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Abstract

We investigate the correlation between the information theo-
retic measure of empowerment and the graph theoretic mea-
sure of closeness centrality, to better understand the struc-
tural conditions that must exist in a world for learning and
adaptation. We examine both measures in both a simple grid-
world scenario, represented as a graph, and on a scale-free
graph. We show a strong correlation between the two mea-
sures, and discuss the strengths and weaknesses of both. We
go on to show how the local measurement of empowerment
can in many cases predict a measure for the global measure-
ment of closeness centrality.

Motivation
”Nature uses only the longest threads to weave her patterns,
so that each small piece of her fabric reveals the organiza-
tion of the entire tapestry.” - Richard Feynman

Learning and adaptation are central themes to artificial
life, and it is our hypothesis that a better understanding of
the conditions that must exist to make learning, adaptation
and evolution possible will help to guide future research.
It is plausible to assume that an arbitrary or random world
would be extremely difficult, if at all possible, to learn. We
know there is significant structure in the world, and believe
that learning takes advantage of this structure. In this paper
we begin to investigate what conditions, embedded within a
world through some underlying structure, are necessary for
certain types of adaptation problems.

It has been hypothesised that embodied agents receive an
adaptive and evolutionary advantage by optimising their sen-
soric and neural configurations for their environment. Spe-
cific attention has been paid to processing and optimising of
Shannon-type information they receive from their environ-
ment (Attneave, 1954; Barlow, 1959, 2001; Atick, 1992).
Similar work includes the concept of homeokinesis, pro-
posed by Der et al. (1999), where a homeokinetic system,
or agent, learns to improve the predictive capabilities of its
future perceptions.

A specific flavour of this view suggests that such informa-
tional predictive principles could provide organisms/agents

with intrinsic motivation. Examples include that by
Prokopenko et al. (2006), Bialek et al. (2001) and Ay et al.
(2008), which use similar approaches based on excess en-
tropy / predictive information.

In this paper we have chosen to use empowerment (Klyu-
bin et al., 2005b,a), an information theoretic measure for the
efficiency of a perception-action loop. Essentially empow-
erment uses the channel capacity for the external component
of a perception-action loop to identify areas that are advan-
tageous for an agent embodied within an environment.

It assumes situations with a high efficiency of the
perception-action loop should be favoured by an agent.
Based entirely on the sensors and actuators of an agent, em-
powerment intrinsically encapsulates an evolutionary per-
spective; namely that evolution has selected which sensors
and actuators a successful agent should have, which in turn
suggests which states should be visited.

This hypothesis was tested in a variety of different sce-
narios (Klyubin et al., 2005b,a; Capdepuy et al., 2007),
and notwithstanding the quite different scenarios it coin-
cided surprisingly well with an intuitive understanding of
favourable behaviours or of natural solutions to particular
challenges of adaptation. Furthermore, it correlated well
against measures that had been hand crafted to evaluate cer-
tain scenarios.

Notwithstanding the successful performance, we do not
currently have a strong understanding of why this may be.
What are the properties of the world that make empower-
ment such a universal measure? Why should it work at all?
These are the questions we are going to begin to study in this
paper.

Locating Structure
We hypothesise that an agent that optimises its sensorimotor
apparatus improves its ability to detect the underlying struc-
ture of the world, and that this is an important aspect of such
optimisation. We further hypothesise that a better under-
standing of this structure would improve such optimisation,
and thus allow for better adaptation and learning.

To investigate this we set out to start identifying the basic
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properties of the world, and how they are detected by em-
powerment. We selected to go about this by investigating
a representation for an environment that manifests its struc-
ture in an easily observable manner, is well understood, and
has established methods for measuring preferable states.

We chose to represent the state space using graphs, which
fit all these criteria; they are well understood through graph
theory and social network analysis, and they have accessible
methods for identifying certain aspects of their structure. As
a measure to identify preferred states we chose to use cen-
trality, a measure of a node’s importance from graph theory,
which is a well established method (Wasserman and Faust,
1994). There are varying measures for centrality; in this
paper we use closeness centrality, which most closely cor-
responds with the spirit of empowerment.

Most stationary worlds, containing an embodied agent,
can be viewed of as the current state of the world connected
to neighbouring states by the actions the agent would need
to take to arrive at them; this can be modelled as a graph.
This same representation of the world was used by Şimşek
and Barto (2007) in investigating skill development among
agents.

We can now analyse empowerment, and some aspects of
what it captures about the world, by comparing it with cen-
trality measurements in the same scenarios.

Quantifying Preference
Empowerment, a local measure, quantifies the changes that
an embodied agent can make on its environment, and ob-
serve the effects of, in a given time period. Here we reduced
ourselves to a simple representation of the world which is
entirely deterministic, creating a special case for empow-
erment. However, it can work in both entirely determinis-
tic and probabilistic environments, which may even be non-
stationary (Capdepuy et al., 2007).

The closeness centrality of a node in a graph is calculated
by adding the distance of the shortest paths from that node to
every other node in the network, and then inverting this value
so that a shorter total path to all other nodes has a higher
value. To calculate the closeness centrality of a signal node
requires viewing the whole graph; it is a global measure.
Klyubin et al. (2005a) showed an example where a similar
measure, the average shortest distance in a maze, correlated
well with empowerment.

We will examine two scenarios, and will employ both em-
powerment and closeness centrality in each for identifying
and measuring states that an embodied agent would find ‘in-
teresting’ or ‘preferential’ to be in. When we use the word
‘state’ we refer to the state of the whole system, including
both the environment and the agent.

Information Theory
The notion of empowerment is based on information theory,
introduced by Shannon (1948). To introduce this, the first
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Figure 1: Bayesian network representation of the
perception-action loop.

important measure is entropy, which is a measure of uncer-
tainty:

H(X) = −
∑

p(x) log p(x). (1)

Where X is a discrete random variable with values x ∈ X
and p(x) is the probability mass function such that p(x) =
Pr{X = x}. The logarithm can be taken to any chosen
base; in our paper we consistently use 2, and accordingly the
units of measurement are then called bits. If Y is another
random variable jointly distributed with X the conditional
entropy is:

H(Y |X) = −
∑

x

p(x)
∑

y

p(y|x) log p(y|x). (2)

This measures the remaining uncertainty about the value
of Y , if we know the value of X . Finally, this also allows
us to measure the mutual information between to random
variables:

I(X;Y ) = H(Y )−H(Y |X). (3)

Mutual information can be thought of as the reduction in
uncertainty about the variable X or Y , given that we know
the value of the other. The mutual information is symmetric,
so we could also use I(X;Y ) = H(X) −H(X|Y ) (Cover
and Thomas, 1991).

Empowerment
Empowerment is based on the information theoretic
perception-action loop formalism introduced by Klyubin
et al. (2005a, 2004), as a way to model embodied agents and
their environments. The model views the world as a com-
munication channel; when the agent performs an action, it is
injecting Shannon information into the environment, which
may or may not be modified, and subsequently the agent re-
acquires part of this information from the environment via
its sensors.

In Fig.1 we can see the perception-action loop represented
by a Bayesian network, where the random variable Rt repre-
sents the state of the environment, St the state of the sensors,
and At the actuation selected by the agent at time t. It can be
seen that Rt+1 depends only on the state of the environment
at time t, and the action just carried out by the agent.

By modelling this as a communication channel, we can
employ information-theoretic methods, which are the basis
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for empowerment. First, we must introduce channel capac-
ity (Shannon, 1948; Cover and Thomas, 1991) for a discrete
memoryless channel:

C(p(y|x)) = max
p(x)

I(X;Y ). (4)

The random variable X represents the distribution of mes-
sages being sent over the channel, and Y the distribution of
received signals. Clearly, the higher the mutual informa-
tion between the two variables, the higher the capacity of
the channel. The channel capacity is measured as the max-
imum mutual information taken over all possible input dis-
tributions, p(x), and depends only on p(y|x), which is fixed.
One algorithm that can be used to find this maximum is the
iterative Blahut-Arimoto algorithm (Blahut, 1972).

Empowerment can be intuitively thought of as a measure
of how many observable adjustments an embodied agent can
make to his environment, either immediately, or in the case
of n-step empowerment, over a given period of time. An al-
ternative way to view empowerment is that it guides agents
to places in the world where they get the most benefit from
their sensors and actuators. Using the above perception-
action loop formalism and the Blahut-Arimoto algorithm,
this can be directly quantified. We remind the reader that
sensors and actuators implicitly encode evolutionary knowl-
edge of the type of information to perceive and ‘create’.

In the case of n-step empowerment, we first construct a
compound random variable of the last n actuations, labelled
An

t . We now need to maximise the mutual information be-
tween this variable and the sensor readings at time t + n,
represented by St+n. Here we consider empowerment as
the channel capacity between these:

E = C(p(st+n|an
t )) = max

p(an
t )

I(An
t ;St+n). (5)

An agent that maximises its empowerment will position
itself in the environment in a way as to maximise its options
for influencing its relationship with the environment (Klyu-
bin et al., 2005a).

Note that in this paper we are use empowerment in an
exclusively deterministic scenario, within a discrete world,
but that empowerment is defined in full generality for non-
deterministic probabilistic environments and does not as-
sume perfect information.

In this paper we can use a shorthand method for calculat-
ing empowerment; we are able to do this for several reasons.
All the scenarios we examine are deterministic and feature
no non-stationary elements, and so do not require the proba-
bilistic elements of empowerment. Additionally, as they are
all represented as a graph, we are able to further simplify the
formula. We can calculate n-step empowerment for a node
vi on the graph thus:

En(vi) = log




g∑

j=1
d(vi,vj)≤n

1



 (6)

Where d(vi, vj) is the geodesic distance between the
nodes vi and vj . Note that this is a shorthand method we are
able to use as we have complete knowledge of the scenarios
and the representation; Eq. (5) reduces to Eq. (6), and would
work identically in the same scenarios, using the perception-
action loop formalism.

Closeness Centrality
Graph Theory and Network Analysis have long had a
requirement for identifying important nodes in a graph
(Wasserman and Faust, 1994). The simplest methods for
this have been to count the edges leaving or entering a node,
known as outdegree and indegree respectively. This is very
simplistic and is normally inadequate for complex graphs.
Therefore, the primary method for measuring node impor-
tance is a group of various measures collectively known as
centrality. There have been several methods of centrality
suggested over time, but one of the most popular is close-
ness centrality, which can be presented in various ways. As
mentioned in Wasserman and Faust (1994), and reviewed by
Freeman (1979), the simplest formula for closeness central-
ity is that suggested by Sabidussi (1966):

CC(vi) =




g∑

j=1
j "=i

d(vi, vj)





−1

. (7)

For a given node vi, in a graph with g nodes, this gives
a measurement of the sum of the shortest paths to all other
nodes, which is then inverted to give a higher centrality to
those with shorter total paths to the rest of the graph. In-
tuitively, this can be closely linked to the average distance
from all other cells that empowerment was anti-correlated
with, from the maze scenario used in Klyubin et al. (2005a).

To calculate the closeness centrality on the graphs en-
countered throughout this paper, we used the network anal-
ysis software Pajek (Batagelj and Mrvar, 1998). Pajek
uses a modified version of closeness centrality, suggested
in Beauchamp (1965):

C ′
C(vi) =

(g − 1)[∑g
j=1 d(vi, vj)

] = (g − 1)CC(vi). (8)

This formula is used simply to normalise the closeness
centrality figures to the graphs size in order to allow com-
parison of the figures between graphs of different sizes.
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Figure 2: View of the empowerment distribution for the
gridworld scenario, with the box positioned at the center.
A darker shade means higher empowerment. Empowerment
scales from 5.92 to 7.79 bits.

Scenarios
In order to compare these two measurements we apply them
to the same two agent scenarios to identify the correlation
between them, and any areas of disparity. In order to con-
struct the first scenario, it is necessary to observe that most
state spaces encompassing an agent in a stationary world can
be naturally represented as a graph of nodes, with transi-
tions leading between them corresponding to the actions of
an agent within that world.

Box Pushing
Consider the box pushing scenario from Klyubin et al.
(2005a) as a graph. The scenario consists of a gridworld
of infinite size, within which there exists an agent and a box,
each of which occupy a single cell. The box is visible to the
agent; his view of the world consists of his position and the
position of the box. The agent has 5 actions available to it at
any time; it can stand still, or move to one of the four neigh-
bouring cells. If the agent moves into a cell that is occupied
by the box then the box is pushed, in the same direction, into
the adjacent cell.

In Klyubin et al. (2005a) it was shown that for any n-step
empowerment, the agent prefers being near the box, which
gives it more influence on the state of the world. It most ‘en-
joyed’ beginning on top of the box, where moving in and of
the 4 directions would allow it to fall down next to the box,
from where it could start pushing it like normal; this could
be used as a starting position but was a position impossible
for it to return to.

In translating this world into a graph representation, we
needed to limit our originally infinite world to a finite graph.
We investigate the influence of this finiteness by examining
the growth of centrality. We show that beyond a certain hori-
zon it can be seen that the centrality increases in a continu-
ous fashion and that the centrality for the nodes represented
in previous approximations grows proportionately. Whilst
we do not offer a proof of this fact, in Fig.3 we demonstrate
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Figure 3: Correlation of closeness centrality for 25-step and
30-step graph approximations against a 20-step approxima-
tion.

the point by showing the correlation between graph repre-
sentations of increasing diameters.

Results
Klyubin et al. (2005a) had previously shown how empower-
ment worked in the box pushing gridworld experiment, and
so it made for a good environment in which to run our initial
experiments. We generated a unweighted directed graph to
represent the world. Note that we are using a non-classical
view of graphs; rather than viewing them as comprised of
units, with connecting links between them, we are view-
ing each node as a possible state of the world, including the
agent itself, (of which, only one can be the real state at any
moment) and the edges as transitions between these states.

To do this, we initialised the world with the box in the
center, and the agent standing upon the box, as described
earlier. We then let the agent run through every possible
trajectory of 30 actuations, generating a graph of states and
actions; the final graph had 419,121 nodes. Using Pajek, we
calculated the closeness centrality for all nodes in the graph.

We next measured empowerment for every state with the
box positioned in the center of the world, and the agent
positioned at each location that it could reach within 30
timesteps from the center. This was sufficient as the dy-
namics of the world comes from the agent’s initial position
relative to the box, and thus moving the box was unneces-
sary. Our empowerment measurements were run to measure
3-step, 5-step and 7-step empowerment.
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Figure 4: Correlation plot between Empowerment and
Closeness Centrality. The horizon effect of empowerment
can be seen clearly.

In order to correlate empowerment and centrality, we col-
lated the results, removing the centrality results for nodes
where the box was not positioned in the center of the world;
this gave us a state for state comparison of each measure
against the other for different initial positions of the agent.

We additionally ran the same experiment for graphs pro-
duced for both 20 and 25 timesteps, to identify the influence
of representing the infinite gridworld as a finite graph did not
skew the results. We found that the correlation of centrality
for the overlapping nodes of these varying size graphs indi-
cates a close to linear relationship and finite graphs work as
a good approximation.

Note that closeness centrality is a global property, calcu-
lated it for any given node requires seeing all other nodes
in the graph, while empowerment is local and looks only at
neighbouring nodes within a given distance.

Local Structure
As hypothesised, we found a very strong correlation be-
tween the closeness centrality and empowerment, which can
be seen in Fig.4. The graph shows clearly the horizon effect
of empowerment; it can be seen to be constant whenever the
box is outside of the agent’s reach. For n-step value with
larger values of n the horizon can be seen to extend further
from the box. Once the box is within it’s reach, according to
n, the empowerment grows as the agent increases its influ-
ence over the world by getting closer to the box.

The horizon effect emphasises that empowerment is a lo-

cal measure; it cannot see the whole world. However, when
the agent is within an area where it can improve it’s ability to
manipulate the state of the world, this local measure corre-
lates with the global measure of the world given by closeness
centrality.

This highlights that in an infinite, or an unexplored, world
where centrality cannot be employed, empowerment pro-
vides a measure that can be used. Whilst empowerment is
limited by the horizon effect, exploring the world (which
would be necessary to use closeness centrality) would allow
our agent to also overcome the horizon.

In addition, this correlation also confirms our hypothesis
that empowerment, within its horizon, does see global as-
pects of a system at a local level within this world. What
structure or prerequisites that must exist for this effect to
take place are yet to be determined.

It is important to note that the results from empowerment
can be computed by the formula in Eq. (6), or equally by
that in Eq. (5), without modelling the world as a graph at all.

Scale-free Graphs
The second scenario uses scale-free networks (graphs); a
very important subclass of graphs, in which there are a few
nodes with a high degree, and most nodes have a far lower
degree. Their typical structure is independent of the graph’s
size; with fewer or more nodes, the graph would still ex-
hibit similar properties. The exact distribution of edges per
node follows a power law distribution (Barabasi and Albert,
1999):

P (k) ∼ k−γ . (9)

Here P (k) is the probability that a node connects with k
other nodes, and decreases exponentially according to the
coefficient γ.

As discussed in Barabasi (2003), scale-free graphs can be
seen in many real world situations, including protein inter-
action networks (Jeong et al., 2001), social networks, and
even the world wide web (Barabasi and Albert, 1999).

We hypothesise that the scale-free property of graphs can
work to synthesise an underlying structure that may be found
in real world task spaces, and can be used as a good platform
for initial investigation of such structure.

Results
Using preferential attachment algorithm introduced by
Barabasi and Albert (1999) we constructed a scale-free undi-
rected graph with 400,000 nodes to run our measures on.
Our graph was built using an initial complete graph of 3
nodes, and adding additional nodes one at a time. Each
new node would create 3 new edges connected to 3 differ-
ent nodes on the existing graph, chosen using a probability
according to their current degree.

For all nodes in the graph we calculate both the n-step
empowerment (for a range of values of n) and the closeness
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Figure 5: Correlation between closeness centrality and 2-
step to 7-step empowerment.

centrality. To calculate the closeness centrality, we again use
the Pajek analysis software.

Our results here corroborate those from our first experi-
ment with regard to the correlation between closeness cen-
trality and empowerment. Here, we see the inverse of the
horizon effect; given too much time, empowerment can
reach any part of the graph (analogous to being able to do
anything within a world) and assigns almost all nodes equal
value. This is an interesting point for empowerment; given
too high of a ’budget’, where an agent can do everything
possible within the world (or reach every node in a graph)
then it does not differentiate between them. This is the
type of world we would describe as ’boring’; one where
and agent can do anything it wants from any position of the
world.

Again though, empowerment sees at a local level aspects
of the global property of the world. In this scenario, this is
maybe not surprising given the nature of a scale-free graph;
but it is important to see that empowerment was not told
anything of the structure of the world, and that still this fact
comes through.

In Fig.5 we show the correlation between closeness cen-
trality and n-step empowerment for n=2 to n=7. Note that
even 2-step empowerment has a strong correlation at the
higher centrality nodes, and 3-step even more so. As n
increases it can be seen that the small-world property of
the graph results in an empowerment ceiling being reached
which results in a reduced correlation for high centrality
nodes.

Discussion
Both of our experiments highlight the strong correlation be-
tween empowerment and closeness centrality, and that even
n-step empowerment with a low value for n will normally
serve a a strong predictor for centrality. This is significant
given that individual node centrality is a global property of
a graph, but we can use a local measure to give similar rel-
ative values to nodes. Note that empowerment doesn’t see
any more than centrality, but in the ’interesting’ parts of the
world it does see, the two measures agree.

In both scenarios the correlation is strong provided that
the n chosen for n-step empowerment is suitable. We be-
lieve a simple method for overcoming this in an unknown
world is for an agent to select the lowest n value possible;
if the horizon of this n does not allow the agent to observe
any degrees of freedom it can then increase n incrementally
to overcome this (or embark on a random exploration).

With empowerment, selection of a suitable n is interest-
ing in another regard; a low value of n can mean encounter-
ing the horizon effect, and possibly not seeing ’interesting’
parts of the world, whilst a too high value of n can result
in the agent being able to do anything and not needing to
distinguish between different states. The result of this is a
particular world having an n value with the correct balance
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between these two effects, which we hypothesise may reflect
one aspect of the underlying structure which is important for
learning and adaptation.

Closeness centrality is limited to deterministic task spaces
that can be completely represented by either a directed or
undirected graph, which constricts the space of problems it
can be used to measure. In the space of problems in which
both measures can be used, these results indicate not only
empowerment correlates well with centrality, but it does so
without complete knowledge of the world. Furthermore, it
can work in non-deterministic, non-stationary, environments
which cannot be represented as a graph, including infinite
worlds.

A comparison could have been drawn between the global
measure of closeness centrality, and some local version of
centrality that worked on a local subset of the graph, and we
expect a similar correlation would have been found. How-
ever, any such localised version of centrality would suffer
from many of the same restrictions that centrality does com-
pared to empowerment. We studied empowerment specifi-
cally as part of a much more general picture which includes
an evolutionary aspect and which in addition will allow us to
extend the research into non-deterministic environments in
future work. Essentially we are using centrality as a ‘sanity
check’ that empowerment does something sensible in these
scenarios.

Overall, we believe that these results show a strong in-
dication of certain global aspects of various worlds being
‘coded’ at a local level, and an appropriate sensory config-
uration can not only detect this information, but can also
use it. Such uses could include learning and adaptation, and
uses for evolution between generations. There are indica-
tions that understanding which aspects of global structure
are visible at a local level would allow improved adaptation
and learning for agents embodied within the corresponding
world.

Future work
Vergassola et al. (2007) drew a parallel between the be-
haviour of biological organisms and search methods that
use local informational cues to draw conclusions about the
global structure of the world. It is our belief that further
study of this area will allow us to not only draw further par-
allels with the learning and adaptation methods employed
by biological organisms, but will also allow a better under-
standing of these processes leading to improved methods.

Further work needs to be done to extend these results into
other worlds and task spaces, and to better understand in
which scenarios they hold true. This should include worlds
with various elements providing opportunities for agents
to manipulate their environment, and even non-stationary
worlds.

Attention needs to be paid to how to choose an initial
strategy when presented with a completely unknown task

space (such as choosing an initial n for empowerment) and
conversely, how much of this information is embedded with
an agent or organisms embodiment.
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