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Abstract

We analyze representations of the world attained through an
infomax principle by agents acting in a simple environment.
The representations obtained by different agents in general
differ to some extent from each other in different instances.
This gives rise to ambiguities in how the environment is
represented by the different agents. We now develop an
information-theoretic formalism able to extract a "common
conceptualization" of the world for a group of agents. It turns
out that the common conceptualization intuitively seems to
capture much higher regularities or symmetries of the envi-
ronment than the individual representations.
We formalize the notion of identifying symmetries in the en-
vironment - with respect to "extrinsic" operations on the en-
vironment as well as with respect to "intrinsic" operations,
i.e. the reconfiguration of the agent’s embodiment. In par-
ticular, using the latter formalism, we can re-wire an agent
to conform to the highly symmetric common conceptualiza-
tion to a much higher degree than an unrefined agent; and
that without having to re-optimize the agent from scratch. In
other words, we can "re-educate" an agent to conform to the
de-individualized "concept" of the agent group with compar-
atively little effort.

Motivation
In the search of how agents aim to model their environment,
there is a huge collection of candidates. However, it has
been suspected earlier that, whatever the detailed mecha-
nism would entail, they might follow principles of informa-
tion parsimony or optimal information processing (Barlow
(1959); Laughlin (2001)). A concrete model for maximum
Shannon information processing has been proposed in the
infomax model by Linsker (1988).
We are interested in how agents can model their environ-

ment based on informational considerations. Using infomax
principles to do that, one obtains a classification or represen-
tation of a given environment (in the following also called
concept) for a given agent. We use the perception-action
(PAL) loop from Klyubin et al. (2007) to model the agent
and its interaction with the environment, i.e. the model and
according tasks for the agent are not part of this work.
In general, the representations of the environment devel-

oped in an infomax process differ w.r.t. the agent. Even in

very simple and highly symmetric scenarios, they can con-
siderably vary from agent to agent as a result of the infomax
optimization i.e. different global and (good) local optima
can be returned. This is similar to a biological evolution op-
timization process: the individuals also vary to some extend
from each other. This raises the issue of how similar the
obtained concepts are. We will discuss what the different
concepts of those agents have in common. Is it possible to
develop a concept which is mutually compatible to each of
these input concepts (see e.g. Philipona and O’Regan 2006;
Steels 1997; i Cancho and Solé 2003)? If so, what properties
of the environment or the agents do such common concepts
capture? How do they relate to the individual agents’ con-
cepts?
We will not model how agents agree on a common con-

cept or how they communicate but we will discuss some
information-theoretical criteria for such a common concept.
In general, we are not interested in processes but in their
outcome. We do not analyze mechanisms but the underlying
principles.
Analyzing the quality of concepts with respect to certain

goals, we observed that “good” concepts have more regu-
larities. That led us to analyze the concepts’ symmetries. In
general, they are not symmetric in a strict mathematical way.
So we needed a method to measure also not perfectly ful-
filled symmetries. We developed an information-theoretical
approach to analyze these “weak” symmetries. One hypoth-
esis is that common concepts will reveal symmetries of the
whole agent/environment system that are broken by the in-
dividual concepts. We can now ask under which conditions
the individual agents can relate to this expected higher reg-
ularity of the common concept. In a second approach of
analyzing these symmetries, we study the influence of the
agents embodiment on the agent and try to find a way of
“asking the agent what he considers to be a symmetry of the
environment”.
The technical challenges arising from these issues are

manifold. We aim to find a description that is consistent
with a fundamentally information-theoretical picture of the
agents and their environment. For this, one needs to suitably
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formulate the development of a common concept of a set of
agents. Also, one needs to model the concept of regularity
or symmetry in a suitable way.
The contributions of this paper are information-theoretic

techniques to construct common concepts for a group of
agents and to evaluate weak symmetries, and their applica-
tion to some simple, but informative scenarios.

Background
To be able to introduce our model for the agents and
their interaction with the world, we have to introduce
some notations and quantities first. Consider random vari-
ables X, Y, Z, . . . denoted by capital letters which take
in values x, y, z, . . . in corresponding sets X ,Y,Z, . . ..
For the probability that a given random variable X as-
sumes a value x ∈ X we write Pr (X = x) or, if it
is clear from context just p (x). For the probability
for the joint variable (X1, . . . , Xn) we will write simply
Pr (X1 = x1, . . . , Xn = xn) ≡ p (x1, . . . , xn). The (Shan-
non) entropy of a random variableX is given by

H (X) := −
∑

x∈X

p (x) log p (x) (1)

whereby the logarithm in this paper is always to the basis of
2, so the unit for entropy is the bit. The conditional entropy
of X given Y is given by H (X |Y ) := H (X, Y ) − H (Y )
and the mutual information betweenX and Y by

I (X ; Y ) := H (X) + H (Y ) − H (X, Y ) . (2)

A generalization of mutual information is the multiinforma-
tion between a collection of random variablesX1, . . . , Xn

I (X1; . . . ; Xn) :=

[

n
∑

i=1

H (Xi)

]

− H (X1, . . . , Xn) (3)

its conditional form, if the random variable Y is observed is

I(X1;...;Xn|Y ):=[
Pn

i=1
H(Xi|Y )]−H(X1,...,Xn|Y ). (4)

To measure the “difference” between two random variables
X, Y we can use the unnormalized version of the informa-
tion distance (Crutchfield (1990))

D (X, Y ) := H (X |Y ) + H (Y |X) (5)

which fulfills the conditions for a metric including the tri-
angle inequality. Note that D vanishes for a deterministic
bijective dependency betweenX, Y .
To model agents in an environment we will use the for-

malism fromKlyubin et al. (2007) based on causal Bayesian
network (CBN). A CBN is given by a directed acyclic graph
G = (N , E) whose nodes n ∈ N are representing random
variables Xn and the edges e ∈ E ⊆ N ×N causal con-
ditional probability dependencies between them. The distri-
bution of Xn is given by p

(

xn|xPa(n)

)

whereby Pa (n) :=

R0

M0

S0 A0

R1

M1

A1S1

. . .

. . .

. . .

Mt′

Figure 1: Perception-action loop unrolled in time as a CBN

{n′ ∈ N| (n′, n) ∈ E} is the set of parent nodes n′ from
node n. If a node n has no parent nodes Pa (n) = ∅, we
identify p

(

xn|xPa(n)

)

≡ p (xn) with an unconditional prob-
ability distribution. The joint distribution of the whole net-
work is given by

p
(

x1, . . . , x|N |

)

=
∏

n∈N

p
(

xn|xPa(n)

)

. (6)

Model
A generic model for an agent interacting with a world is
the perception-action loop (PAL). It is here only briefly pre-
sented, for a full presentation and motivation see Klyubin
et al. (2007). Such an agent can sense the world R through
its sensor S and manipulate it through its actuator A which
together form the embodiment of the agent. This process
can be formalized by the CBN shown in Fig. 1. All ran-
dom variables depend on the time t: Mt, At, Rt, St. More
precisely the controller of the agent has the possibility to
store information in the memory M . It can be described by
a probabilistic mapping

controller : Mt × St → Mt+1 × At (7)

which is time t independent.
In our experiments, we chose a deterministic controller

(Wennekers and Ay (2005); Klyubin et al. (2007)) and used
a two dimensional infinite grid-world R = Z2. The mem-
ory M is a number contained in a finite subset ofM ⊂ N.
The initial memory M0 is deterministically set to a default
state 0. The initial position in the worldR0 is uniformly dis-
tributed over possible starting positionsR0 = {−d, . . . , d}2

where the radius d depends on the experiment. The actua-
tor A can take on values A = {↓,←, ↑,→} where these
4 actions can move the agent (changing its position in the
world, encoded in R) to one of its 4 adjacent positions in
the grid-world. The first discussed sensor (setup s+) has 4
possible sensor values S = {↓,←, ↑,→}. If we imagine
a “pheromone” gradient emitted by a source at the origin
(Fig. 2 - center), this sensor points to the adjacent position
with the highest concentration of pheromone. If this is not
unique (e.g. at the origin), one direction is randomly cho-
sen. Setup s+ is visualized in the left of Fig. 2, whereby for
each position (x, y) ∈ R all possible sensor “directions” are
shown with their arrow-length corresponding to their prob-
ability. A variation of this setup used in this work is a sen-
sor (setup sq) where 4 of such sources exists at {−5, 5}2
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Figure 2: Setups

(Fig. 2 - right) and the sensor is pointing always to the near-
est source.
Our fundamental task for the agent is to capture as much

information about its initial position as possible by its “fi-
nal” memory state at time1 t = 15 as suggested by Klyubin
et al. (2007). This can be denoted information-theoretically
as maximizing

I (R0; M15) . (8)

The search space for this problem contains all possible con-
troller mappings from Eq. 7. To solve this and all following
optimization problems, we used Simulated Annealing with
some heuristic improvements described elsewhere but such
tasks can be performed by any generic optimization tool. We
do not aim to model the details of the process of agent evo-
lution / adaptation and its ability to capture the information
about the initial position but only the outcome of such a pro-
cess. This output corresponds to the solutions returned by
Simulated Annealing.

Common Concepts
Concepts
Consider an agent with setup s+ and memory size |M| =
8 who is able to capture the initial position R0 (what is
uniformly distributed with R0 = {−5, . . . , 5}2) by max-
imizing I (R0; M15) . Therefore an appropriate controller
has to be found. To interpret this agent, consider Fig. 3
where each of the 8 squares shows in gray scale the con-
ditional probability p (r0|m15) for a final memory state. To
make this precise, it shows the probability that this agent
has been initially at position r0 in the world for a mem-
ory content m15 = 0, 1, 2, . . . , 7 at time t = 15 of the
end of the run. For each state m15 we use a separate nor-
malization so maxr0

p (r0|m15) is represented by black and
p (r0|m15) = 0 by white. The agent shown has an util-
ity value of I (R0; M15) = 2.906 bit which is very near to
the limit of min [log |R0| , log |M|] = 3 bit. These 8 pos-
sible memory values m15 can be understood as a concept
of the world R0. Each value for m15 has a certain “mean-
ing” for stating positions, like “north-triangle”, “north-east-
diagonal”, “east-triangle”, “south-east-diagonal”, etc. We
call a pair of random variables (R, Y ) (e.g. (R0, M15))

1t = 15 is an arbitrary choice for our experiments, other
choices lead to similar results.

Figure 3: Solution of initial position capturing

jointly distributed a concept if Y is “representing”R in some
way, i.e. I (R; Y ) > 0. We call the values y ∈ Y symbols of
the concept.
As mentioned earlier there also exist other solutions for

the problem to find a good initial position capturer with an
equal or similar utility value I (R0; M15), for example just
an agent with a “rotation” of the concepts by 90°. This
“rotation-symmetry”will be discussed later. Here we are in-
terested in how representative the shown example concepts
and how similar other solutions are. We will do this by dis-
cussing the possibilities to find a common concept (R, Y∗)
from a set of input concepts

{(

R, Y (1)
)

, . . . ,
(

R, Y (n)
)}

.
This concept can be interpreted as common concept of a
group of agents in a world R. In the spirit from above
philosophy, we emphatically only model the information-
theoretical principle. The process of agreeing of the individ-
uals about the common concept is wittingly not modeled to
be independent of the algorithm. We will present in the fol-
lowing two possibilities to define such a common concept.

For the Objective Common Concept consider the CBN
from Fig. 4. A deterministic mapping R → Y obj

∗ which
maximizes

∑

i

[

I
(

Y obj
∗ ; Y (i)

)

− α · I
(

R; Y obj
∗

)

]

(9)

defines the objective common concept
(

R, Y obj
∗

)

. The first

term I
(

Y obj
∗ ; Y (i)

)

maximizes the mutual information be-
tween the common concept and every input concept, so as to
make it as similar as possible the input concepts. The term
α · I

(

R; Y obj
∗

)

is a bottleneck type (Tishby et al. (1999))
parameter α ∈ [0, 1] countering the trivial behavior of just
building Y obj

∗ = Y (1) × . . . × Y (n) as cross product of
all input concepts if the number of states in Y obj

∗ is suffi-
ciently large

∣

∣

∣
Yobj
∗

∣

∣

∣
≥

∏

i

∣

∣Y(i)
∣

∣. For our experiments we
set α = 0.2. This method is called objective because it has
explicit knowledge about the world R.

For the Subjective Common Concept consider the CBN
from Fig. 5. A deterministic mapping Y (1) × . . .× Y (n) →
Y subj
∗ which minimizes

I
(

Y (1); . . . ; Y (n)|Y subj
∗

)

(10)
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Y (1) Y (2) . . . Y (n)

R Y obj
∗

Figure 4: CBN for objective common concept

R

Y (1) Y (2) . . . Y (n)

Y subj
∗

Figure 5: CBN for subjective common concept

defines the subjective common concept
(

R, Y subj
∗

)

by ap-
plying the rules for the joint distribution of a CBN. The min-
imization makes sure that Y subj

∗ “absorbs” all information
common by Y (1), . . . , Y (n). This method is called subjec-
tive because it has only implicit knowledge aboutR through
the input concepts.

Results Common Concept

A Comparison of Objective and Subjective Common Con-
cept is calculated for the 4 input concepts shown in Fig. 6.
We see in each of the 4 columns one concept

(

R0, M
(i)
15

)

generated by initial position capturing agents with setup s+
and |M| = 6. Figure 7 shows an objective and subjec-
tive common concept (R0, M∗) of size |M∗| = 8 each.
The superstition of the subjective common concept is with
H (M∗|R0) = 0.03 bit vanishingly small2. The information
distance between objective and subjective common concept
is with D

(

Mobj
∗ , M subj

∗

)

= 0.38 bit also quite small. The
only significant difference is that the symbol for “south-east”
is split in the subjective method, therefore it has no symbol
for “north-west”. Because of their similarity we will not
continue to calculate both common concepts. Especially if
we consider the computational complexity we will, in fur-
ther investigations, only use the objective common concept.
For the subjective common concept the computational com-
plexity, and the size of the search space are growing ex-
ponentially with the size of the input concept

∣

∣

∣
M(i)

15

∣

∣

∣
and

their number n. Some further objective common concepts
are shown in Fig. 11.
For lack of space the preferred common concept size will

not discussed here.

2The superstition of the objective common concept is 0 by def-
inition becauseM∗ deterministically depends on R0.

Figure 6: 4 input concepts of size |M| = 6 for Fig. 7

Figure 7: Objective (upper half) and subjective (lower half)
common concept

Symmetry

As mentioned earlier, all (common) concepts exhibit a large
degree of symmetry. We will present two methods to mea-
sure and analyze these symmetries. Common to both meth-
ods is the idea of transforming concepts and comparing them
by measuring the mutual information between the trans-
formed concept and e.g. the original. The extrinsic sym-
metry transforms the concept by applying a combination of
a rotation, mirroring and translation on the world. So it tests
if some explicitly known symmetries of the world also hold
for the concept. The intrinsic symmetry opposed searches
for invariants of the world from the agents perspective. So it
is able to extract what seems to be a symmetry for the agent.
With these methods we developed a framework for an-

alyzing the role of regularities in agent↔world interaction
and especially what kind of regularities are used by agents
in their interaction with the world.

Extrinsic Symmetry

An extrinsic symmetry operating on a concept (R, Y ) trans-
forms the grid-worldR = Z2 by applying an extrinsic sym-
metry operation ξθ,ϕ,x0,y0 , a combination of a rotation ϕ (in
90° steps), mirroring θ, and translation (x0, y0)

ξθ,ϕ,x0,y0 : Z
2 → Z

2 (11)
ξθ,ϕ,x0,y0 := ξx0,y0

trans ◦ ξϕ
rot ◦ ξθ

mir. (12)

The mirroring (at the y-axis) is described by θ ∈ {+1,−1}

ξ+1
mir (x, y) := (x, y) ξ−1

mir (x, y) := (−x, y) ,
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R ξR

Y Y ξ

Figure 8: CBN for calculating extrinsic symmetry utility

the rotation (in 90° steps counterclockwise) by ϕ ∈
{0◦, 90◦, 180◦, 270◦}

ξ0
◦

rot (x, y) := (x, y) ξ90
◦

rot (x, y) := (−y, x)
ξ180

◦

rot (x, y) := (−x,−y) ξ270
◦

rot (x, y) := (y,−x)

and finally the translation by (x0, y0) ∈ Z2

ξx0,y0

trans (x, y) := (x + x0, y + y0) .

The application of the operation ξϕ,θ,x0,y0 transforms the
world R and gives us two new probabilistic mappingsR →
ξR and ξR → Y ξ (Fig. 8). The first mapping applies the
operation ξϕ,θ,x0,y0 on R by

Pr (ξR = r′|R = r) := δr′,ξ(r) (13)

=

{

1 r′ = ξ (r)

0 else
. (14)

The second mapping ξR → Y ξ is chosen as a “copy” of
R → Y :

Pr
(

Y ξ = y|ξR = r
)

:= Pr (Y = y|R = r) . (15)

We define the utility for extrinsic symmetry operation
ξϕ,θ,x0,y0 for the concept (R, Y ) as

I
(

Y ; Y ξ
)

, (16)

where a higher value means “higher symmetry”.
Informally, this utility measures “how much a ro-

tated/mirrored/translated concept has in common with the
original one”. Note that because of the use of informa-
tion theory, possible symbol permutations are ignored. With
this method we are also able to interpret a sensor mapping
Rt → St as a concept and calculate its symmetries.

Intrinsic Symmetry
We define a permuted embodiment for an agent as shown
in Fig. 9. In comparison to Fig. 1, the original sensor S
is replaced by Sπ → Sorig and the original actuator A by
Aorig → Aπ. Each pair of permutation of sensor an actuator
(πS , πA) with

πS : Sπ → Sorig (17)
πA : Aorig → Aπ. (18)

. . .

. . .

. . . Rt

Mt

Sπ
t

S
orig
t A

orig
t

Rt+1

Mt+1
. . .

. . .

. . .

Aπ
t

πAπS

Figure 9: Permuted embodiment for the perception-action
loop as CBN

defines an intrinsic symmetry operation. To evaluate an in-
trinsic symmetry operation (πS , πA) on an initial position
capturing agent we first generate a whole set of concepts
{(

R0, M
(1)

15

)

, . . . ,
(

R0, M
(n)

15

)}

from other good initial
position capturing agents with an equivalent setup (both,
evaluated agent and the other agents are still without the
modifications from Fig. 9 at this point). For this set of con-
cepts is an objective common concept

(

R0, M
obj
∗

)

is com-
puted. To evaluate a specific intrinsic symmetry operation
(πS , πA), we apply it on the PAL3 and then calculate the
resulting concept (R0, Mπ

15). We define the quality of this
operation as

I
(

Mobj
∗ ; Mπ

15

)

, (19)

where a higher value means “higher symmetry”. Informally
spoken, “we are shuffling perceptions and actions of the
agent and investigating if he is still able to ’conform’ the
common concept”.

Results Symmetry
Figure 11 shows because of lack of space in extremely com-
pact format some of our symmetry results for comparison.
The upper half of the figure is for setup s+, the lower half
for setup sq.

The Extrinsic Symmetry of the Setup is shown in !1
and !2 . !1 shows the used setup as map of possible sensor
outcomes (understood as concept) p (r|s). The marked box
inside of each symbol denotes the places belonging to R0.
This region visualizes the area of the concept what will be
compared with the transformed concept by the mutual infor-
mation. For setup s+ isR0 = (−5, . . . , 5)2 and for setup sq
R0 = (−10, . . . , 10)2. Of the translation operations, only
those are tested which maps R0 on a subset of the shown
positions in the concept, consequently only translations are
tested with max (|x0| , |y0|) ≤ 5 for setup s+ resp ≤ 10 for
setup sq. The corresponding extrinsic symmetry spectrum
in !2 shows the number of symmetries (y-axis) for a given
value of x =

I(R;Y transformed)
max I(R;Y transformed)

. Additional to these

3Without changing on the controller, i.e. not optimizing the
utility from Eq. 8 again.
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Figure 11: Symmetry - see text for details
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Figure 10: Number of good intrinsic and extrinsic symme-
tries depending on memory size

peaks, we added a smoothing curve into the spectrum. The
rightmost peak with the 8 best symmetries includes all op-
erations with translation x0 = y0 = 0. The next best peak
(second rightmost) covers translation of length 1. The peaks
are mostly ordered by their translation length

√

x2
0 + y2

0 .

The Extrinsic Symmetry of the Concept is shown in !4
and !5 . !4 shows a concept derived from an initial position
capturing agent (R0, M15) with |M| = 4 and its extrinsic
symmetry spectrum similar to the setup in !1 and !2 . Also
here the peaks are mainly ordered by translation distance.
For setup s+ the peak with the best 4 operations contains the
mirroring about the x resp. y axis. If we mirror around the
x-axis we have additionally to translate the concept by 1 in
y direction to get it perfectly matching with the original one.
For setup sq we see that there is only one best symmetry,
the identity. The next best symmetry, a mirroring around the
x-axis, is much weaker.

An Objective Common Concept (R0, M∗)which is used
for the intrinsic symmetry is derived from 8 other solutions
for the initial position capturing (shown in !3 : each column
of 4 symbols forms one input concept). The common con-
cept has a size of |M∗| = 16 symbols and is shown in !6 .

The Intrinsic Symmetry of the Concept is shown once
as spectrum in !8 . !7 also shows these intrinsic symmetries
but in a different way. The x-axis resp. y-axis enumerates
the different possibilities for the permutations for πS resp.
πA whereby 0 stands for the identity. The gray values are ac-
cording to I(R;Mπ

15
)

maxπI(R;Mπ
15)

with an enlarged contrast for val-
ues near to 1 resp. black. The diagonal in this map stands for
“synchronized” embodiment permutations with πS = πA.
The introduction of those synchronized permutation makes
only sense if, like in our case, sensor and actuator values can

be associated and ordered in the same way.
!9 shows on of the best (for setup sq) resp. of the worst

(setup s+) concepts (R0; Mπ
15) after applying an intrinsic

symmetry operation (πS , πA). This operation resp. its two
permutations are shown to the right of the concept. The 4
possible values for S resp. A are shown as solid arrows and
their permutation mappings with dashed arrows. In case of
setup s+ the 16 best symmetries are similar to the 8 rotation
and mirroring of the most right two input concepts shown in
!3 . In case of setup sq the 4 best symmetries are similar to
the shown example but mirrored around the x- and/or y-axis.

Symmetry Dependence on Memory size |M| is shown
in Fig. 10. It shows the number (y-axis) of good extrinsic
resp. intrinsic symmetries (at least 85% of maximal symme-
try utility) for an initial position capturing agent with setup
s+ according to memory size |M| (x-axis). The error-bars
show the number of symmetries with at least 82.5% resp.
87.5% of maximal symmetry utility.

Discussion
We have shown how to extract common perspectives out of
a group of agents with individual perspectives. There is evi-
dence that both objective and subjective methods are almost
similar if, as in our case, the input concepts are mostly de-
terministic. So one can save computation resources by cal-
culating only the objective one. Both methods are based on
the fact that for some locations in the world, the agents have
a disagreement about how to group them to symbols (in our
example e.g. the 4 diagonals in setup s+). Additionally to
assigning the “original” symbols for indisputable areas, the
common concept methods are able to identify the disputed
areas and assign new symbols to them. If we would enlarge
the memory size for the individual agents, they would find
some of these new symbols as well. In our example, an agent
with a bigger memory size would also find the diagonals but
with much lower accuracy. Especially the symbol for the
“center of the world” (Fig. 11 setup s+ !6 ) was never found
by an individual agent in our experiments. So a new level for
structuring the world emerged by considering a whole group
of agents instead of individuals.
We also have evidence that “good” agents’ concepts and

especially common concepts have a higher degree of “sym-
metry”. We developed two methods to study the strength
of symmetry. With the extrinsic symmetry method, rota-
tion and mirroring symmetries were found but the transla-
tions were not. Some “long distance” similarities in the sq
setup we expected to appear were too weak and vanished
in the “noise” of other translations. But, as expected, small
translations were not completely asymmetrical. In general,
the degree of symmetry is vaguely ordered by its translation
length.
As opposed to the extrinsic, the intrinsic symmetry just

observes which changes in the agent’s interaction with the
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environment (actuator/sensor permutations) have no (bad)
effect on its concept. This method is additionally improved
in that we do not compare a permuted concept with the in-
dividual (original) concept but with a common one. This
common concept is “free” of special decisions of individual
agents and gives a more universal representation for a task
than any individual solution. The intrinsic operation forces
the agents to “conform” to the common concept without op-
timizing them again by “transplanting their brain into an-
other body”. Searching for the best intrinsic operations is
in fact partly a re-optimization of the controller. But in to-
tal, we only test in the shown example a vanishingly small
(3.1 · 10−17-th) part of the search space. The meaning of
the intrinsic symmetry method is not yet fully understood.
Partly the intrinsic symmetries are identical to the extrin-
sic symmetries (rotation, mirroring) but they include many
more operations.
Increasing the agent’s memory size, the number of best

extrinsic symmetries drops to 1 which means that identity
is the only remaining symmetry operation. The number of
best intrinsic symmetries behaves differently which means
that intrinsic symmetries are not too sensitive to variations
of the concept due to symmetry operations. This raises an-
other interesting idea: The intrinsic symmetry may give us
a hint for an optimal memory size of an agent. With grow-
ing memory size, the agents begin to “realize” that not every
symmetry they “see” is really in the world. But this process
stops at a certain |M| which might be a good choice for an
agents memory size in the considered environment.

Conclusion and Outlook
We discussed two techniques to generate a common per-
spective by conflating the individual perspectives of a group
of agents. Through this common perspective, we were able
to analyze the similarity of individual agent representations
and find common classifications of the environment. Ad-
ditionally, some features of the world are only (or at least
much more easily) detectable in the common perspective.
We did not model the process of agreeing between these
agents and only used very general information-theoretical
principles which make them applicable to other scenarios as
well.
We found evidence that good classifications of the envi-

ronment capture many of its symmetries. While individ-
ual concepts may suffer some symmetry breaking, common
concepts will reveal these symmetries. To analyze these
symmetries, we developed two information-theoretical ap-
proaches. In the extrinsic approach, we measure for ev-
ery symmetry transformation of the environment the degree
to which the concept is respected. This approach abstracts
away from how we achieved the classification. In contrast,
the intrinsic approach is only suitable for agents interact-
ing with an environment through a PAL. Here we analyze
which modifications of the embodiment lead to agents who

are “similar” to the original one. Since we measure this sim-
ilarity indirectly by comparing the transformed concept to a
common concept, the individual concept’s symmetry breaks
do not influence this method. The intrinsic method provides
insight into the agent and its perspective on the environment.
It identifies symmetries beyond the geometrical symmetries
of the world found in the extrinsic case. The intrinsic sym-
metries accord to changes of the agent’s embodiment which
can not be detected by the agent.
Especially the role of the intrinsic symmetry and its mean-

ing is not fully understood. In the future, it could help to ex-
tract structural regularities in the environment by the agent.
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