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Abstract

We present a case of a genotype-phenotype map, that when
evolved in variable environments optimizes its genetic rep-
resentation to structure phenotypic variability properties, al-
lowing rapid adaptation to novel environments. How genetic
representations evolved is a relatively neglected topic in evo-
lutionary theory. Furthermore, the “black art” of genetic algo-
rithms depends on the practitioner to choose a representation
that captures problem structure. Nature has achieved remark-
ably efficient heuristic search mechanisms without top-down
design. We propose that an important example of this, ubiq-
uitous in biology is the structuring of the phenotypic variabil-
ity properties of gene networks. By studying a simple model
of gene networks in which topology is a function of interac-
tions between transcription factor proteins and transcription
factor binding sites (TFBS), we show that transcription factor
binding matrices (TFBM) evolve to positively constrain phe-
notypic variability in response to transcription factor binding
sequence mutations.

Introduction
Where there is redundancy in the genotype to phenotype
map, there is neutrality. For a given phenotype, if the distri-
bution of phenotypes accessible by one-mutant neighbours
differs depending on the particular genotype that encodes the
initial phenotype, then there is non-trivial neutrality (Tous-
saint, 2003), meaning that there is variation in the pheno-
typic exploration distribution. Toussaint has shown that se-
lection can act on the effective fitness of exploration distri-
butions (i.e. the quasispecies fitness), and claims that this
is the mechanism for the evolution of evolvability (Wagner
and Altenberg, 1996). Evolvability is the capacity to rapidly
adapt to novel environments by natural selection.

Add to this that the environment of the offspring differs
from the environment of the parent, due to mutation and ex-
ternal variations, e.g. bacteria may sometimes be in the gut,
and at other times outside the host (Ciliberti et al., 2007).
Co-evolution is the norm, rather than the exception, meaning
that the phenotype required for ‘optimum’ fitness is always
changing, i.e. the fitness landscape fluctuates. We show that
a fluctuating fitness landscape selects for exploration distri-
butions with greater evolvability.

What mechanisms are capable of “biasing the kind and
amount of phenotypic variation produced in response to ran-
dom mutation, such that more favourable and non-lethal
kinds of variation are available on which natural selection
can act” (Kirchner and Gerhart, 1998). We demonstrate that
a ubiquitous developmental mechanism, the formation of
gene networks based on TFBM-TFBS interactions, has the
capacity to allow heredity of exploration distribution vari-
ants in gene network topology space, and that this is likely
to be the case in real gene networks.

A notable limitation of evolutionary algorithms is that
the variational machinery is not self-referentially encoded1,
whereas in embodied evolution (because of the necessity
of a developmental decoding of the genotype to produce
the phenotype) the genetic representation (Toussaint, 2003),
or genotype-phenotype map (Wagner and Altenberg, 1996),
can maintain variants in the exploration distribution that can
be acted upon by positive selection. Reisinger and Miikku-
lainen (2007) claim to have developed an indirect encoding
for a neural network capable of structuring the genotype-
phenotype map, to speed up the evolution of Nothello
players. Other compact and indirect encodings of neural
networks are effective in some specific problem domains
(Gruau et al., 1996) , (Hornby and Pollack, 2002). Un-
derstanding the principles of network evolvability in natural
systems is an important goal.

Defining Evolvability and Robustness
Several definitions of evolvability and robustness exist in the
literature. We define evolvability as an ordering of the rate
of evolution, between individuals of equal fitness, when ex-
posed to directed selection from a starting point, S, to an
end point, F , in phenotype space, where S is not equal to F .
One could say that an individual A is more evolvable than
individual B (from S to F ) if the best offspring of A is on
average fitter than the best offspring of B (Turney, 1987).
Another quantitative measure of the evolvability of a varia-
tional system is the probability that an offspring has fitness

1Self-referential encoding refers to a genotype-phenotype map
that is capable of non-trivial neutrality.
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greater than the parent (Barnett, 2003). Given a probability
density function of offspring fitnesses from a single parent,
the evolvability of that parent is the fraction of offspring fit-
ter than itself (Smith et al., 2002; Altenberg, 1994a)2. Note
that with these definitions we can only unbiasedly compare
evolvability between individuals of the same fitness. Also,
there is no such thing as evolvability when S = F , since
there is no directed selection, and so one cannot measure
a rate of evolution. On the other hand, in the case where
S = F , robustness is defined. It is a measure of the capacity
of phenotypes to remain unchanged, given stabilizing selec-
tion. Evolvability and robustness are measures of evolution-
ary behaviour. They are emergent properties of exploration
distributions (McGregor and Fernando, 2005).

Evolvability Sustaining Mechanisms
Kirchner and Gerhart (1998) have described various mech-
anisms that increase the probability that an offspring, vary-
ing within certain bounds, will be viable. One important
class of these is exploration and exploitation mechanisms.
For example, the immune system adapts to evolutionarily
novel antigens by implementing somatic selection. Micro-
tubules control and manipulate cell organelles and chromo-
somes, independently of the number and location of these
items, thus allowing variation in these items to be viable,
with respect to mitosis for example. Pathfinding by axonal
growth cones allows neural structures to evolve, and still be
viable (Kirchner and Gerhart, 1998). These search mecha-
nisms allow robustness as well as evolvability (Wagner and
Altenberg, 1996).

Another mechanism that confers evolvability and robust-
ness is weak interaction. Kirchner and Gerhart (1998) con-
trast the complex transcription regulation of eukaryotes with
the simple regulation of prokaryotes. Eukaryotes have com-
plex cis-regulatory regions whereas prokaryotes do not. Eu-
karyotes have enhancer-binding proteins with limited affin-
ity and low sequence specificity for enhancer sites. Their
binding affinities may also be contingent on other proteins
(non-independent site affinities). This property is called
weak-linkage. Several authors have considered the role of
weak interactions. It has been hypothesised that weak in-
teractions confer evolvability (Conrad, 1990), and robust-
ness (Volkert and Conrad, 1998). For example, Kirchner
and Gerhart (1998) claim that Calmodulin is a versatile in-
hibitor, meaning that with few mutational steps it can bind
to a protein for which it is selected to bind, attributing this to
its “low sequence requirements” for binding to targets, that
result from its flexibility and stickiness.

The above mechanisms extend the viable range of the ex-
ploration distribution, rather than constraining its direction-

2There are many other definitions of evolvability with differ-
ent emphasis, e.g. “evolvability is the ability of the genetic sys-
tem to produce and maintain potentially adaptive genetic vari-
ants” (Hansen, 2006).

ality as emphasized in (Arthur, 2004). The exploration dis-
tribution can also make sense of another class of mecha-
nism prevalent in bacteria. These are the mechanisms that
maintain genotypic diversity in the population, increasing
the chance that at least some of the existing variants will be
pre-adapted to the new environment. This is a kind of bet-
hedging. Typically, E. coli isolated from populations in the
wild contain a small proportion with a 100 fold increased
mutation rate due to inactivation of an error correcting en-
zyme (Matic et al., 1997). This proportion is much greater
than expected in the absence of selection (Tenaillon et al.,
2001). The full gamut of genetic and epigenetic devices for
structuring variation (in terms of rate, site and inducibility)
is discussed in (Rando and Verstrepen, 2007). Remarkably,
Kussell and Leibler (2005) have shown that where the cost of
maintaining diversity is less than the cost of sensing the en-
vironment, stochastic switching is selected over more com-
plex sensing and response mechanisms. This is often the
case in bacteria. The exploration distribution is skewed by
such processes.

There are clear examples of highly conserved core pro-
cesses that have optimized exploration distributions. Ac-
cording to a model by Zhu and Freeland (2006) the genetic
code is optimized to allow the rapid adaptive evolution of
proteins. Using a simple model of a sequence-to-protein-
structure map, they mutated the sequence thus altering the
structure. They used a genetic algorithm to re-evolve the
original structure and found that with the existing genetic
code, the structure could re-evolve much faster than if a ran-
domly chosen code was used. Protein stability has also been
argued to be an adaptation for evolvability. Bloom et al.
(2006) showed using a lattice protein model that “extra sta-
bility is neutral with respect to selection for protein function,
but it can be crucial in allowing a protein to tolerate [desta-
bilizing] mutations that confer beneficial phenotypes”. That
is, a protein with more stability was able to evolve to a new
desired function faster.

Modularity of various forms appears to underlie many
kinds of evolvability (Wagner and Altenberg, 1996; Force
et al., 2005; Lipson et al., 2002), since adaptation to en-
vironment A can be carried out without interfering with
adaptation to environment B. At the cellular level, there
may exist exotic exploration distribution structuring mech-
anisms that remain mysterious. For example, the pattern of
gene expression in the lifetime of a paramecium influences
which genes are passed to its offspring in a very complicated
way (Prescott and Rozenberg, 2002).

Cognition is the cherry on the cake of exploration dis-
tribution structuring systems. The effectiveness of lifetime
variation generation mechanisms tends to increase over evo-
lutionary time, with solutions being transmitted across gen-
erations in novel ways. Many aspects of cultural inheritance,
permitted by human thought and language, are adaptations
that allow rapid adaptation to novel environments. Cognitive
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mechanisms for generalization such as associative learning
and symbolic reasoning allow us to choose behaviours with
remarkable directedness compared to random search.

The Evolution of Evolvability Sustaining
Mechanisms
How did such mechanisms evolve? Toussaint (2003) de-
scribes that selection pressure could act on effective fitness.
To produce robust encodings Toussaint selects explicitly for
neutral variants, a process that is intended to mimic stabi-
lizing selection. This corresponds to Kirchner and Gerhart
(1998) who say that evolvability is a by-product of selec-
tion for robust development in the face of internal (muta-
tional) and external (environmental) noise. Secondly, adap-
tations for evolvability may have been selected because they
allowed better exploration of new environments by clades.
Hitchhiking of evolvability conferring genes along with ad-
vantageous traits whose appearance they facilitate is one
mechanism that could achieve this (Conrad, 1990). Re-
cently, Earl and Deem (2004) have shown in a model of
protein evolution that the rate of mutation and the “swap-
ping” of protein modules increases in variable environments
to confer greater evolvability. Another proposed mechanism
is constructional selection where selection acts to filter new
loci. Alleles at new loci that have low epistasis are favoured
because they are less likely to be fatal, resulting in modular
genotype-phenotype mappings Altenberg (1994b). Finally,
Kashtan and Alon (2005) have shown that selection in vari-
able environments with modular goals results in the estab-
lishment of an intermediate genotype state that can rapidly
mutate to become optimal in either environment.

We demonstrate that adaptations for evolvability in gene
networks arise due to individual level selection in variable
environments. By using a genetic algorithm to evolve agents
under fixed versus variable environments, we identify how
exploration distributions are restructured by TFBM evolu-
tion, a process that is also expected in natural evolution.

The Construction of Gene Networks
Gene network topology emerges from the interaction of tran-
scription factors (TFs) binding to “degenerate families” of
transcription factor binding sites (TFBSs) that are of 5-25
nucleotides in length, situated on promotors (Moses et al.,
2003). Degenerate refers to the fact that different tran-
scription factor binding sites that bind the same TF protein
may differ in 20-30 percent of bases (Collado-Vides et al.,
1991). In E. coli, promotors are approximately 500 base
pairs long and contain several TFBSs (Berg et al., 2004). A
position-weight matrix (or transcription factor binding ma-
trix, TFBM) represents the binding preferences of a TF. Em-
pirically these can be inferred from genome sequences if
independent evidence of TF binding exists (Stormo, 2000).
The binding energy between a TF and the TFBS can be well
approximated by the sum of independent contributions from

positions in the binding site.
What are the modes of evolution of gene regulatory net-

works? Gelfend (2006) discusses the various approaches to
this question. Many phenotypic differences between species
are attributable to changes in gene expression patterns rather
than changes in structural or metabolic proteins (Tirosh
et al., 2008). How does evolution of the gene regulatory
network take place? Babu et al. (2006) have shown that dif-
ferent species of bacteria have evolved new transcription fac-
tor proteins by duplication, divergence and sometimes sub-
sequent loss of transcription factors. Wagner et al. (2007)
have shown that transcription factor binding site abundance
is under selection, and varies considerably between species.

Topological changes of real gene networks also occur
on very short evolutionary timescales, especially in higher
eukaryotes (Stone and Wray, 2001). In contrast to gain
and loss of transcription factor proteins, these changes are
caused by mutations in promotors that produce novel tran-
scription factor binding sites.

At an even finer grain, Moses et al. (2003) have shown
that within a transcription factor binding site (TFBS), some
nucleotide positions show greater variation than other nu-
cleotide positions, between related species and within the
same genome. There is evidence that the more degenerate
positions (i.e. those with lower information content) in the
TFBM are those where the TF does not make much contact
with the DNA, i.e. where the total stabilization energy in
that column of the TFBM is low (Mirny and Gelfand, 2002).

We simulate gene network evolution to investigate under
what conditions TFBMs evolve to improve evolvability.

Methods
Our gene network model considers N interacting units.
Each unit consists of a transcription factor binding site
(TFBS) that produces a transcription factor with a particu-
lar transcription factor binding matrix (TFBM). The interac-
tion between this matrix and the TFBS sequence determines
how a transcription factor will bind to the transcription fac-
tor binding site. All TFBSs have length K nucleotides. At
each position in the TFBS , one of four bases can be present
(A, T, G, or C). The TFBM is of size 4 by K. Each entry
in the matrix contains a real number between 0 and 1. Each
number represents the binding strength contribution of the
nucleotide at that position in the TFBS to the total TF bind-
ing strength upon that TFBS. For simplicity, our TFBM im-
plementation assumes that the contribution of different posi-
tions along the TFBS to the binding strength is independent.

The edges of the gene network graph are directed from the
gene producing the TF to the gene possessing the TFBS. The
strength of each edge is calculated as described above, by
summing independent binding strength contributions from
each position in the TFBS as specified in the TFBM. A low
accumulated strength represents weak binding between that
TFBMi and TFBSj . A larger binding strength represents
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tighter binding. To specify a desired gene network topology,
we define a certain binding strength as required for ‘ideal’
binding. A binding strength greater than this optimum is
considered maladaptive. The biological justification for this
is the implicit assumption that the TF should be sensitive to
modifiers of binding. If it binds to strongly then the protein
that it stimulates might as well have been constitutively ex-
pressed. More precisely, the fitness contribution of one edge
of the gene network corresponds to the inverse of the Eu-
clidean distance between the individual’s topology and the
desired topology, as given by:

f =
1

1 +
√∑

i

∑
j ((sij/λ)− tij)

2
(1)

where sij is the binding strength for connection TFBMi and
TFBSj ; tij is 0 or 1 depending on whether a connection
is desired to be present or absent (respectively); and λ is
the ideal binding strength (λ = 3). If the Euclidean dis-
tance of a topology from an ideal topology X is less than
its Euclidean distance from all other ideal topologies, then
it is classified as topology type X. An ideal topology is one
where the above fitness score is maximized. Note we do
not consider the dynamics of the gene network in generat-
ing its topology, e.g. we assume TFs are always produced
constitutively. Our selection function acts directly on the
non-functional topology of the gene network.

Environments are modeled simply as desired gene net-
work topologies. For example in environment A, individuals
are optimal that have topology Ta. In a different environ-
ment, B, an altogether different topology might be required
to survive, Tb.

The parameters of each gene network (i.e. TFBS and
TFBM for each gene) are evolved using a microbial genetic
algorithm (Harvey, 2001). There are NK discrete and 4NK
real-valued parameters forming the genotype of each indi-
vidual. The winner of a randomly chosen pairwise tourna-
ment replaces some of the loser’s genes with its own. Each
TFBM or TFBS of the loser is replaced by the corresponding
genome parts of the winner with 0.9 probability. The result-
ing genome then undergoes mutation. Each TFBM or TFBS
will mutate with 1/NK probability. On average, one of the
full set of TFBSs changes to a base chosen at random. Muta-
tion in the TFBM is implemented as a random displacement
on every binding strength drawn uniformly from a Gaussian
distribution with mean 0 and variance 0.01. Each strength
in the binding matrix is forced to stay within the range 0 to
1. When a mutation takes it out of this range, it is reflected
back. A generation is defined as P microbial tournaments,
where P is the size of the population. All evolutionary ex-
periments were conducted with populations of 100 individ-
uals. We have not investigated how the findings depend on
the choice of genetic algorithm. The major point to note is
that TFBMs evolve much more slowly that TFBSs.

Several previously defined measures of robustness and
evolvability are considered (Ciliberti et al., 2007; Zhu and
Freeland, 2006). Mutational robustness is the fraction of
one-mutant neighbours of the genome that are also viable.
In this case, viability means that the gene network topol-
ogy resembles the desired topology more closely than all
other topologies (with the same number of genes). This is
a measure of neutrality or redundancy of coding. Topology
connectivity is the number of distinct 1-mutant topologies
reachable from any one topology. High connectivity implies
easy conversion between topologies.

The above properties can be calculated by studying the
individual’s hierarchical metagraph (see Figure 1). In this
graph, a higher level node (large circle) represents a par-
ticular gene network topology (phenotype). Higher level
nodes are connected if by one TFBS mutation, topology A
can become topology B, and vice versa. Within a higher
level node of a metagraph, there is another embedded graph
whose nodes are the genome sequences of TFBSs that can
sustain the particular gene network topology represented by
the higher level node (i.e. sequence nodes). The higher level
node can alternatively be thought of as a labeling of lower
level sequence nodes. We define the connectivity matrix of
a metagraph as the number of one-mutant neighbours con-
necting topology ti to topology tj , over all possible topology
transitions.

It is clear that the hierarchical metagraph will depend crit-
ically on the evolved TFBMs. The TFBMs shape the pheno-
typic effect of a TFBS mutation. We define the connectivity
variance simply as the variance over all values of the con-
nectivity matrix. We use this measure as an index of the
navigability of the metagraph. The measure synthesizes the
system’s mutational robustness and its topological connec-
tivity. Our hypothesis is that evolvability in variable environ-
ments increases as the connectivity variance decreases, im-
proving the navigability of gene network topology space, as
promoter sequence space is explored. Expressed in another
way, we propose that TFBM evolution structures the explo-
ration distribution in phenotype space, by reducing connec-
tivity variance.

Let us illustrate what a hierarchical metagraph is and how
we can measure its navigability. We will use the simplest
gene transcription network: a one-gene network (see Fig-
ure 1). There are only two possible topologies: self-binding
(t1) or non self-binding (t2). Let’s suppose that the length of
the promoter region is 1. Therefore, there are only 4 possi-
ble sequences: A, G, C, or T. The self-binding would depend
on the transcription factor binding strength. There are three
possible scenarios that can arise. In the first scenario, all
possible sequences generate topology t1 and no sequences
result in topology t2. There are 12 (i.e. BNK) ways in
which a sequence can mutate from sequence Si to Sj where
Sj is only one mutation away. In the first case, all of the
mutations are neutral. There are 12 ways of going from t1 to
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Figure 1: Hierarchical metagraph and the notions of its con-
nectivity matrix and connectivity variance in the simplest
possible one-gene regulatory network scenario.

t1, and 0 ways of going from t1 to t2, t2 to t1, t2 to t2. The
connectivity variance is the highest possible, in this case 27.
In the second scenario, there is one sequence that produces
t2. The number of one-neighbour mutants shifts accordingly
and the connectivity variance drops. In the final case, the
connectivity variance is minimal.

From the example illustrated in Figure 1, it should be clear
that the connectivity variance will be lower for more easily
navigable metagraphs. Accordingly, easily navigable meta-
graphs will reduce the time required to adapt to any topol-
ogy, including novel topologies. Connectivity variance is an
index of evolvability in variable environments. We demon-
strate that the properties of the metagraph, as measured by
its connectivity variance, promote evolvability in this selec-
tion scenario.

Results
We first present an experiment where a population of 3-node
gene networks are evolved in two different environments.
The length of each TFBS, K, is 5. In one environment the
target topology is a feedforward loop and in the other en-
vironment it is a feedback loop (see Figure 2A, the differ-
ence is colored red). The evolved sequences and TFBMs
for the best individual are shown in Figures 2B and 2C, re-
spectively. The result is a set of TFBMs such that, with a
total of 3 site mutations (colored red) in each of the relevant
TFBSs, the desired change in topology is achieved. Once
the environmental transitions have been experienced several
times, adaptation occurs without significant changes to the
TFBMs.

Figure 2D shows that the time taken to adapt to a par-
ticular environment decreases over evolutionary time. Each
environment was presented for 1000 generations. While it
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Figure 2: Example evolutionary run with variable environ-
ments for a 3-node GRN. [A] Two topologies evolved for:
feedforward (t1) and feedback loop (t2). [B] Evolved pro-
moter regions for each topology (TFBSs). [C] Evolved set
of TFBMs. [D] Fitness versus Generations. Dashed ver-
tical lines represent changes of environment. [E] Control
experiment with direct encoding of connectivity shows no
evolution of evolvability.

takes the population around 800 generations to adapt to en-
vironment B the first time it is encountered, this time drops
to around 250 generations on the second occasion. From
the third occasion onwards, the adaptation time to environ-
ment B is under 100 generations. The time to adaptation
reaches steady-state after several environmental transitions.
This was also observed for runs using different sized net-
works, lengths, and numbers of environments. For compari-
son, Figure 2E shows that when a direct encoding of the gene
network is used, i.e. a binary connectivity matrix, there is no
improvement in time to adaptation.

For a given size of gene network N , there is a minimum
TFBS length K that is required to evolve perfect fitness in
W distinct environments, see Figure 3 . This is shown in ex-
periments conducted with 2- and 3-node gene networks with
different numbers of variable environments (W ) and differ-
ent lengths of promoter sequences (K). Each data point in
Figure 3 is an average over 100 evolutionary runs. For an N
sized network, 2(N2) different topologies are possible. For
any given experiment, the W different topologies the popu-
lation would be evolved for were chosen at random from all
possible topologies. All experiments ran for the same num-
ber of generations, 160000. The number of generations per
transition is the same for all experiments, 1000. In Figure 3
we show the proportion of populations in which each agent
fully adapts (top) and the time to adaptation (i.e. the time
taken for the best individual in the population to reach 0.95
of optimal fitness) (bottom) as a function of W and K. Each
point in the surface corresponds to the mean over only those
populations where each individual adapted to all W environ-
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Figure 3: Top: The proportion of 100 independent popu-
lations that adapted to all W environments during the last
round of environmental presentations as a function of the
number of environments presented during evolution (W )
and the length of the promoter sequence (K), for N = 2
[A] and N = 3 [B]. Bottom: The mean time to adaptation
of the best individual in the population during the last round
of presentations over all environments as a function of W
and K, for N = 2 [C] and N = 3 [D].

ments. No points are shown in conditions where this was not
the case.

Referring to Figure 3 C, for N = 2 gene networks, TFBS
lengths of K = 3 are capable of evolving to adapt to all 16
possible topologies. With larger Ks, the adaptation time
increases, presumably because the space of possible TFBS
sequences also increases. Thus, finding the appropriate
sequence that creates the desired topology becomes harder.
Interestingly, while the search space becomes larger expo-
nentially with K as given by 4NK , the time to adaption
increases only linearly.

Referring to Figure 3 D ,for 3-node GRNs there is a lower
limit to K below which adaptation to all environments is
not possible. For the minimum, K = 3, populations can
adapt reliably, only to fixed environments W = 1. When
tested in variable environments, gene networks with K = 3
fail to adapt to 0.95 optimal fitness before the environmental
transition at 1000 generations. For K = 4 the situation
is improved. Populations can adapt to up to 8 different
environments. For higher W , the population again starts
failing to adapt in time. For K > 4, the populations can
adapt to varying environments for all W conditions tested.

Does evolution under variable environments increase
evolvability? In order to address this question, we tested the
ability for evolved individuals to rapidly adapt to novel envi-
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Figure 4: Evolvability. Generations (x-axis) versus en-
vironmental variability W . Shades of gray represent the
mean of the best individual’s fitness over 100 independent
evolutionary runs. Black represents poorly adapted popula-
tions. White represents well adapted ones. Four conditions
are shown: smallest (top row) and largest (bottom row) Ks
that evolved successfully under all W conditions tested, for
networks of size 2 (left column) and 3 (right column).

ronments. We seeded a new population with genetic ‘clones’
from the TFBMs of the best evolved individual after 160000
generations. The TFBSs were chosen at random for each
individual in the population. Taking into account the topolo-
gies the original population had previously evolved for, we
set the new population to evolve to achieve a topology it had
not previously been exposed to. Different populations were
seeded with TFBMs evolved under several conditions. For
each condition, the experiment was repeated 100 times.

In Figure 4 (bottom) we show the population’s ability to
evolve to novel environments under two conditions: N = 2,
K = 3 and N = 3, K = 5. For all fixed environment
conditions W = 1, the mean time to adaptation is much
larger than for individuals evolved under variable environ-
ments W > 1. In fact, the ability to rapidly adapt to a novel
environment improves with the number of environments that
the population was previously evolved for. Finally, all of the
conditions show a ceiling effect for sufficiently-varied envi-
ronments, after which the time to adaptation ceases to im-
prove. For comparison, Figure 4 (top) shows that a direct
encoding does not have this property of improved evolvabil-
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the connectivity variance for individual B is lower than the
connectivity variance for individual A.

ity to a novel environment, given a history of evolution with
previously variable environments.

Greater variability of environments experienced during
evolution improves evolvability according to the above mea-
sure. But why are TFBMs evolved for variable environments
more evolvable to new environments than TFBMs optimised
for a fixed environment? While two individual’s TFBMs can
be equally fit for environment Tx, the TFBMs from the in-
dividual that has evolved to change to different topologies
generates a different exploration distribution to the TFBM
evolved in stationary environments.

Figure 5 shows a case where two individuals (A and B)
are equally fit for environment Tx, but with different TF-
BMs. A has evolved in fixed environments while B has
evolved for variable environments. While both solutions are
equally well adapted to produce the feedback loop topology
(i.e. both have fitness of 0.99), the connectivity variance of
the gene network evolved for variable environments (B) is
less than a quarter of the connectivity variance of the gene
network evolved for fixed environments (A). The implica-
tion is that the TFBMs evolved for individual B shape the
TFBS fitness landscape such that all other topologies are
more easily reachable from the present topology. This is
not the case for TFBMs evolved for individual A in a static
environment.

The exploration distribution can be directly visualized in
Figure 6. Individuals evolved in high variability environ-
ments, W = 15, show a more diffuse exploration dis-
tribution to those evolved in low variability environments,
W = 2. Individuals evolved for W = 2 show a tighter ex-
ploration distribution, passing from t1 directly to t2 without
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Figure 6: The exploration distribution for the best individ-
ual (N = 2, K = 3) evolved for a small (W = 2, gray) and
large (W = 15, black) range of environments. The best indi-
vidual evolved for topology one, t1, is mutated 5000 times.
On the x- and y-axes are shown the Euclidean distance of
the resulting mutants to the topologies t1, t2 (top) and t1, t3
(bottom). Both individuals were evolved previously for t1,
t2. However, t3 (a fully connected topology) was evolved
for in either case, i.e. it is novel.

approaching close to other topologies.
Does the connectivity variance always decrease with the

number of environments that the populations are evolved
for? In order to answer this, the connectivity variance was
calculated for all successfully evolved TFBMs for 2- and 3-
node networks (see Figure 7). For the 2-node case, the study
was exhaustive: taking into consideration all possible se-
quence configurations (4(N∗K)) and all possible topologies
(2(N ∗N)). For the 3-node case a sample of 1000 different
sequence configurations was chosen at random.

The connectivity variance drops as a function of W , as
hypothesised (see Figure 7). The connectivity variance re-
sults also explain the evolvability ceiling effect observed in
Figure 4, where after a certain number of variable environ-
ments (W > 5) the ability to rapidly adapt to novel environ-
ments ceases to improve. The connectivity variance reaches
its minimum also for W > 5.

Finally, we can compare the evolution of the connectivity
variance for the two extreme conditions: fixed or variable
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Figure 7: Connectivity variance as a function of variable en-
vironments (W ). Two conditions are shown: [A] for N = 2
and K = 3, and [B] for N = 3 and K = 5. Each point rep-
resents the mean over 100 runs (bars represent the standard
error).

environments. In Figure 8 we show the connectivity vari-
ance calculated from the TFBMs of the best individual in the
population at every generation in four different conditions:
fixed (gray) and variable (black) environments are shown for
2-node [A] and 3-node [B] GRNs. Under all conditions the
populations evolved successfully (not shown). As can be
appreciated in Figure 8, the connectivity variance of pop-
ulations evolving in varying environments tends to evolve
towards lower values (and thus higher evolvability), com-
pared to the connectivity variance of the population evolv-
ing in fixed environments. This demonstrates the evolution
of evolvability under variable environments.

Discussion
We gave an example of the evolution of evolvability in
a system undergoing natural selection in variable environ-
ments. In our model, evolvability arose from the ability of
the TFBM to evolve to shape the exploration distribution
resulting from TFBS mutations. When populations were
evolved in variable environments, the TFBMs allowed im-
proved navigability in TFBS space as described by the con-
nectivity variance measure.

The model lacks many features of real GRNs. In reality,
promotor sequences are much longer than TFBSs, enhancer
proteins modify TF binding, the expression of downstream
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Figure 8: The evolution of evolvability. Connectivity vari-
ance of the best individual in the population over evolution-
ary time. Examples for fixed (gray) and variable (black) en-
vironments are shown for 2-node [A] and 3-node [B] GRNs.

TFs may be dependent on upstream TFs, and fitness depends
on the dynamics of the GRN rather than on its topology
alone. Introducing such features whilst maintaining TFBM-
TFBS interactions is a challenge, and is likely to uncover
further adaptations that could lead to unlimited heredity of
exploration distribution variations.
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