels) is corroborated.
However there are also differences. On the one hand we see
that the ridge corresponding to a preferred rotational motion
(c < 0) is not so high as the one for the straight on motion.
Moreover we find that there is a second clear maximum at
around c = 0 and b = 1.1 corresponding to the case that
the direct coupling is zero so that the control of the wheel
is completely based on the angular velocity of the opposite
wheel. The MI seems to have also a small local maximum in
this region but this needs corroboration by a better statistics.
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Figure 3: The entropy of the probability distribution over the
sites that could be visited by the chain of robots in the maze.
The entropy is over the parameters c and b of the couplings
in and across channels. The entropy is maximal if all sites
are visited by the chain with equal probability and is zero if
the robot remains in its starting position.

Nevertheless there is a strong correlation between the MI
in sensor space and the behavior of the robot as measured in
physical space. This has an even stronger implications than
in the single robot case considered in (Ay et al., 2008). Not-
ing that the MI is taken by considering just one of the sensor
values (wheel velocities) of an individual robot (the first one
in the chain) we may conclude that the adaptation according
to the maximum MI principle makes the robot capable of
effectively cooperating in a collective of robots without any
central control.

Antisymmetric cross channel couplings
Our second parametrization is taken as

C =
(

c −b
b c

)
= α

(
cos φ − sinφ
sinφ cos φ

)

which is known to support a Neimark-Sacker bifurcation if α
exceeds 1 into an oscillatory regime (Pasemann et al., 2003),
with frequency roughly given by f ∼ φ/2π. The landscape
of the MI and the spatial entropy now are even more similar
(although the ridge of the spatial entropy landscape is more
pronounced) so that we depict only that of the MI. We see
again the maximum of the single channel control (α = 1.1,
φ = 0 ) as observed above. However, surprisingly there
is clear second maximum at α ≈ 2.35 which corresponds
to a very strong direct coupling combined with a very high
frequency of about 3 Hz of the oscillations of the wheel ve-
locities. This maximum is clearly seen for the MI and is
even more pronounced for the entropy of the spatial distribu-
tion. In order to understand the phenomenon that the chain

well manages to navigate in the maze with the strategy of
rapidly (but still sensitively since under the closed loop con-
trol paradigm) switching wheel velocities we have to note
that in our simulations we use values for the friction and
slip parameters corresponding to a snow underground. This
setting was chosen with the intention that emerging cooper-
ation is possible best for a chain of sensitive ”drivers”. The
strange high frequency regime is counterintuitive to this ar-
gument. Possibly this strategy is useful since it may excite a
kind of navigation by controlled skidding but this will need
further investigations.

Figure 4: The MI for the case of the antisymmetric cross
channel coupling. The landscape is only for positive
φ because of the symmetry against sign inversion of φ.
There are two local maxima of about the same height at
(α = 1.1, φ = 0) and (α = 2.35, φ = .35).

The decisive point however is that obviously under the
present parametrization the MI singles out specific nontrivial
behavior modes which unexpectedly represent an effective
control strategy. This is one further hint for the usefulness
of the predictive information as a general tool for the self-
organisation of behavior.

Concluding remarks
This paper has investigated the usefulness of predictive in-
formation for the self-organisation of behaviour in a chain of
passively coupled robots. Predictive information has been
approximated by the mutual information of sensor values
over one time step which is much better accessible in real
systems. Despite of this drastic simplification, we have
shown that the maximum of the MI specifies a working
regime of the single robot where it can effectively cooperate
in the chain under difficult environmental conditions. Thus,
the predictive information of even a single sensor channel
is seen to be a far reaching indicator of the global behavior
in physical space. In other words it is a link between the
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internal world of the robot (sensor space) and the behavior
in the external world which is maximum if the behavior of
the robot is ”rich” but with a high degree of self-established
sensorimotor coordination.

This concept will be continued in further work where we
will in particular investigate in how far the extension of the
time horizon, in particular into the past, will give measures
which are more discriminative. For instance, we want to
understand if such a more extended measure is able of dis-
criminating between the two control modes of preferentially
straight or rotational modes which are different in their spa-
tial behavior but not so much in the MI. The present results
clearly support the point of view that the link between the
information measure in sensor channels and the behavior of
the robot is of a more fundamental nature, as claimed for in-
stance in (Lungarella and Sporns, 2006). This suggests, as a
possible application, the use of the PI as an auxiliary fitness
function in artificial evolution which helps driving agents
into working regimes with high prospectives for emerging
functionalities. This will be one of our future projects.

Another focus is on the relation of the PI to another
complexity measure, the so called time loop error, and
the principle of homeokinesis (Der and Liebscher, 2002),
(Der et al., 1999), (Der, 2001), which has been the basis
for concrete learning rules leading to the self-organization
of explorative behaviors in complex robots with many
degrees of freedom in dynamic, unstructured environ-
ments, see (Der et al., 2006), (Der and Martius, 2006),
(Der et al., 2005) and the videos on http://robot.
informatik.uni-leipzig.de/. We hope in the near
future to produce similar results on the basis of information
theoretic measures. Preliminary results indicate that the gra-
dients of the time loop error and the mutual information can
be related to each other by a change in the metric of the pa-
rameter space.
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