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Abstract

In this paper we study the role of movement strategies during
learning in object recognition models. We show that a simple
model, the RBF, can outperform a more complex hierarchi-
cal model, the HMAX, when rotation and scale invariance
are provided by the training phase. Moreover, we assess the
exploitation of temporal information by the RBF using optic
flow. The results show that the RBF model can only exploit
the temporal information using optic flow when the training
and testing trajectories are the same. This work exemplifies
the idea that the complexity of the neural mechanisms in ob-
ject recognition can be understood not only in the brain but
also in the interaction between brain, body and environment.

Introduction

Object recognition is a very complex computational task that
has been widely studied. Whereas visual systems in na-
ture solve this task with exceptional reliability and speed,
the performance of artificial visual systems is still far from
their counterpart in nature. We are interested in the explo-
ration of ways active vision can help biologically inspired
models of object recognition in autonomous agents. In or-
der to understand the visual processes in the brain and de-
sign artificial visual systems, various models have been pro-
posed for object recognition based on different perception
theories. These models can be classified as object-based
or view-based. The former category describes models that
“extract” structural features or parts of the object that are
view-invariant in a 3D coordinate system centred on the ob-
ject. In contrast, view-based models represent objects as a
combination or set of features extracted directly from the
image.For a review of models and theories of perception
see (Riesenhuber and Poggio, 2000; Peters, 2000). Most
state-of-the-art models are view-based, which in turn, are
divided by the way they extract the view-based features.
Some computer-vision based models use statistical regular-
ities extracted from the images, mainly using, template or
histogram systems (bag-of-features, nearest-neighbour, etc.)
(Wang et al., 2006; Zhang et al., 2006; Lazebnik et al.,
2006). Others are biologically inspired, resembling the hi-
erarchical nature of the visual cortex (Riesenhuber and Pog-
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gio, 1999; Poggio and Edelman, 1990; Serre et al., 2005;
Mutch and Lowe, 2006).

Template-based models perform very well on object
recognition of single object category (e.g. faces, cars, etc.).
However, these methods show limitations when the object
is subject to appearance modifications, suffering from high
specificity and therefore, lacking invariance to object trans-
formations. Histogram-based models show a large amount
of invariance to transformations but their performance drops
for general object recognition tasks (i.e. with multiple object
categories) (Serre et al., 2005). Biologically inspired mod-
els for object recognition have been gaining interest because
they perform very well for general purpose object recogni-
tion tasks (Pinto et al., 2008).(Serre et al., 2005), presented
a modified hierarchical model based on (Riesenhuber and
Poggio, 1999) and reported it to be at least comparable to
the best computer vision-based systems.

A common baseline of these systems is that they do not
acquire the incoming visual information by themselves, the
way the visual information is presented to them is restricted
by the experimenter. In some cases, these imposed restric-
tions can play an important role in the recognition process
and hence, in the performance and evaluation of models.
For example, in (Bermudez-Contreras et al., 2007), it was
shown that a simple model of the primary visual cortex
[(RBF), (Howell and Buxton, 1995; Poggio and Edelman,
1990)]Jcan perform just as well as a complex hierarchical
model [(HMAX), (Riesenhuber and Poggio, 1999)] when
natural conditions are present and the former is augmented
by a simple ‘attentional mechanism’. In addition, in (Pinto
et al., 2008), a comparison between state-of-the-art object
recognition systems and a simple V1-like model is carried
out. They show that by imposing conditions on the way the
visual information is presented to the systems (taken from
databases of natural images), the simple biological model
outperforms all of the state-of-the-art systems presented.

Given this importance, an additional fact to be considered
when studying or modelling visual systems is that, in na-
ture, visual systems are active. In active vision, the control
of acquisition of visual information is part of the system.
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It is well known that the restrictions imposed by the inter-
action between body and environment can facilitate visual
processing (Aloimonos, 1993). Active vision strategies are
important both in recognition and in visual learning. For in-
stance, insects utilise specific movement strategies in order
to learn how to perform various visually guided tasks includ-
ing homing, navigation, and finding conspecifics (Lehrer
and Bianco, 2000; Collett and Rees, 1997; Carwright and
Collett, 1983). Therefore, in the study and modelling of vi-
sual systems, it is important to consider the way incoming
visual information is acquired.

There have been relatively only a few studies that anal-
yse the role of motion and object recognition. Arbel and
Ferrie (2002, 2001) propose a paradigm to facilitate object
recognition of a system. Most of the research work on visual
systems in autonomous robots is oriented to navigation, with
some exceptions. For example, in (Gvozdjak and Li, 1998),
the importance of active vision in an agent for recogni-
tion tasks is highlighted using a hierarchical template-based
model. In (Andreasson and Duckett, 2003), an exploratory
study of object recognition using a mobile robot with an
omni-directional camera is presented. The robot tracks ex-
tracted low-level features and constructs higher level fea-
tures for object identification. While these works are ex-
ploratory, they show the potential of active vision in object
recognition tasks. Furthermore, given the success of object
recognition models that reflect the hierarchical nature of the
visual cortex, we evaluate the importance of the role of vi-
sual information acquisition processes in these models.

In this work, we analyse how different movement strate-
gies during training affect the performance of a version of
the HMAX model and the RBF model. We employ a mobile
agent in a simulated world with a simple object recognition
task. We find that movement strategies are exploited dif-
ferently for both models. When a movement strategy does
not provide the opportunity to develop rotation and transla-
tion invariance, the HMAX model performs better than the
RBF. However, when such opportunities are provided, the
RBF model outperforms the HMAX model. These results
suggest that exploiting the dynamics of agent-environment
interaction can, in certain circumstances, obviate the need
for complex models of visual object recognition. We also
consider whether the RBF model performance can be further
enhanced by training and testing using dynamic visual sig-
nals generated during each movement strategy. We find that
such time dependent information is only exploited by the
RBF model when the training and testing movement strate-
gies are the same.

Methods

The following experiments involve a simulated agent per-
forming a simple object recognition task. The agent-
environment system comprises a simple wheeled agent in
a flat planar environment containing two objects (a ‘kettle’
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and a ‘bolt’), simulated using the OpenGL library. It is im-
portant to mention that the goal of this exploratory study is to
investigate how the way of acquiring visual information can
affect the recognition process in two models of object recog-
nition rather than comparing their performance. The visual
object recognition system of the agent comprises three parts:
a ‘blob detection mechanism’ (BDM), an ‘analysis module’
consisting of either the HMAX or the RBF model, and a
‘classifier module’ which classifies the output of the anal-
ysis module into one of two categories (kettle’ or ‘bolt’).
Each experiment consisted of two phases. First, a learn-
ing phase in which the agent followed one of four different
movement strategies (see figure 3) while collecting training
views which are used to train either the HMAX or the RBF
model. Second, a testing phase, during which the agent fol-
lows a separate movement strategy (see figure 2A) while col-
lecting views used to test object recognition performance.

Blob detection mechanism. The BDM selects the area
of the visual field containing the object. It is the ‘attentional
mechanism’ referred to in the introduction. Cropped regions
returned by the BDM are normalised to 60 x 80 pixels (a
blob) before being processed by the analysis module. The
BDM therefore provides some robustness to changes in the
size of objects. The order in which blobs are processed by
the visual system is determined by the area of the blob de-
tected. The larger the area of the blob in the visual field, the
higher the priority of being processed by the visual system
[see (Bermudez and Seth, 2007) for a more detailed expla-
nation of the visual system of the agent].

Analysis module. The analysis module processes visual
information coming from the BDM (current views). These
views are processed by either the HMAX or the RBF model.
The RBF model emulates simple cells in the primary visual
cortex, V1, based on the function of receptive fields imple-
mented by using Derivative of Gaussian filters with different
orientations and sizes. The RBF model uses four different
sizes of square filters with sides of 7, 11, 15 and 21 units
and 0, 45, 90, and 135 degrees of orientation. There are
therefore 16 different filters in total with outputs respond-
ing to oriented edges’ at different spatial scales. Therefore,
this model responds only to a collection of simple primary
features. In contrast, the HMAX model proposed in (Riesen-
huber and Poggio, 1999) is a hierarchical model resembling
the ventral pathway in the visual cortex. The HMAX model
consists of four layers (S1, C1, S2 and C2) resembling sim-
ple and complex cells in the ventral pathway. Units in S1
would correspond to simple features detected by the differ-
ent filters of the RBF model. The next layer C1, responds to
the most salient features in S1 at each orientation and spatial
scale. It achieves this by applying max pooling operations
(extracting the most salient features across the different ori-
entations and spatial scales) over the selected features in S1.
The next layer, S2 combines the output of C1 into a higher
order features sets which are passed into C2 where the out-



puts are again max pooled to produce a vector of the domi-

nant features detected along the hierarchy (see details of the

original model in (Riesenhuber and Poggio, 1999) and de-

tails of this implementation in (Bermudez-Contreras et al.,

2007)). By virtue of its hierarchical structure, this model

shows a degree of translation and scale invariance.
Classifier module.
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Figure 1: View Tuned Unit (VTU): each view vector ¢; is the
centre of a Gaussian function. The more similar a vector x is to a
centre, the stronger the response of the unit.

The classifier module is based on the work of (Edelman
and Duvdevani-Bar, 1997; Poggio and Edelman, 1990). It
uses view tuned units (VTU) to recognise objects. There is
one VTU for each object. Each VTU is trained to respond
so that it responds strongly to test views that are similar to
the training views of the object. Each VTU (see figure 1)
corresponds to a set of radial basis functions (RBF unit). A
RBF unit is a Gaussian function G centered on each view
¢; collected during the training phase. The response of each
RBF is given by G(c;,v) = e~llei=vll/o7 where v is the
vector that is being classified.

The response y of each VTU for a test vector x is given
by y = X;W;G(v;, x), that is, y is a linear combination
of weights W; and G(v;,z). The weights W, are com-
puted using an inversion matrix procedure (the details are
described in the appendix section in (Bermudez-Contreras
et al., 2007)).

Movement strategies. The training views were collected
when the agent was navigating around or approaching the
object, following one of four different trajectories (these
trajectories are called movement strategies throughout the
rest of this paper). The training views were processed by
the analysis module (using the RBF model or the HMAX
model) and learned and classified by the classifier module.

The properties of the set of training views changed de-
pending upon the movement strategy used during their col-
lection. These strategies were designed in order to pro-
vide different properties in the training views (see figure 3).
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movement strategy 1 allows the agent to exploit the different
training distances while using the same point of view. There-
fore, the training views using this strategy only provide vari-
ance in scale. Strategy 2 provides a small degree of variance
in perceived rotation (points of view) and a small degree of
variance in scale as well, since the agent is passing in front
of the target object. The point of view changes slightly as the
distance between the agent and the object changes. Strategy
3 provides only variance in points of view since the distance
between the agent and the object is always the same, while
the point of view changes for each training view. Strategy
4 provides a combination of variance in scale and point of
view since the distance and the perspective of the agent to
the object are changing continuously. For each strategy, 16
training views are taken for each object at regular time inter-
vals. Therefore, training phases varied in length from 160 to
200 time steps depending on the movement strategy used.

In the testing phase, the agents followed a trajectory (test-
ing trajectory) that differs from the movement strategies
used in the learning phase. The testing trajectory was de-
signed so it would resemble a plausible situation in the real
world where the objects are approached in a natural way
that provides views of the objects from multiple angles and
scales (see figure 2). The testing phase lasted for 200 time
steps. During the first 55 steps (period 1) object 1 was
present in the visual field and during 125-180 (period 2) ob-
ject 2 was present in the visual field (see testing trajectory in
figure 2).

Optic flow. An important consequence of actively explor-
ing the world is the visual motion that this evokes. Optic
flow is defined as this type of motion. In our study, we
calculated a simple approximation of optic flow by taking
the absolute difference between consecutive views ¢ and j,
F =1/2-||RBF(i) — RBF(j)] after being processed by
the RBF model. For the rest of the paper, F' is referred to as
RBF optic flow.

Experiment 1: Movement strategies

To assess the role of active vision in the object recognition
models, we tested the RBF and HMAX using the different
movement strategies shown in figure 3 during the learning
phase. The models are then tested while the agent traverses
the testing trajectory shown in figure 2A. The results are
shown in figure 3.

For strategy 1, HMAX outperforms the RBF model. Since
this movement strategy presents the objects from a single
point of view, the models can only acquire scale invariance.
For a simple model like the RBF, this strategy would only
work if the objects were viewed from a similar perspective
to training during the test phase. Since this is not the case
(the point of view is changing and is different from training),
the RBF model cannot closely match test views to training.
However, the HMAX model is able to generalise when a
limited point of view is provided during training. This is
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Figure 2: A. Testing trajectory: the grey segments represent the periods where objects were present in the visual field. B. Visual field of
the agent: shows object 1 in the field of view. C. Sample views of object 1 and object 2: object 1 is a rounded object so it does not have a
significant variability to rotation, in contrast, object 2 has a significantly higher variability to rotation due to its vertical inclination.

because the features extracted by HMAX from a single per-
spective capture higher order properties of the objects which
are in some sense independent of the angle it is viewed at.
For strategy 2, the results are very similar to the previous
case as the training views are again taken from a limited
set of angular positions. However, when the point of view
is varied significantly during the training phase in strategy
3, the RBF model’s performance increases greatly. Since
the number of points of view is significantly increased, the
RBF can achieve a close match between the training and
the test views. In contrast, HMAX’s performance decreases,
demonstrating that its discriminability can be reduced when
the variability of the training views is increased. Similar re-
sults are obtained for strategy 4 where both point of view
and scale are changed during training.

The reason the models’ performance changes with differ-
ent movement strategies has to do with the way the objects
change with the movement of the agent and also with the
features detected by each model. In particular, the variabil-
ity of the objects to rotation is significantly different. As ob-
ject 1 is quite round (see figure 2), its image does not change
significantly when the agent rotates around it (especially at
large distances). In contrast, object 2 has a vertical orienta-
tion which makes it very variable when the point of view is
changed.

Since the RBF model responds mainly to oriented edges
(as it simply comprises a set of differently oriented filters
at different spatial scales), its response depends on a close
match between the test and the training views and we would
expect it to fail when a close match is not possible. When the
points of view are limited (strategy 1 and strategy 2), since
the features detected for object 1 do not change significantly
with the change of perspective (along the testing trajectory),
the RBF model has a relatively close match between train-
ing and test views. Object 2 is difficult to discriminate, how-
ever, as it changes significantly along the testing trajectory.
Thus the overall performance on these strategies is around
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50%. Because the HMAX model acts on a combination of
the dominant features detected by the RBF (since its first
layer is the RBF), it responds to a more generalised pattern
of features, rather than a close match. Since object 1 does
not change significantly, the dominant features will be the
ones responding to the main orientation of the object (hori-
zontal). For object 2, if the object is seen from a single point
of view, the dominant features will be the ones correspond-
ing to the main orientation of the object, roughly 30 degrees
from the vertical in the case of strategy 1. These features
(which form the HMAX template for object 2), will be dif-
ferent to the dominant features detected for object 1 (which
form the HMAX template for object 1), so the discriminabil-
ity of the HMAX model is high in this case.

In contrast, when the point of view is varied significantly
during the training phase (strategies 3 and 4), the RBF
achieves a close match. Since there are more points of views
in the training set, the model can cope with object rotation.
In the case of the HMAX model, since object 2 changes its
orientation during training, the model extracts dominant fea-
tures in many orientations, which form a very general tem-
plate and thus decrease object discriminability. This sce-
nario is depicted in figure 4 which shows the models’ output
after training with strategy 3. The objects are within the field
of view in different periods (grey segments in figure 2) dur-
ing the 200 time step trial. In period 1 (1-55 time steps)
object 1 is within the field of view, and in period 2 (125-
180 time steps) object 2 is within the field of view. For the
RBF model, the agent can correctly discriminate both ob-
jects. Note the peak in output that corresponds to a close
match between test and training view (around time step 37).
In the case of the HMAX model, while there is no problem
with period 1, in period 2 discriminability is reduced signif-
icantly.

Similarity maps further explain the discrimination ability

of the models (figure 5). A similarity map is a diagram rep-
resenting the similarity between the current view (the one
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Figure 3: Movement strategies and models’ performance. The performance of the models refers to the number of times the model has
a correct guess over the test phase. During the following trajectories, the agent takes snapshots at uniform intervals. Strategy 1: the agent
approaches the object in a straight line. Strategy 2: the agent passes the object following a straight line. Strategy 3: the agent circles the object
with a fixed radius. Strategy 4: the agent spirals the object. The performance of the RBF model increases when the movement strategies allow
it to exploit the rotational information during training. In contrast, the HMAX model performance decreases when the model is exposed to

multiple rotational views during training in strategies 3 and 4.
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Figure 4: RBF and HMAX models activity during the test phase
using strategy 3. When the movement strategy provides multiple
points of view during the learning phase, the RBF can have a close
match between the training and the test views. In contrast, the
HMAX model decreases its discriminability when more points of
view are considered. Period 1 represents the time when object 1 is
within the visual field. Period 2 is the time when object 2 is within
the visual field.
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extracted from the visual field) and the training views of the
objects (Y axis) at every time step (X axis). Every point in
the map has a grey-scale value dependent on the distance be-
tween the current view and the training view after processing
by the analysis module. The darker a point, the smaller the
distance between the views, where distance is the sum of the
absolute difference between the views. Each map is divided
in two periods which correspond to points where the objects
are in the agents’ visual field (see figure 2). In the first 55
time steps (period 1), object 1 is present in the visual field
and during period 2 (from 125-180), object 2 is in the visual
field.

The upper part of figure 5 shows the similarity between
views for the RBF, while the lower shows the similarity
map for the HMAX model (HMAX views). If a model was
responding correctly, we would expect darker areas in the
lower region of period 1 and in the upper region of period
2. The similarity map for the RBF has these general fea-
tures as it has acquired a degree of both rotation and scale
invariance from the training trajectory. The responses of the
HMAX model however, show that the higher level features
extracted for each object are too similar for the two objects
to be discriminated reliably.

Thus we see that the performance advantage of the com-
plex HMAX model over the RBF can be achieved by an ac-
tive vision strategy which uses its motion to provide gen-
eralised rotational information. Moreover, we note that
HMAX can fail if the views provided to it are too dissim-
ilar.
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Figure 5: Similarity maps of the models using strategy 3. The
darker the regions in each map, the more similar the corresponding
views. For the RBF map there is an obvious darker region in the
left lower area (corresponding to the views of object 1) for the first
period, and a smaller darker region in the right upper area (corre-
sponding to the views of the object 2). In contrast, for the HMAX
similarity map dark areas appear during both periods for views as-
sociated with both objects.

Experiment 2: RBF Optic flow

Above, we have seen how the RBF exploits multiple view-
points in training to achieve reliable object discrimination.
However, embodied visual systems gather information by
moving not only in space (defining the perceived properties
of the world) but also in time. In these experiments we ex-
plore the role of time dependency in the presentation of the
training views during learning. To do this we have assessed
the performance of the RBF model when we provided it with
optic flow type information (see Methods). The performance
of the RBF model with and without optic flow are shown in
table 1. The results are broadly similar showing that optic
flow information can be exploited by the RBF and provides
the same invariances to rotation and scale as when the model
was trained on a series of static images (Figure 4).

strategy | non-optic | optic
1 50 51
2 51 56
3 92 73
4 94 95

Table 1: Comparison of the performance (%) of the RBF model
with and without optic flow when using the 4 movement strategies.
The performance refers to the number of times the models guess
correctly over the number of time steps in the test phase.

Time dependency in the recognition process. One of
the important properties of optic flow is the time depen-
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dency imposed in the recognition process. While the ex-
periment above shows that the model is able to take advan-
tage of differences between successive images, it does not
tell us whether it is using this temporal structure. That is,
it does not tell us whether the order in which the views are
presented during the learning phase is important. To test
this, we trained the RBF model using optic flow with views
taken using strategy 3 as usual or with the order of training
views randomised. To further emphasise the effects of tem-
poral structure the test trajectory used was the same as the
training trajectory.
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Figure 6: RBF model activity trained using strategy 3 and tested
in the same trajectory with randomised ordered training views. (A)
model activity for normal conditions (B) model activity of random
ordered training views.

Given that object 1 is a rounded object and so appears
similar from any perspective while object 2 is more rotation-
ally variable, object 2 was used for this experiment. Figure 6
shows the model activity in using both non-randomized (top)
and randomized (bottom) view sequences when circling ob-
ject 2. While the object can be discriminated in both cases,
in the randomised training case outputs from both VTUs are
very similar. Results (not shown) confirm that for object 1,
variations in the order of the presentation during the training
phase are not as relevant as for object 2. These results show
that if the same movement strategy is used during training
and testing phase, the RBF model with optic flow can ex-
ploit the time dependency imposed in the strategy. We next
consider what happens when the trajectory is not the same:
Is the optic flow-based model robust to changes in the tra-
jectory?

Using a different test trajectory. Robustness in the
recognition signals is an important issue when using move-
ment strategies. It is desirable to have some degree of ro-
bustness in the movement strategies when testing an object
recognition model. In this section, we test the optic flow



strategy in the visual system to certain perturbations in the
testing trajectory or in the order of the training views. Ini-
tially, to test whether the RBF optic flow changes the activity
of the RBF model when having different training and test-
ing trajectories, we used strategies 3 and 4 during the learn-
ing phase (we used these strategies because they provide
higher rotational and scale variation thus maximizing op-
tic flow), and the testing trajectory during the testing phase
(as in Experiment 1). If the order of the presentation of the
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Figure 7: RBF model activity for strategy 4 under various condi-
tions. Top: no optic flow and randomized training view, model ac-
tivity is the same as in Experiment 1. Middle: optic flow and non-
randomized training views. Bottom: optic flow and randomised
order of training views.

views during the training phase is important, we expect the
model activity to be affected when the order of the train-
ing views is randomised. Figure 7 shows model activity in
three cases: randomized training views without optic flow
(top), non-randomized views with optic flow (middle), and
randomized views with optic flow (bottom). In the case of
non-optic flow scenario (top), the activation is the same as in
Experiment 1 (figure 4) since there is no temporal informa-
tion present. However, when using optic flow the model ac-
tivity is not significantly affected by randomizing the train-
ing views (compare middle and bottom panels of 7). These
results therefore show that the order of the training views
does not significantly affect the RBF model activity when
using optic flow, and when the training and testing move-
ment strategies are not the same. Thus, in contrast to the
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previous result (in figure 6), under these conditions the tem-
poral information provided by optic flow is not exploited by
the RBF model.

Conclusion

In this paper we have compared the performance of the RBF
and HMAX models, on their performance when utilizing
embodied movement strategies for training and testing. In
the first experiment, four different movement strategies were
used to collect the training views and a single, distinct test-
ing strategy was used to assess object recognition perfor-
mance. Each training strategy offered different degrees of
variation in point of view and distance, potentially support-
ing the development of rotation invariance and scale invari-
ance respectively. When no rotation variance is present in
the training views, the HMAX model shows a good perfor-
mance. However, when more points of view are provided,
not only does the RBF model outperform the HMAX model,
but the HMAX model performs worse than before. Thus, in
what arguably reflects natural viewing conditions, when in-
corporating variance in both point-of-view and distance, the
simple RBF outperforms the more complex HMAX model.
In the second experiment, the role of time dependent visual
information in the learning process was tested using the RBF
model. We found that an RBF model trained on an approxi-
mation of optic flow could exploit the temporal information
in the difference of consecutive views but only in the restric-
tive condition in which training and testing trajectories were
identical. However, when there are significant differences
between training and testing strategies, the RBF model is
unable to take advantage of this temporal information. This
result suggests that optic-flow style information cannot be
assumed to improve visual processing in these conditions
and invites further modelling to investigate how such infor-
mation can best be leveraged by simple models of object
recognition.

Our results exemplify the idea that the natural computa-
tions underlying adaptive behavior are best understood as
being implemented not only in the brain of an organism, but
as well in the interactions that cut across brain, body and
environment. Improved insights into these natural compu-
tations are likely to support the development of enhanced
artificial object recognition technologies. This work can be
extended in different directions. One is considering more
objects in the simulated world. In addition, a study of con-
ditions where temporal information can be exploited to im-
prove object recognition in mobile agents.

Acknowledgements

Edgar Bermudez was funded by the National Council of Sci-
ence and Technology (CONACyT, Mexico). Andrew Philip-
pides was funded by EPSRC grant GR-T08753-01



References

Aloimonos, Y., editor (1993). Active Perception. Erlbaum, Hills-
dale, NJ.

Andreasson, H. and Duckett, T. (2003). Object recognition by a
mobile robot using omni-directional vision. In Proc. Eighth
Scandinavian Conference on Artificial Intelligence (SCAI
2003).

Arbel, T. and Ferrie, F. P. (2001). Entropy-based gaze planning.
Image and Vision Computing, 19(11):779-786.

Arbel, T. and Ferrie, F. P. (2002). Interactive visual dialog. Image
and Vision Computing, pages 639-646.

Bermudez, E. and Seth, A. (2007). Simulations of simulations in
evolutionary robotics. In Almeida e Costa, F., Mateus Rocha,
L., Costa, E., Harvey, I., and Coutinho, A., editors, Proc. Eu-
ropean Conference of Artificial Life (ECAL), pages 796-806.
Springer-Verlag.

Bermudez-Contreras, E., Buxton, H., and Spier, E. (2007). Atten-
tion can improve a simple model for visual object recognition.
(In Press) Image and Vision Computing.

Carwright, B. and Collett, T. (1983). Landmark learning in bees:
Experiments and models. Journal of Comparative Physiol-
ogy, 151:521-543.

Collett, T. S. and Rees, J. A. (1997). View-based navigation in
hymenoptera: multiple strategies of landmark guidance in the
approach to a feeder. Journal of Comparative Physiology A:
Neuroethology, Sensory, Neural, and Behavioral Physiology,
181(1):47-58.

Edelman, S. and Duvdevani-Bar, S. (1997). A model of visual
recognition and categorization. Phil. Trans. R. Soc. Lond. B,
352(1358):1191-2002.

Gvozdjak, P. and Li, Z. N. (1998). From nomad to explorer: active
object recognition on mobile robots.

Howell, J. and Buxton, H. (1995). Receptive fields functions for
face recognition. In Proc. 2nd International Workshop on
Parallel Modelling of Neural Operators for Pattern Recogni-
tion, pages 221-226.

Lazebnik, S., Schmid, C., and Ponce, J. (2006). Beyond bags of
features: Spatial pyramid matching for recognizing natural
scene categories. volume 2, pages 2169-2178.

Lehrer, M. and Bianco, G. (2000). The turn-back-and-look be-
haviour: bee versus robot. Biological cybernetics, 83(3):211—
229.

Mutch, J. and Lowe, D. G. (2006). Multiclass object recognition
with sparse, localized features. volume 1, pages 11-18.

Peters, G. (2000). Theories of three-dimensional object perception:
A survey. Recent research developments in pattern recogni-
tion, 1:179-197.

Pinto, N., Cox, D. D., and Dicarlo, J. J. (2008). Why is real-world
visual object recognition hard? PLoS Computational Biol-
0gy, 4(1):151-156.

Poggio, T. and Edelman, S. (1990). A network that learns to rec-
ognize 3-d objects. Nature, 343:263-266.

Atrtificial Life XI 2008

48

Riesenhuber, M. and Poggio, T. (1999). Hierarchical models of ob-
ject recognition in cortex. Nature Neuroscience,2(11):1019—
1025.

Riesenhuber, M. and Poggio, T. (2000). Models of object recogni-
tion. Nature Neuroscience, 3:1199-1204.

Serre, T., Wolf, L., and Poggio, T. (June, 2005). Object recogni-
tion with features inspired by visual cortex. In Proceedings
of 2005 IEEE Computer Society Conference on Computer Vi-
sion and Patter Recognition (CVPR).

Wang, G., Zhang, Y., and Fei-Fei, L. (2006). Using dependent
regions for object categorization in a generative framework.
In Proc. IEEE Computer Society Conference on Computer
Vision and Pattern Recognition, pages 1597-1604.

Zhang, H., Berg, A. C., Maire, M., and Malik, J. (2006). Svm-knn:
Discriminative nearest neighbor classification for visual cat-
egory recognition. In Proc. IEEE Computer Society Confer-
ence on Computer Vision and Pattern Recognition, volume 2,
pages 2126-2136.





