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Abstract

We introduce fitness transmission as a simple statistical sig-
nature of adaptive evolution within a system. Fitness trans-
mission is the correlation between the fitness of parents and
children, where fitness is evaluated after the number of grand-
children, suitably normalised. This measure is a direct cal-
culation based on a genealogical record, rather than on ge-
netic or phenotypic observation. We point out that the Bedau-
Packard statistics of evolutionary activity cannot be used as a
reliable system-wide signature of adaptive evolution, because
they can produce positive signals when applied to certain
“random”, non-evolutionary systems. We apply fitness trans-
mission to simple evolutionary algorithms (as well as neutral
equivalents) and demonstrate its capacity to accurately detect
the presence or absence of Darwinian evolution.

Introduction: Are we evolving yet?
Consider the following problem: imagine that you are ob-
serving a simulation, in which a population of agents move,
interact and reproduce. The simulation is complex, or its
output is obscure (or both), and it is not easy to grasp what, if
anything, is going on. Knowing that these agents reproduce,
we may ask ourself the question: are they also evolving? Are
they undergoing genuine natural selection and adaptive evo-
lution? Or are they just perpetuating random genetic traits,
following a chaotic trajectory through genotype space with-
out ever undergoing any meaningful evolution?

This question arises from the fact that when a population
of reproducing agents is observed, it is not always imme-
diately clear whether the dynamics of the population result
from Darwinian evolution, or merely from random varia-
tions and stochastic effects such as genetic drift. The par-
ticular system at hand may also introduce its own effects,
which may bias or alter the dynamics of the population in
unpredictable ways. When this system is sufficiently com-
plex, determining whether a population is evolving in a Dar-
winian sense may not be a trivial task.

Besides its conceptual implications, the question is of
practical interest. It is often desirable to determine whether
natural selection and evolutionary adaptation are occurring
within a given system, especially in the fields of evolution-

ary computation and artificial life. Indeed in some situa-
tions, the onset of significant adaptive evolutionary activity
is by itself a major objective of the system: for example, ar-
tificial environments such as Echo (Hraber et al., 1997) and
Geb (Channon, 2006) were explicitly designed with the aim
of exhibiting meaningful evolutionary activity. Being able to
detect the presence of genuinely adaptive evolution is a fun-
damental pre-requisite for the validation of such systems.

Related Work
Traditional methods for detecting natural selection
The problem of detecting natural selection has a long history
in biology. Endler’s authoritative treatment (Endler, 1986)
describes the traditional (that is, non-molecular) methods for
detecting natural selection. However, all these methods are
based on phenotypic observation of chosen traits: they re-
quire collecting statistics on the frequencies of certain, pre-
defined traits, and then performing some calculations to de-
termine whether or not natural selection has acted on these
traits. This is precisely what we seek to avoid here: we do
not ask whether natural selection has acted on this or that
trait, but simply whether it is active in the population. Also
we want to dispense with detailed phenotypic observation.

The molecular revolution in biology has made it possi-
ble to collect vast amounts of genetic data. This creates
new possibilities for the detection of natural selection, based
on direct assessment of nucleotide variation (Sabeti et al.
(2006) provide a recent review). But these approaches re-
quire access to a full genetic record. Furthermore, biologi-
cal genomes are simple sequences of symbols from a four-
letters alphabet; but artificial life models need not be so sim-
ple in their structure, and this may affect the applicability of
these methods.

The Bedau-Packard measure of evolutionary
activity
Bedau and Packard (Bedau and Packard, 1992; Bedau et al.,
1998) have developed a groundbreaking set of concepts and
methods to “discern whether or not evolution is taking place
in an observed system.” Bedau and Packard are specifically
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interested in the innovations produced by evolution, and in
the capacity of various systems to keep on producing adap-
tive innovations over time - or not. This requires a method to
determine whether an apparent innovation is indeed adaptive
or merely the result of random fluctuations, which clearly re-
lates to our own concerns. To this end, Bedau and Packard
introduce a set of methods to compute the “evolutionary ac-
tivity” of components and, by extension, of systems.

The Bedau-Packard measures of evolutionary activity are
based on persistence of adaptive innovations: they identify
components that persist over time at a level that exceeds
what would be expected under purely random conditions. In
the words of Bullock and Bedau (Bullock and Bedau, 2006),
“if a particular element persists in the system for a long time,
this is likely to be because it is being maintained by selec-
tion.”

If we are to use persistence “for a long time” as a criterion
for detecting evolution, we need a method to determine what
“a long time” is. When do we decide that a given element
has persisted long enough to be regarded as ‘adapted’? To
tackle this problem, Bedau and Packard introduced the idea
of using a neutral “shadow” of the system under study: a
replication of the original system, in which birth, reproduc-
tion and death of individuals occur in synchronisation with
the real system, but are applied to randomly chosen indi-
viduals. More precisely, every time a new individual is be-
ing created in the real system under study, a new individual
is also created in the shadow; but with the difference that,
in the shadow, the parents of the new individual are chosen
randomly. Thus the neutral shadow is expected to show the
behaviour that would be seen in the system, in the absence
of any selective pressure. By comparing the persistence data
obtained in this “shadow” to that obtained in the real sys-
tem, Bedau and Packard argue, it should be possible to de-
tect whether selection and adaptive evolution are present.

Building upon the concept of enduring persistence as a
measure of evolutionary activity, Packard and Bedau have
developed a series of evolutionary statistics based on per-
sistence information. These statistics include diversity D
(the number of different components present at a given time
in the population), activity ai(t) (the age of component i
at time t, indicating how long it has persisted so far), cumu-
lated activity Acum(t) (the sum of the ages of all components
present at time t), and new activity Anew(t) (the sum of the
ages of all components present in the system at time t that
are new, but sufficiently aged to indicate adaptive value, di-
vided by diversity at time t).

Bedau-Packard statistics and non-evolutionary
systems
Bedau and Packard’s measures are arguably the most widely
known of their kind. They have been applied to several sys-
tems, including artificial ecologies such as Echo, and natu-
ral components such as the genera within the fossil record

(Bedau et al., 1998). Other researchers have successfully
applied them to various systems (Standish, 2002; Channon,
2006; Taylor, 1999). However, it is not suitable as a test to
detect the presence of adaptive evolution within a system.
The basic reason why the Bedau-Packard statistics cannot
be used as a detector of evolution by natural selection is that
they may attribute a positive score to “random” processes,
which are clearly not evolutionary. Importantly, this is the
case even if a shadow is used to normalise activity scores.
The crux of the matter is that these statistics essentially track
“excess” variance in the persistence of components, which
is used as a proxy for selection and therefore (it is argued)
for adaptive value. The shadow is used to define the level
of persistence which can be termed “excess.” But excess
variance in persistence may be caused by other factors than
natural selection. What if, due to some quirk in the rules
of the system, some high variance in persistence occurs that
is not related to heritable characteristics? If we apply the
Bedau-Packard statistics to such a system, we may find that
the Bedau-Packard measure classifies such a system as adap-
tive, even though it is not - even if we use a shadow.

It is easy to devise examples of systems which illustrates
this distinction. For instance, consider a population in which
reproduction, selection and evolution occurs normally, ex-
cept for the fact that fitness is randomly attributed to each
individual at birth, independently of its genome. That is,
while genetic material is transmitted as expected from par-
ent to offspring, this genetic material has no influence over
fitness, which is chosen randomly for each new individual.
Note that no heritable variance in fitness occurs, nor does
any adaptation take place. However, those individuals that
happen to be highly “fit” (out of sheer luck) will tend to
persist for a long time, and may flood the population with
their (short-lived, but nevertheless genetically similar) off-
spring. No such thing will be observed in the shadow, where
reproduction and survival will be random, leading to ran-
dom diffusion of the genetic material throughout genotype
space. Therefore, a difference will occur between the activ-
ity counts (and diversity counts) of the shadow and of the
real system, creating a positive signal on the Bedau-Packard
measure and associated tests.

In figure 1 we describe the results of Bedau-Packard
statistics applied precisely to such a system.1 The system
is a simple steady-state genetic algorithm in which, at every
“generation”, 10 out of the 100 individuals are eliminated
and replaced by new individuals, created by copying and
mutating a surviving parent. Survivors are selected by fit-

1In these experiments we have applied the Bedau-Packard
statistics to entire genotypes, in order to follow the authors’ method
(Bedau et al., 1998). However we are not at all certain that whole
genotype persistence is a reliable indicator of evolution. We note
that in nature, as soon as recombination and mutation are involved,
it is very unlikely that any genotype ever persists for more than one
generation.
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Figure 1: Graphs showing the results of Bedau statistics for a non-Darwinian system, as well as for a corresponding shadow system. The
leftmost graph indicates the cumulative frequency counts for each genome over time (that is, the running sum of the frequency of each genome
within the population at each generation.) The middle graph indicates the cumulative distribution of persistence counts for all genomes over
the history of a run (that is, for each value, the number of individuals that survived longer than this value.) The rightmost graph shows the
average cumulative activity Ācum(t) = Acum(t)

D(t) - the sum of all persistence counts of genomes present at a time, divided by the number of
genomes present at that time. These graphs are consistent with what is expected from real evolutionary systems. (Bedau and Packard, 1992;
Bedau et al., 1998)

ness ranking, and selection of parents occur through tourna-
ment selection, very much as in a normal genetic algorithm.
However, the fitness of individuals is randomly chosen at
birth, independently of their genome. The actual method to
“calculate” fitness is to increase a certain counter repeatedly
until a random number picked between 0 and 9 is equal to
0 (thus the distribution of fitnesses is exponential.) In the
shadow systems for both experiments, selection of survivors
and parents are random (thus the shadow systems for both
experiments are essentially identical, which predictably re-
sults in similar graphs).

Note, in particular, the onset of high average activ-
ity, the flattening of the cumulative distribution of persis-
tence counts (with an order of magnitude difference be-
tween the longest-living genotypes of real and shadow sys-
tems), and perhaps most significantly the appearance of
large “telic waves” (Bedau and Packard, 1992) (tall, lengthy
lines) in genome frequency plots, despite the decidedly non-
teleological nature of these environments. All these are
regarded as positive signals of evolutionary activity in the
Bedau-Packard framework. (Bedau and Packard, 1992; Be-
dau et al., 1998)

Surely many other examples could be found. More gen-
erally, these simple systems illustrate the fact that high vari-
ance in persistence can be caused by many other processes
than natural selection. “Random” systems, in which no
meaningful evolution or adaptation occurs, can still obtain
high marks on the Bedau-Packard measure if they produce
high variance in genetic persistence.

Of course, in our toy system, it is easy to see (just by look-
ing at the rules) that variance in persistence is due to random
fluctuations, and that no true natural selection exists. But
this is precisely the heart of the matter. First, when we study
a real system, we may not have access to its internal rules, so
clearly in this case we cannot use the Bedau-Packard statis-

tics as a test of Darwinian evolution. But even if we do have
full access to the rules of the system, the complexity of even
mildly elaborate systems may prevent us from asserting with
absolute certainty whether or not a “random force” gener-
ates strong variance in persistence. For example, consider-
ing a system similar to Echo (Hraber et al., 1997), can we
really exclude, a priori, that such a factor could come into
play? Can we offer absolute guarantee, simply by looking
at the rules of the system, that no weird effect will arbitrar-
ily and significantly favour certain individuals rather than
others (without being based on these individuals’ heritable
features)? The answer, of course, is that we cannot. It fol-
lows that, if we apply the Bedau-Packard statistics on such
a system and obtain a positive result, we cannot (in the ab-
sence of further information) use this fact alone to conclude
that adaptive evolution is active in the system.

It is important to be clear about the meaning of this re-
sult: this should not be interpreted as a minimisation of the
importance of Bedau-Packard statistics. Rather, this is a re-
minder that these statistics should not be used to detect adap-
tive, Darwinian evolution within a system, even by normal-
ising against a shadow. If we know, a priori and through
other means, that the system is indeed affected by genuine
adaptive evolution, and if we can rest assured that “weird”
effects will be nil or negligible, then we can fruitfully ap-
ply the Bedau-Packard measure to assess the dynamics of
long-term evolutionary innovation within this system. The
valuable contribution of these statistics in this regard has of-
ten been pointed out. However we cannot use these statistics
to determine the presence of evolution by natural selection
within a system, as opposed to any system-induced dynam-
ics which create high variance in persistence: the Bedau-
Packard statistics are not designed to distinguish the former
from the latter, even by using a shadow system.
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Fitness Transmission: A test statistic for
natural selection

Darwinian evolution: randomness, selection and
heredity
In general, evolution is simply defined as a change in the
frequencies of heritable innate characteristics within a re-
producing population, from one generation to the next. Nat-
ural selection, one of the mechanisms that guide evolu-
tion, is broadly defined as variance in reproductive success
caused by heritable innate characteristics. Darwin realised
that adaptive evolution automatically results from the exis-
tence of fitness-impacting, heritable variations. Variations
that improve fitness will be propagated quickly, initiating
thriving lineages; while those that reduce fitness will hin-
der their own propagation, creating feeble (or even quickly
extinct) lineages. Thus lineages constantly branch out into
variants, and the uneven distribution of these branches, be-
ing dramatically skewed towards those which result from
fitness-enhancing variations, will result in the overall effect
that the newer descendants of the original lineage will tend
to be those better adapted to their current, local environment:
heritable fitness-affecting variation will have “steered” the
original lineage towards adaptive directions among all those
encountered by mutational variations.2

Note that although this process will usually result in a
modification of the species over sufficiently long periods
of time, it will also often result in temporary stasis. If a
species happens to be located at a convenient local optimum
in the fitness landscape, then variations which depart from
the optimum will mostly reduce the fitness of the individ-
ual. In this case the differential transmission of character-
istics enforced by natural selection will actively maintain
the population around the optimum: the population will be
constantly steered back towards its current position. This
phenomenon, known as ‘stabilising selection’, is actually re-
garded as more common than directional selection (see (Ri-
dley, 1993), Chap. 4.4).

Fitness Transmission: A genealogic signature of
Darwinian evolution
From this discussion we can deduce a method to detect the
active presence of natural selection. If fitness-impacting,
heritable traits are actually being transmitted and propa-
gated, then this should have an impact on the genealogical
record: individuals sharing a common lineage, being more
likely to inherit common fitness-impacting characteristics,
should therefore tend to exhibit slightly similar fitnesses in
comparison to the rest of the population. In other words, if
some fitness-affecting traits are being transmitted, then there
should be some degree of correlation between the fitnesses

2Or, in short: as creatures replicate, genes mutate, adaptations
proliferate, and species originate.

(that is, the reproductive success) of individuals from a com-
mon lineage: the transmission of heritable, fitness-affecting
traits should result in some degree of differential transmis-
sion of fitness.

Fitness transmission is our proposed signature for natural
selection. It is, quite simply, the statistical correlation be-
tween the fitness of children and parents. The basic idea of
fitness transmission is that, when natural selection is active
in a population, parents and children should exhibit a tenu-
ous, but persistent correlation in fitness.

Calculation of Fitness Transmission
Number of grandchildren as a measure of fitness
The term “fitness” is notoriously ambiguous and can be a
significant source of confusion (Dawkins, 1982, Chap. 10).
A common practical measure of an individual’s fitness is its
number of grandchildren, rather than number of children. To
have many grandchildren, an individual must not only have
many children, but these children themselves must also be
successful in reproducing; this corresponds to the intuitive
notion of fitness as ability to pass on one’s genes. We will
use the number of grandchildren as a measure of individual
fitness. Therefore, to measure fitness transmission, we mea-
sure the statistical correlation between the number of grand-
children (NOGC) of an individual, and that of its children.

Fitness correlation is a local measure in time. That is, we
divide the record in time periods, or “slices,” and calculate
fitness transmission independently for each period. This is
done by only considering individuals born within this time
period for the “child” data set of each period (the parents of
these individuals are then collected in the “parents” data set,
independently of their time of birth). However, the repro-
ductive success for a given individual may be collected over
its entire history, even if it goes beyond the time-slice being
considered.

Comparing what is comparable
As usual when calculating statistical correlations, care
should be taken in only comparing what is comparable: con-
flating data from widely different distributions may result in
artificial, spurious correlations. In some artificial systems,
selective conditions may change widely over the course of
an evolutionary run, even with a fixed fitness function. This
may wreak havoc on undiscerning evaluations of statistical
correlation. For example, in a simple genetic algorithm,
if strict ranking is used, surviving and reproducing entails
dislodging a previous survivor; but as evolution proceeds
towards an optimum, and new champions are increasingly
well-adapted, it becomes increasingly difficult (and thus
rare) for new individuals to dislodge previous champions.
This means that the children’s fitness will tend to go down
(because more of them disappear without a descent) and the
parent’s fitness will tend to go up (because they remain in
the population longer) over time. This alone is sufficient to
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create a strong, negative correlation between the fitnesses of
parents and children over the whole process: earlier parents
would have a moderate number of grandchildren, each with
a good chance to reproduce; while later parents would accu-
mulate enormous numbers of grandchildren, which would
have comparatively low reproductive success.

To avoid this, we must ensure that we only consider quan-
tities (that is, fitnesses) obtained under similar conditions.
To this end, the periods over which reproductive successes
are measured should start at the same point in time, so that
we can ensure that they are obtained over equivalent con-
ditions. In practice, this means that when we compare the
NOGC of an individual X and its parent, we should only
consider the grandchildren of the parent that were born at the
same time as X or later. This ensures a “fair game” between
the parent and the child: both scores will be obtained under
similar circumstances, and results obtained by the parents in
earlier (possibly harsher or milder) circumstances will not
spoil the data.

Necessary normalisations
Unfortunately, the choice of using NOGC as a measure of
fitness introduces an obvious problem: the NOGC of an in-
dividual and that of its children are clearly not independent
quantities. Saying that A has many grandchildren is saying
that A’s children have many children, and therefore, out of
this fact alone, are likely to have many grandchildren them-
selves, even with random reproduction. This problem can
be easily addressed by normalisation to make the consid-
ered values independent. To do this, we do not use the raw
NOGC for the parents; rather, for every parent-child pair, we
consider the parent’s NOGC minus the number of children of
this particular child. This modified NOGC is an estimation
of the parent’s fitness that is not biased by this particular
child’s own success, and thus any correlation represents a
true correlation in fitness.

Another, less significant problem is that, in general, the
population of interest will be finite. The consequence is that
the reproductive successes of individuals living during the
same period of time are not independent: any child for a
given individual is one less opportunity for another individ-
ual to have a child. Even with random mating and reproduc-
tion, if one individual happens to have more children than
average, then any other randomly picked individual is me-
chanically more likely to have fewer children than average.
In other words, limited population introduces a slight nega-
tive correlation between the modified NOGC of parents and
children. This effect is much less important than the previ-
ous one, but may be noticeable, especially with small pop-
ulations. A simple solution to this problem is to normalise
the modified NOGC of the parent: for every parent-child
pair (Pi, Ci) from the slice, we divide the modified NOGC
of Pi by the total sum of all grandchildren of all other par-
ents within the slice - minus Ci’s children. The resulting

proportion is independent of this child’s own success.
Those normalisations are made necessary by the fact that

the quantities under scrutiny are not independent. They
would become unnecessary if, instead of evaluating fitness
transmission from parents to children, we attempted to cal-
culate it between grandparents and grandchildren. The prob-
lem, of course, is that any signal would be much weaker
due to the increased indirection - often to the point of being
drowned in noise.

Calculation method for fitness transmission
Where does this leave us? From all these considerations,
we can deduce the following calculation method for fitness
transmission:

• Divide the entire genealogic record into discrete periods
of time. If the system is generational, generations may be
used as time periods.

• For every time period within the genealogic record, per-
form the following operations:

1. For every individual Ci born during this time period,
find its parent Pi (which may be born at any time be-
fore Ci, not necessarily during this time period) and
store the resulting parent-child pair (Pi, Ci). Note that
any given individual may occur in several pairs.

2. For every stored parent-child pair (Pi, Ci), retrieve
their respective total number of grandchildren (NOGC)
N(Pi) and N(Ci), born during or after (not before) this
time period.

3. Elimination of dependency: for every pair (Pi, Ci),
subtract the number of children of Ci from the N(Pi),
resulting in the new value N ′(Pi).

4. Normalisation: for every parent Pi in the set of parent-
children pairs for this time period, divide N ′(Pi) by
the sum of all grandchildren of all other parents Pj "=i

- carefully excluding Ci and its descendants from the
count. This results in a final value N ′′(Pi)

5. Calculate the statistical correlation between the
N ′′(Pi) and the N(Ci) variables over all parent-child
pairs for this time period, using the standard Pearson
formula:

Corr(X, Y ) =
∑N

i=1(xi − X̄)(yi − Ȳ )
(N − 1)σXσY

The resulting value Corr(N ′′(Pi), N(Ci)), for every time
period, is our estimator for the intensity of fitness transmis-
sion during that time period.

Experiments
Experimental settings
Our purpose in this section is to set up a couple of exper-
iments in order to determine whether fitness transmission
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is indeed a reliable indicator of Darwinian evolution. To
do this, we will use simple evolutionary systems with pre-
dictable dynamics, in which the presence or absence of evo-
lution can be easily controlled. We will apply our calcu-
lation method to these systems and determine whether the
presence or absence of Darwinian evolution was success-
fully detected.

To perform our experiments, we used genetic algorithms
involving a population of 1000 individuals, over 100 genera-
tions. We considered two optimisation problems: the Rosen-
brock function 100(x2− y2)2 +(1−x)2 (using genomes of
2×12 bits) and a very simple OneMax problem over 20 bits.
The Rosenbrock function is a commonly used test function
in the field of optimisation. The purpose of the simple One-
Max problem is to examine the behaviour of different algo-
rithms on very easy problems, when the the global optimum
is discovered quickly. In our algorithms, at each generation,
a new population is created either by applying bitwise mu-
tation to a parent selected from the previous generation, or
(with 66 % probability) by applying one-point crossover be-
tween two parents, and then applying bitwise mutation to
the resulting offspring. The probability of mutating (flip-
ping) each bit is the inverse of the total number of bits in
the genome, rounded to the closest higher percent; thus, on
average, each genome should undergo about one mutation.
As explained below, we tested different methods of selection
and replacement.

As a point of comparison, we need a “neutral” version of
the genetic algorithm, which preserves as many features of
the algorithm as possible, while effectively removing Dar-
winian evolution. We chose to use a system in which ev-
ery new individual was attributed a random genotype (and
therefore a random fitness) at birth, regardless of the genetic
make-up of its parents. This is different from purely random
selection in that selection still occurs, and is still based on
fitness; however the randomness of the reproductive process
prevents any meaningful evolution: fitness-affecting traits
are still present, but not heritable. A satisfactory measure of
evolutionary activity should be able to detect the absence of
real evolution and return a zero value for this situation.

A simple genetic algorithm
We first describe the calculation of fitness transmission in a
standard simple genetic algorithm, using tournament selec-
tion. In this algorithm, each new individual is created by se-
lecting parents from the previous generation (using tourna-
ment selection), and generating offspring as previously de-
scribed. The process is iterated until the new population is
filled.

Figure 2 shows the results of these calculations, applied
to the “fossil record” generated by our simple genetic al-
gorithm. This figures shows the results for the Rosenbrock
function optimisation problem with 20 bits, both with nor-
mal reproduction and with reproduction based on random

Figure 2: Rosenbrock function, non-overlapping generations, 5
different runs (top) and average of 50 different runs (bottom).

Figure 3: OneMax function, non-overlapping generations, 5 runs
(top) and average of 50 runs (bottom).

phenotypes. The top graph shows the results of 5 differ-
ent run for each of these reproduction methods, while the
bottom graph shows average curves over 50 runs. Figure 3
shows the same data for the OneMax problem. In the nor-
mal selection case, the correlation between the number of
children of parents and children is distinctly positive (espe-
cially at the very beginning at the run) and stabilises to a
positive plateau. The enduring positive value indicates that
the population is constantly and actively maintained in the
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vicinity of the global optimum (which is reached quite early
in the OneMax problem) through active evolutionary forces.
Even though the optimum has been reached, mutation con-
stantly disperses the population, and Darwinian evolution
constantly drives it back. Stabilising selection results in a
positive value for differential fitness transmission. In the
case of random genotypes, as expected, no meaningful fit-
ness transmission occurs.

That the enduring presence of fitness transmission in this
case is caused by mutation can be seen quite readily. If
we set the mutation rate to zero, then the population con-
verges totally: all individuals end up sharing the exact same
genome, and diversity disappears. From this point on, all in-
dividuals having exactly the same genotype, evolution sim-
ply stops. The result is that evolutionary activity, as in-
dicated by fitness transmission, quickly goes to zero (with
noise oscillations) after an initial phase of high activity (see
Figure 4). This illustrates the capacity of fitness transmis-
sion to distinguish between active stabilising selection on
the one hand, and passive stillness caused by absence of ge-
netic variation on the other (though this ability breaks down
in extreme situations, as discussed in section .)

Figure 4: OneMax function, non-overlapping generations, with-
out mutation, 5 runs (top) and averages of 50 runs (bottom).

Removing selective gradient among parents
Here we try to make the problem more challenging problem
by reducing the scope of selection. To do this, we modify
our algorithm as follows: at every generation, a small set of
survivors is selected from the population through strict rank-
ing selection, and the parents for the next generation are then
randomly selected from among this set of survivors. Off-
spring are created as previously mentioned (66% crossover,

mutation, etc.) The effect of this modification is to effec-
tively remove any selective gradient among parents. This
is because the only effect of selection in this system is to
decide which individuals become parents in the first place.
Once individuals have been selected as parents, their num-
ber of children is random, and as a result is not affected by
natural selection. In particular, note that if we had tried to
evaluate fitness by the number of children alone, then no fit-
ness transmission could be detected: no correlation can exist
between the number of children of parents and children, sim-
ply because all parents have a random number of children.
However, as shown in figures 6 and 5, our measure for fit-
ness transmission is able to detect the signal created by this
more indirect form of natural selection.

Figure 5: Rosenbrock function, non-overlapping generations with
ranking-based survival and random parent selection, 5 runs (top)
and averages over 50 runs (bottom). The initially high signal goes
to a very low, but still noticeably non-zero value.

Limitations of fitness transmission
Although fitness transmission is valuable as a signature of
adaptive evolution, several limitations must be mentioned.

Extreme stabilising selection: While fitness transmission
is able to detect moderate stabilising selection, it breaks
down in the extreme situation of absolute stabilising selec-
tion - that is, when only one genotype is viable, and any
individual that differs from the optimum systematically fails
to reproduce. In this case, no heritable variation in fitness
exists. In this situation, stabilising selection has the effect of
effectively freezing the reproducing population, and there-
fore becomes invisible to fitness transmission.

Only one extant lineage: More generally, there are patho-
logical situations in which genealogic methods can not be
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Figure 6: OneMax function, non-overlapping generations with
ranking-based survival and random parent selection, 5 runs (top)
and averages over 50 runs (bottom).

used at all. One such situation occurs when all individuals
present at any given time share the exact same genealogic
tree - in other words, when there is never more than one lin-
eage in the population. In this case, while Darwinian evolu-
tion can certainly occur, the presence of only one lineage
at any time within the population prevents the possibility
of inter-lineage comparison, upon which genealogic analy-
sis relies. For example, consider a non-overlapping genera-
tional system, such that at every generation, two individuals
are selected to serve as parents for the next generation, and
all the individuals from the new generation are children of
both of those selected parents. Since all individuals will al-
ways share the exact same set of parents, grandparents, and
so on, fitness transmission cannot be applied. We believe
that this situation is sufficiently exotic to preserve the use-
fulness of genealogical analysis. In addition, such situations
can be easily detected in any system for which a genealogi-
cal record exists.

Non-biological selection: A more subtle aspect of fitness
transmission is that it detects natural selection in the most
general sense, applying to any heritable character, includ-
ing those that we might not think of as “biological”. Any
kind of heritable trait that affect reproductive success (ge-
netic, epigenetic, cultural, etc.) will be detected by fitness
transmission. If the objective is to detect biological natural
selection alone, then fitness transmission should not be used
on its own.

Conclusion
We have shown that differential fitness transmission is a use-
ful signature of Darwinian evolution, which can be detected
in genealogical record by using simple statistics. We believe
that this signature may be more suitable for this purpose than
previously suggested methods for detecting evolution. We
have applied this statistic to the genealogical records gener-
ated by real evolutionary algorithms, demonstrating its ca-
pacity to detect the presence or absence of adaptive evolu-
tion.
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